====== Question 2, Exercise 2.3 ====== Solutions of Question 2 of Exercise 2.3 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 2(i)===== Evaluate the determinant of the following matrix $\left[\begin{array}{lll}3 & 2 & 3 \\ 4 & 5 & 1 \\ 2 & 1 & 0\end{array}\right]$ using cofactor method.\\ ** Solution. ** The elements of \(R_1\) are \(a_{11} = 3\), \(a_{12} = 2\), and \(a_{13} = 3\). Now we find their corresponding cofactors. \begin{align*} A &= \left[\begin{array}{ccc} 3 & 2 & 3 \\ 4 & 5 & 1 \\ 2 & 1 & 0 \end{array}\right]\\ & A_{11} = (-1)^{1+1} \left|\begin{array}{cc} 5 & 1 \\ 1 & 0 \end{array}\right| = (-1)^{2} (5 \cdot 0 - 1 \cdot 1) = (1) (-1) = -1 \\ & A_{12} = (-1)^{1+2} \left|\begin{array}{cc} 4 & 1 \\ 2 & 0 \end{array}\right| = (-1)^{3} (4 \cdot 0 - 1 \cdot 2) = (-1) (-2) = 2 \\ & A_{13} = (-1)^{1+3} \left|\begin{array}{cc} 4 & 5 \\ 2 & 1 \end{array}\right| = (-1)^{4} (4 \cdot 1 - 5 \cdot 2) = (1) (4 - 10) = -6 \end{align*} Now, we use these cofactors to find the determinant: \begin{align*} \det(A) &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} \\ &= 3(-1) + 2(2) + 3(-6) \\ &= -3 + 4 - 18 \\ &= -17 \end{align*} Thus, the determinant of the matrix \(\left[\begin{array}{ccc} 3 & 2 & 3 \\ 4 & 5 & 1 \\ 2 & 1 & 0 \end{array}\right]\) is: $-17$ =====Question 2(ii)===== Evaluate the determinant of the following matrix $\left[\begin{array}{ccc}2 & 3 & -1 \\ -1 & 0 & 2 \\ 3 & 1 & 4\end{array}\right]$ using cofactor method. ** Solution. ** The elements of \(R_1\) are \(a_{11} = 2\), \(a_{12} = 3\), and \(a_{13} = -1\). Now we find their corresponding cofactors. \begin{align*} A &= \left[\begin{array}{ccc} 2 & 3 & -1 \\ -1 & 0 & 2 \\ 3 & 1 & 4 \end{array}\right]\\ & A_{11} = (-1)^{1+1} \left|\begin{array}{cc} 0 & 2 \\ 1 & 4 \end{array}\right| = (-1)^{2} (0 \cdot 4 - 2 \cdot 1) = (1) (0 - 2) = -2 \\ & A_{12} = (-1)^{1+2} \left|\begin{array}{cc} -1 & 2 \\ 3 & 4 \end{array}\right| = (-1)^{3} (-1 \cdot 4 - 2 \cdot 3) = (-1) (-4 - 6) = 10 \\ & A_{13} = (-1)^{1+3} \left|\begin{array}{cc} -1 & 0 \\ 3 & 1 \end{array}\right| = (-1)^{4} (-1 \cdot 1 - 0 \cdot 3) = (1) (-1) = -1 \end{align*} Now, we use these cofactors to find the determinant: \begin{align*} \det(A) &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} \\ &= 2(-2) + 3(10) + (-1)(-1) \\ &= -4 + 30 + 1 \\ &= 27 \end{align*} Thus, the determinant of the matrix \(\left[\begin{array}{ccc} 2 & 3 & -1 \\ -1 & 0 & 2 \\ 3 & 1 & 4 \end{array}\right]\) is:$27$ =====Question 2(iii)===== Evaluate the determinant of the following matrix $\left[\begin{array}{ccc}2 i & 6 & 1 \\ 1 & -i & 2 \\ 0 & 1 & 3 i\end{array}\right]$ using cofactor method. ** Solution. ** The elements of \(R_1\) are \(a_{11} = 2i\), \(a_{12} = 6\), and \(a_{13} = 1\). \begin{align*} A &= \left[\begin{array}{ccc}2i & 6 & 1 \\ 1 & -i & 2 \\ 0 & 1 & 3i\end{array}\right]\\ & A_{11} = (-1)^{1+1} \left|\begin{array}{cc} -i & 2 \\ 1 & 3i \end{array}\right| = (-1)^{2} (-i \cdot 3i - 2 \cdot 1) = (1) (-3i^2 - 2) = -3(-1) - 2 = 3 - 2 = 1 \\ & A_{12} = (-1)^{1+2} \left|\begin{array}{cc} 1 & 2 \\ 0 & 3i \end{array}\right| = (-1)^{3} (1 \cdot 3i - 2 \cdot 0) = (-1) (3i - 0) = -3i \\ & A_{13} = (-1)^{1+3} \left|\begin{array}{cc} 1 & -i \\ 0 & 1 \end{array}\right| = (-1)^{4} (1 \cdot 1 - (-i) \cdot 0) = (1) (1 - 0) = 1 \end{align*} Now, we use these cofactors to find the determinant: \begin{align*} \det(A) &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} \\ &= 2i(1) + 6(-3i) + 1(1) \\ &= 2i - 18i + 1 \\ &= -16i + 1 \end{align*} Thus, the determinant of the matrix \(\left[\begin{array}{ccc}2i & 6 & 1 \\ 1 & -i & 2 \\ 0 & 1 & 3i\end{array}\right]\) is:$1 - 16i$ =====Question 2(iv)===== Evaluate the determinant of the following matrix $\left[\begin{array}{ccc}1-i & 2 & 1+i \\ 3 & 1 & 4 \\ 0 & 2 & 3\end{array}\right]$ using cofactor method.\\ ** Solution. ** The elements of $R_1$ are $a_{11} = 1-i$, $a_{12} = 2$, and $a_{13} = 1+i$. \begin{align*}A &= \left[\begin{array}{ccc}1-i & 2 & 1+i \\ 3 & 1 & 4 \\ 0 & 2 & 3\end{array}\right]\\ & A_{11} = (-1)^{1+1} \left|\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array}\right| = (-1)^{2} (1 \cdot 3 - 4 \cdot 2) = (1) (3 - 8) = -5 \\ & A_{12} = (-1)^{1+2} \left|\begin{array}{cc} 3 & 4 \\ 0 & 3 \end{array}\right| = (-1)^{3} (3 \cdot 3 - 4 \cdot 0) = (-1) (9 - 0) = -9 \\ & A_{13} = (-1)^{1+3} \left|\begin{array}{cc} 3 & 1 \\ 0 & 2 \end{array}\right| = (-1)^{4} (3 \cdot 2 - 1 \cdot 0) = (1) (6 - 0) = 6 \end{align*} Now, we use these cofactors to find the determinant: \begin{align*} \det(A) &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} \\ &= (1-i)(-5) + 2(-9) + (1+i)(6) \\ &= -5 + 5i - 18 + 6 + 6i \\ &= -17 + 11i \end{align*} Thus, the determinant of the matrix \(\left[\begin{array}{ccc}1-i & 2 & 1+i \\ 3 & 1 & 4 \\ 0 & 2 & 3\end{array}\right]\) is: $-17 + 11i$ ====Go to ==== [[math-11-nbf:sol:unit02:ex2-3-p1|< Question 1]] [[math-11-nbf:sol:unit02:ex2-3-p3|Question 3 >]]