====== Question 4, Exercise 2.6 ====== Solutions of Question 4 of Exercise 2.6 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 4(i)===== Solve the system of linear equation by Gauss-Jordan method.\\ $2 x_{1}-x_{2}-x_{3}=2$\\ $3 x_{1}-4 x_{2}+3 x_{3}=7$\\ $4 x_{1}+2 x_{2}-5 x_{3}=10$\\ ** Solution. ** \begin{align*} 2x_1 - x_2 - x_3 &= 2, \\ 3x_1 - 4x_2 + 3x_3 &= 7, \\ 4x_1 + 2x_2 - 5x_3 &= 10, \end{align*} The associative augment matrix: \begin{align*} A_b &= \begin{bmatrix} 2 & -1 & -1 & : & 2 \\ 3 & -4 & 3 & : & 7 \\ 4 & 2 & -5 & : & 10 \end{bmatrix}\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & \vert & 1 \\ 3 & -4 & 3 & \vert & 7 \\ 4 & 2 & -5 & \vert & 10 \end{bmatrix}\quad \dfrac{1}{2}\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & : & 1 \\ 0 & -\frac{5}{2} & \frac{9}{2} & : & 4 \\ 4 & 2 & -5 & : & 10 \end{bmatrix}\quad R_2 - 3R_1\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & : & 1 \\ 0 & -\frac{5}{2} & \frac{9}{2} & : & 4 \\ 0 & 4 & -3 & : & 6 \end{bmatrix}\quad R_3 - 4R_1\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & : & 1 \\ 0 & 1 & -\frac{9}{5} & : & -\frac{8}{5} \\ 0 & 4 & -3 & : & 6 \end{bmatrix}\quad -\frac{2}{5} R_2\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & : & 1 \\ 0 & 1 & -\frac{9}{5} & : & -\frac{8}{5} \\ 0 & 0 & \frac{21}{5} & : & \frac{62}{5} \end{bmatrix}\quad R_3 - 4R_2 \\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & : & 1 \\ 0 & 1 & -\frac{9}{5} & : & -\frac{8}{5} \\ 0 & 0 & 1 & : & \frac{62}{21} \end{bmatrix}\quad \frac{5}{21} R_3\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & \vert & 1 \\ 0 & 1 & 0 & \vert & \frac{26}{7} \\ 0 & 0 & 1 & \vert & \frac{62}{21} \end{bmatrix}\quad R_2 + \frac{9}{5}R_3\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{1}{2} & 0 & \vert & \frac{52}{21} \\ 0 & 1 & 0 & \vert & \frac{26}{7} \\ 0 & 0 & 1 & \vert & \frac{62}{21} \end{bmatrix}\quad R_1 + \frac{1}{2}R_3 \\ &\sim \text{R} \begin{bmatrix} 1 & 0 & 0 & \vert & \frac{13}{3} \\ 0 & 1 & 0 & \vert & \frac{26}{7} \\ 0 & 0 & 1 & \vert & \frac{62}{21} \end{bmatrix}\quad R_1 + \frac{1}{2}R_2\end{align*} Thus, the solution to the system of equations is: $$\boxed{x_1 = \frac{13}{3}, \quad x_2 = \frac{26}{7}, \quad x_3 = \frac{62}{21}.}$$ =====Question 4(ii)===== Solve the system of linear equation by Gauss-Jordan method.\\ $2 x_{1}-3 x_{2}+7 x_{3}=1$\\ $4 x_{1}+5 x_{2}-3 x_{3}=4$\\ $10 x_{1}-4 x_{2}+18 x_{3}=7$\\ ** Solution. ** \begin{align*} 2x_1 - 3x_2 + 7x_3 &= 1, \\ 4x_1 + 5x_2 - 3x_3 &= 4, \\ 10x_1 - 4x_2 + 18x_3 &= 7. \end{align*} The associated augmented matrix is: \begin{align*} A_b &= \begin{bmatrix} 2 & -3 & 7 & : & 1 \\ 4 & 5 & -3 & : & 4 \\ 10 & -4 & 18 & : & 7 \end{bmatrix}\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{3}{2} & \frac{7}{2} & : & \frac{1}{2} \\ 4 & 5 & -3 & : & 4 \\ 10 & -4 & 18 & : & 7 \end{bmatrix}\quad \text{(Divide } R_1 \text{ by 2)}\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{3}{2} & \frac{7}{2} & : & \frac{1}{2} \\ 0 & 11 & -17 & : & 2 \\ 10 & -4 & 18 & : & 7 \end{bmatrix}\quad \text{(} R_2 \text{ - 4}R_1)\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{3}{2} & \frac{7}{2} & : & \frac{1}{2} \\ 0 & 11 & -17 & : & 2 0 & 11 & -17 & : & 2 \end{bmatrix}\quad \text{(} R_3 \text{ - 10}R_1)\\ &\sim \text{R}\begin{bmatrix} 1 & -\frac{3}{2} & \frac{7}{2} & : & \frac{1}{2} \\ 0 & 1 & -\frac{17}{11} & : & \frac{2}{11} \\ 0 & 0 & 0 & : & 0 \end{bmatrix}\quad \text{(Divide } R_2 \text{ by 11 and } R_3 - R_2). \end{align*} There is no value of $x$. Then $x_3 = 0$. From the second row: \begin{align*} x_2 & = \frac{2}{11} \end{align*} From the first row: \begin{align*} &x_1 - \frac{3}{2}x_2 + \frac{7}{2}x_3 = \frac{1}{2}\\ \Rightarrow &x_1 = \frac{1}{2} + \frac{3}{2}\frac{2}{11}\\ \Rightarrow & x_1= \frac{1}{2} + \frac{3}{11}\\ \Rightarrow & x_1= \frac{17}{22}\end{align*} Thus, the general solution is: $$\boxed{x_1 = \frac{22}{11}, \quad x_2 = \frac{2}{11}, x_3=0}$$ =====Question 4(iii)===== Solve the system of linear equation by Gauss-Jordan method.\\ $x_{1}+x_{2}+x_{3}=3$\\ $2 x_{1}-3 x_{2}+2 x_{3}=7$\\ $4 x_{1}+2 x_{2}-5 x_{3}=10$\\ ** Solution. ** Do yourself. =====Question 4(iv)===== Solve the system of linear equation by Gauss-Jordan method.\\ $2 x_{1}-7 x_{2}+10 x_{3}=1$\\ $x_{1}+2 x_{2}-4 x_{3}=8$\\ $2 x_{1}-11 x_{2}+13 x_{3}=7$ ** Solution. ** Do yourself. ====Go to ==== [[math-11-nbf:sol:unit02:ex2-6-p3|< Question 3]] [[math-11-nbf:sol:unit02:ex2-6-p5|Question 5 >]]