====== Question 2, Exercise 2.5 ====== Solutions of Question 2 of Exercise 2.5 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 2(i)===== Find the rank of each of the matrix $\left[\begin{array}{ccc}5 & 9 & 3 \\ 3 & -5 & 6 \\ 2 & 10 & 6\end{array}\right]$ ** Solution. ** \begin{align*}&\quad\left[ \begin{array}{ccc} 5 & 9 & 3 \\ 3 & -5 & 6 \\ 2 & 10 & 6 \end{array} \right]\\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 3 & -5 & 6 \\ 2 & 10 & 6 \end{array} \right]\quad \frac{1}{5} R1\\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 0 & -\frac{52}{5} & \frac{15}{5} \\ 2 & 10 & 6 \end{array} \right]\quad R2 - 3 \cdot R1\\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 0 & -\frac{52}{5} & \frac{15}{5} \\ 0 & \frac{32}{5} & \frac{24}{5} \end{array} \right]\quad R3 - 2 \cdot R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 0 & 1 & -\frac{15}{52} \\ 0 & \frac{32}{5} & \frac{24}{5} \end{array} \right]\quad -\frac{5}{52} R2\\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 0 & 1 & -\frac{15}{52} \\ 0 & 0 & \frac{648}{52} \end{array} \right]\quad R3 - \frac{32}{5} R2 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 0 & 1 & -\frac{15}{52} \\ 0 & 0 & 1 \end{array} \right]\quad \frac{52}{648} R3\\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{9}{5} & \frac{3}{5} \\ 0 & 1 & -\frac{15}{52} \\ 0 & 0 & 1 \end{array} \right] \end{align*} There are $3$ non-zero rows.\\ The rank of the matrix is $3$. =====Question 2(ii)===== Find the rank of each of the matrix $\left[\begin{array}{ccc}-1 & -2 & 3 \\ -1 & 2 & -1 \\ -5 & 2 & 3\end{array}\right]$ ** Solution. ** \begin{align*} &\quad \left[ \begin{array}{ccc} -1 & -2 & 3 \\ -1 & 2 & -1 \\ -5 & 2 & 3 \end{array} \right] \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & 2 & -3 \\ -1 & 2 & -1 \\ -5 & 2 & 3 \end{array} \right] \quad (-1)R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & 2 & -3 \\ 0 & 4 & -4 \\ -5 & 2 & 3 \end{array} \right] \quad R2 + R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & 2 & -3 \\ 0 & 4 & -4 \\ 0 & 12 & -12 \end{array} \right] \quad R3 + 5R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & 2 & -3 \\ 0 & 1 & -1 \\ 0 & 12 & -12 \end{array} \right] \quad \frac{1}{4}R2 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & 2 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right] \quad R3 - 12R2 \\ \end{align*} There are $2$ non-zero rows.\\ The rank of the matrix is $2$. =====Question 2(iii)===== Find the rank of each of the matrix $\left[\begin{array}{ccc}3 & 2 & 4 \\ 2 & 1 & 6 \\ 4 & -1 & 0\end{array}\right]$ ** Solution. ** \begin{align*} &\quad \left[ \begin{array}{ccc} 3 & 2 & 4 \\ 2 & 1 & 6 \\ 4 & -1 & 0 \end{array} \right] \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{2}{3} & \frac{4}{3} \\ 2 & 1 & 6 \\ 4 & -1 & 0 \end{array} \right] \quad \frac{1}{3}R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{2}{3} & \frac{4}{3} \\ 0 & \frac{1}{3} & \frac{14}{3} \\ 4 & -1 & 0 \end{array} \right] \quad R2 - 2R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{2}{3} & \frac{4}{3} \\ 0 & \frac{1}{3} & \frac{14}{3} \\ 0 & -\frac{10}{3} & -\frac{16}{3} \end{array} \right] \quad R3 - 4R1 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{2}{3} & \frac{4}{3} \\ 0 & 1 & 14 \\ 0 & -\frac{10}{3} & -\frac{16}{3} \end{array} \right] \quad 3R2 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{2}{3} & \frac{4}{3} \\ 0 & 1 & 14 \\ 0 & 0 & \frac{124}{3} \end{array} \right] \quad R3 + \frac{10}{3}R2 \\ \sim & \text{R}\left[ \begin{array}{ccc} 1 & \frac{2}{3} & \frac{4}{3} \\ 0 & 1 & 14 \\ 0 & 0 & 1 \end{array} \right] \quad \frac{3}{124}R3 \end{align*} There are $3$ non-zero rows.\\ The rank of the matrix is $3$. =====Question 2(iv)===== Find the rank of each of the matrix $\left[\begin{array}{ll}1 & 3 \\ 2 & 9 \\ 1 & 6\end{array}\right]$. ** Solution. ** \begin{align*} &\quad \left[ \begin{array}{cc} 1 & 3 \\ 2 & 9 \\ 1 & 6 \end{array} \right] \\ \sim & \text{R}\left[ \begin{array}{cc} 1 & 3 \\ 0 & 3 \\ 1 & 6 \end{array} \right] \quad R2 - 2R1 \\ \sim & \text{R}\left[ \begin{array}{cc} 1 & 3 \\ 0 & 3 \\ 0 & 3 \end{array} \right] \quad R3 - R1 \\ \sim & \text{R}\left[ \begin{array}{cc} 1 & 3 \\ 0 & 1 \\ 0 & 3 \end{array} \right] \quad \frac{1}{3}R2 \\ \sim & \text{R}\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right] \quad R1 - 3R2, \, R3 - 3R2 \end{align*} There are $2$ non-zero rows.\\ The rank of the matrix is $2$ ====Go to ==== [[math-11-nbf:sol:unit02:ex2-5-p1|< Question 1]] [[math-11-nbf:sol:unit02:ex2-5-p3|Question 3 >]]