====== Question 5, Exercise 2.3 ====== Solutions of Question 5 of Exercise 2.3 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 5(i)===== Find the multiplicative inverse of the following matrices if it exists by adjoint method $\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & -2 & -1\end{array}\right]$. ** Solution. ** Given \begin{align*} A &= \left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & -2 & -1 \end{array}\right]\\ |A|&= 1 [-1 - 2] + 1 [-2 + 1] + 1 [-4 - 1] \\ &= 1 \cdot (-3) + 1 \cdot (-1) + 1 \cdot (-5) \\ &= -3 - 1 - 5 \\ &= -9 \end{align*} Thus, $|A| = -9 \neq 0$, so $A$ is non-singular.\\ Let find the cofactor matrix for $A$.\\ \begin{align*} A_{11} &= (-1)^{1+1} \left|\begin{array}{cc} 1 & -1 \\ -2 & -1 \end{array}\right|\\ &= (1) [(1)(-1) - (-1)(-2)] \\ &= -1 - 2 = -3 \\ A_{12} &= (-1)^{1+2} \left|\begin{array}{cc} 2 & -1 \\ 1 & -1 \end{array}\right|\\ &= (-1) [(2)(-1) - (-1)(1)] \\ &= -1 [-2 + 1] = 1 \\ A_{13} &= (-1)^{1+3} \left|\begin{array}{cc} 2 & 1 \\ 1 & -2 \end{array}\right|\\ &= (1) [(2)(-2) - (1)(1)]\\ &= -4 - 1 = -5 \\ A_{21} &= (-1)^{2+1} \left|\begin{array}{cc} -1 & 1 \\ -2 & -1 \end{array}\right| \\ &= (-1) [(-1)(-1) - (1)(-2)]\\ &= -1 [1 + 2] = -3 \\ A_{22} &= (-1)^{2+2} \left|\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right|\\ &= (1) [(1)(-1) - (1)(1)]\\ &= -1 - 1 = -2 \\ A_{23} &= (-1)^{2+3} \left|\begin{array}{cc} 1 & -1 \\ 1 & -2 \end{array}\right|\\ &= (-1) [(1)(-2) - (-1)(1)]\\ &= -1 [-2 + 1] = 1 \\ A_{31} &= (-1)^{3+1} \left|\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right| \\ &= (1) [(-1)(-1) - (1)(1)]\\ &= 1 - 1 = 0 \\ A_{32} &= (-1)^{3+2} \left|\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array}\right| \\ &= (-1) [(1)(-1) - (1)(2)] \\ &= -1 [-1 - 2] = 3 \\ A_{33} &= (-1)^{3+3} \left|\begin{array}{cc} 1 & -1 \\ 2 & 1 \end{array}\right|\\ &= (1) [(1)(1) - (-1)(2)]\\ &= 1 + 2 = 3 \end{align*} \begin{align*} adj(A) &= \left[\begin{array}{ccc} -3 & 1 & -5 \\ -3 & -2 & 1 \\ 0 & 3 & 3 \end{array}\right]^t\\ &= \left[\begin{array}{ccc} -3 & -3 & 0 \\ 1 & -2 & 3 \\ -5 & 1 & 3 \end{array}\right] \end{align*} \begin{align*} A^{-1} &= \dfrac{1}{-9} \left[\begin{array}{ccc} -3 & -3 & 0 \\ 1 & -2 & 3 \\ -5 & 1 & 3 \end{array}\right]\\ & = \left[\begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & 0 \\ -\frac{1}{9} & \frac{2}{9} & -\frac{1}{3} \\ \frac{5}{9} & -\frac{1}{9} & -\frac{1}{3} \end{array}\right] \end{align*} Thus, the inverse of $A$ is: $$ A^{-1} =\left[\begin{array}{ccc} \dfrac{1}{3} & \dfrac{1}{3} & 0 \\ -\dfrac{1}{9} & \dfrac{2}{9} & -\dfrac{1}{3} \\ \dfrac{5}{9} & -\dfrac{1}{9} & -\dfrac{1}{3} \end{array}\right]$$ =====Question 5(ii)===== Find the multiplicative inverse of the following matrices if it exists by adjoint method $\left[\begin{array}{ccc}3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]$. ** Solution. ** Do yourself. =====Question 5(iii)===== Find the multiplicative inverse of the following matrices if it exists by adjoint method $\left[\begin{array}{ccc}i & 0 & 1 \\ 2 i & -1 & -i \\ 1 & 0 & 4 i\end{array}\right]$. ** Solution. ** Given \begin{align*} B &= \left[\begin{array}{ccc} i & 0 & 1 \\ 2i & -1 & -i \\ 1 & 0 & 4i \end{array}\right]\\ |B| &= i \left[(-1)(4i) - (-i)(0)\right] + 1 \left[(2i)(0) - (-1)(1)]\right] \\ &= i \left[-4i\right] + 1 [0 + 1] \\ &= -4i^2 + 1 \\ &= 4 + 1 \\ &= 5 \end{align*} Thus, $|B| = 5 \neq 0$, so $B$ is non-singular.\\ \begin{align*} B_{11} &= (-1)^{1+1} \left|\begin{array}{cc} -1 & -i \\ 0 & 4i \end{array}\right|\\ &= (1) [(-1)(4i) - (-i)(0)] = -4i \\ B_{12} &= (-1)^{1+2} \left|\begin{array}{cc} 2i & -i \\ 1 & 4i \end{array}\right|\\ &= (-1) [(2i)(4i) - (-i)(1)] \\ &= -[8i^2 + i] \\ &= -[8(-1) + i] = 8 - i \\ B_{13} &= (-1)^{1+3} \left|\begin{array}{cc} 2i & -1 \\ 1 & 0 \end{array}\right| \\ &= (1) [(2i)(0) - (-1)(1)] = 1 \\ B_{21} &= (-1)^{2+1} \left|\begin{array}{cc} 0 & 1 \\ 0 & 4i \end{array}\right|\\ &= (-1) [(0)(4i) - (1)(0)] = 0 \\ B_{22} &= (-1)^{2+2} \left|\begin{array}{cc} i & 1 \\ 1 & 4i \end{array}\right|\\ &= (1) [(i)(4i) - (1)(1)] \\ &= 4i^2 - 1 = 4(-1) - 1 \\ &= -4 - 1 = -5 \\ B_{23} &= (-1)^{2+3} \left|\begin{array}{cc} i & 0 \\ 1 & 0 \end{array}\right|\\ &= (-1) [(i)(0) - (0)(1)] = 0 \\ B_{31} &= (-1)^{3+1} \left|\begin{array}{cc} 0 & 1 \\ -1 & -i \end{array}\right| \\ &= (1) [(0)(-i) - (1)(-1)] = 1 \\ B_{32} &= (-1)^{3+2} \left|\begin{array}{cc} i & 1 \\ 2i & -i \end{array}\right| \\ &= (-1) [(i)(-i) - (1)(2i)]\\ &= -[-1 - 2i] = 1 + 2i \\ B_{33} &= (-1)^{3+3} \left|\begin{array}{cc} i & 0 \\ 2i & -1 \end{array}\right|\\ &= (1) [(i)(-1) - (0)(2i)] = -i \end{align*} \begin{align*} adj(B) &= \left[\begin{array}{ccc} -4i & 8 - i & 1 \\ 0 & -5 & 0 \\ 1 & 1 + 2i & -i \end{array}\right]^t \\ &= \left[\begin{array}{ccc} -4i & 0 & 1 \\ 8 - i & -5 & 1 + 2i \\ 1 & 0 & -i \end{array}\right]\end{align*} \begin{align*} B^{-1} &= \dfrac{1}{|B|} adj(B)\\ & = \dfrac{1}{5} \left[\begin{array}{ccc} -4i & 0 & 1 \\ 8 - i & -5 & 1 + 2i \\ 1 & 0 & -i \end{array}\right]\\ & = \left[\begin{array}{ccc} -\dfrac{4i}{5} & 0 & \dfrac{1}{5} \\ \dfrac{8 - i}{5} & -1 & \dfrac{1 + 2i}{5} \\ \dfrac{1}{5} & 0 & -\dfrac{i}{5} \end{array}\right] \end{align*} Thus, the inverse of $B$ is: \begin{align*} B^{-1} &= \left[\begin{array}{ccc} -\dfrac{4i}{5} & 0 & \dfrac{1}{5} \\ \dfrac{8 - i}{5} & -1 & \dfrac{1 + 2i}{5} \\ \dfrac{1}{5} & 0 & -\dfrac{i}{5} \end{array}\right] \end{align*} =====Question 5(iv)===== Find the multiplicative inverse of the matrix if it exists by adjoint method $\left[\begin{array}{ccc}3 & -i & i \\ 2 & 1 & -3 i \\ 4 i & 2 & 6\end{array}\right]$. ** Solution. ** Do yourself. ====Go to ==== [[math-11-nbf:sol:unit02:ex2-3-p4|< Question 4]] [[math-11-nbf:sol:unit02:ex2-3-p6|Question 6 >]]