====== Question 3, Exercise 2.6 ====== Solutions of Question 3 of Exercise 2.6 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 3(i)===== Solve the system of linear equation by Gauss elimination method.\\ $2 x+3 y+4 z=2$\\ $2 x+y+z=5$\\ $3 x-2 y+z=-3$\\ ** Solution. ** Given the system of equations: \begin{align*} \begin{aligned} 2x + 3y + 4z &= 2 \\ 2x + y + z &= 5 \\ 3x - 2y + z &= -3 \end{aligned}\end{align*} The associated augmented matrix is: \begin{align*} A_{b} &=\quad \left[\begin{array}{cccc} 2 & 3 & 4 & 2 \\ 2 & 1 & 1 & 5 \\ 3 & -2 & 1 & -3 \end{array}\right]\\ & \sim \text{R}\left[\begin{array}{cccc} 2 & 3 & 4 & 2 \\ 0 & -2 & -3 & 3 \\ 0 & -\frac{13}{2} & -5 & -6 \end{array}\right]\quad R_2 - R_1 \text{and}\quad R_3 - \frac{3}{2}R_1\\ & \sim \text{R}\left[\begin{array}{cccc} 2 & 3 & 4 & 2 \\ 0 & -2 & -3 & 3 \\ 0 & 0 & \frac{19}{4} & -\frac{63}{4} \end{array}\right]\quad R_3 - \frac{13}{4} R_2 \end{align*} Now \begin{align*} \frac{19}{4}z& = -\frac{63}{4}\\ \Rightarrow z& = -\frac{63}{19}\end{align*} From the second row, we have: \begin{align*} &- 2y - 3z = 3\\ \Rightarrow &-2y - 2(-\frac{63}{19}) = 3 \\ \Rightarrow &-2y = -\frac{132}{19} \\ \Rightarrow &y = \frac{66}{19}\end{align*} Finally, from the first row, we have: \begin{align*} 2x + 3y + 4z &= 2 \\ 2x + 3(\frac{66}{19}) + 4(-\frac{63}{19}) &= 2 \\ 2x +\frac{198}{18} -\frac{252}{19} &= 2 \\ 2x - \frac{54}{19} &= 2 \\ 2x &= 2 + \frac{54}{19} \\ 2x &= \frac{92}{19}\\ x &= \frac{46}{19} \end{align*} Therefore, the solution to the system is: $$x = \frac{46}{19}, \quad y = \frac{66}{19}, \quad z = -\frac{63}{19}$$ =====Question 3(ii)===== Solve the system of linear equation by Gauss elimination method.\\ $5 x-2 y+z=2$\\ $2 x+2 y+6 z=1$\\ $3 x-4 y-5 z=3$\\ ** Solution. ** Given the system of equations: \begin{align*} 5x - 2y + z &= 2 \quad \cdots (i) \\ 2x + 2y + 6z &= 1 \quad \cdots (ii) \\ 3x - 4y - 5z &= 3 \quad \cdots (iii) \end{align*} The associated augmented matrix is: \begin{align*} A_b& =\quad \left[\begin{array}{cccc} 5 & -2 & 1 & 2 \\ 2 & 2 & 6 & 1 \\ 3 & -4 & -5 & 3 \end{array}\right]\\ &\sim \text{R}\left[\begin{array}{cccc} 2 & 2 & 6 & 1 \\ 5 & -2 & 1 & 2 \\ 3 & -4 & -5 & 3 \end{array}\right]\quad R_1 \sim R_2\\ &\sim \text{R}\left[\begin{array}{cccc} 2 & 2 & 6 & 1 \\ 0 & -7 & -14 & \frac{1}{2} \\ 0 & -7 & -14 & \frac{7}{2} \end{array}\right]\quad R_2 - \frac{5}{2}R_1\text{and}\quad R_3 - \frac{3}{2}R_1\\ &\sim \text{R}\left[\begin{array}{cccc} 2 & 2 & 6 & 1 \\ 0 & -7 & -14 & \frac{1}{2} \\ 0 & 0 & 0 & 3 \end{array}\right]\quad R_3 - R_2\end{align*} Since the last row corresponds to \(0x + 0y + 0z = 3\), which is inconsistent, the system of equations has no solution. =====Question 3(iii)===== Solve the system of linear equation by Gauss elimination method.\\ $2 x+z=2$\\ $2 y-z=3$\\ $x+3 y=5$\\ ** Solution. ** Given the system of equations: \begin{align*} 2x + z &= 2 \quad \cdots (i) \\ 2y - z &= 3 \quad \cdots (ii) \\ x + 3y &= 5 \quad \cdots (iii) \end{align*} The associated augmented matrix is: \begin{align*} A_b &= \left[\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 2 & -1 & 3 \\ 1 & 3 & 0 & 5 \end{array}\right]\\ & \sim \text{R}\left[\begin{array}{cccc} 1 & 3 & 0 & 5 \\ 0 & 2 & -1 & 3 \\ 2 & 0 & 1 & 2 \end{array}\right]\quad R_1 \sim R_3\\ & \sim \text{R}\left[\begin{array}{cccc} 1 & 3 & 0 & 5 \\ 0 & 2 & -1 & 3 \\ 0 & -6 & 1 & -8 \end{array}\right]\quad R_3 - 2R_1\\ & \sim \text{R}\left[\begin{array}{cccc} 1 & 3 & 0 & 5 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & -2 & 1 \end{array}\right]\quad R_3 + 3R_2 \end{align*} From the last row, we have: \begin{align*} &-2z = 1 \\ &\Rightarrow \quad z = -\frac{1}{2}\end{align*} Put $z = -\frac{1}{2}$ into the second row: \begin{align*} &2y - (-\frac{1}{2}) = 3 \\ \Rightarrow & 2y + \frac{1}{2} = 3 \\ \Rightarrow & 2y = \frac{6}{2} - \frac{1}{2}\\ \Rightarrow & = \frac{5}{2} \\ \Rightarrow & y = \frac{5}{4}\end{align*} Put values of $y = \frac{5}{4}$ and $z = -\frac{1}{2}$ into the first row: \begin{align*} &x + 3\left(\frac{5}{4}\right) = 5 \\ \Rightarrow & x + \frac{15}{4} = 5\\ \Rightarrow & x = \frac{20}{4} - \frac{15}{4} = \frac{5}{4}\end{align*} Thus, the solution to the system is: $$x = \frac{5}{4}, \quad y = \frac{5}{4}, \quad z = -\frac{1}{2}$$ =====Question 3(iv)===== Solve the system of linear equation by Gauss elimination method.\\ $x+2 y+5 z=4$\\ $3 x-2 y+2 z=3$\\ $5 x-8 y-4 z=1$ ** Solution. ** Do yourself. ====Go to ==== [[math-11-nbf:sol:unit02:ex2-6-p2|< Question 2]] [[math-11-nbf:sol:unit02:ex2-6-p4|Question 4 >]]