====== Question 5, Exercise 2.6 ====== Solutions of Question 5 of Exercise 2.6 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 5(i)===== Solve the system of linear equation by using Cramer's rule.\\ $x_{1}+x_{2}+2 x_{3}=8$\\ $-x_{1}-2 x_{2}+3 x_{3}=1$\\ $3 x_{1}-7 x_{2}+4 x_{3}=10$\\ ** Solution. ** The above system may be written as $A X=B$; where, \begin{align*} &A = \begin{bmatrix} 1 & 1 & 2 \\ -1 & -2 & 3 \\ 3 & -7 & 4 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad B = \begin{bmatrix} 8 \\ 1 \\ 10 \end{bmatrix}\\ |A| &= \begin{vmatrix} 1 & 1 & 2 \\ -1 & -2 & 3 \\ 3 & -7 & 4 \end{vmatrix}\\ &= 1(-8 +21) - 1(-4 - 9) + 2(7 +6)\\ &= 13 + 13 + 26 = 52\end{align*} So, $A$ is non-singular. \begin{align*} x_1 &= \frac{A_1}{|A|}\\ &=\frac{ \begin{vmatrix} 8 & 1 & 2 \\ 1 & -2 & 3 \\ 10 & -7 & 4 \end{vmatrix}}{52}\\ &=\frac{8(-8 + 21) - 1(4 - 30) + 2(-7 + 20)}{52}\\ &=\frac{104 + 26 + 26}{52}\\ & = \frac{156}{52} = 3 \end{align*} \begin{align*} x_2& = \frac{|A_2|}{|A|} \\ &=\frac{\begin{vmatrix} 1 & 8 & 2 \\ -1 & 1 & 3 \\ 3 & 10 & 4 \end{vmatrix}}{52}\\ &=\frac{1(4 - 30) - 8(-4 - 9) + 2(-10 - 3)}{52}\\ &=\frac{-26 + 104 - 26}{52}\\ &= \frac{52}{52} = 1 \end{align*} \begin{align*} x_3 &= \frac{|A_3|}{|A|}\\ &=\frac{ \begin{vmatrix} 1 & 1 & 8 \\ -1 & -2 & 1 \\ 3 & -7 & 10 \end{vmatrix}}{52}\\ &=\frac{1(-20 + 7) - 1(-10 - 3) + 8(7 +6)}{52}\\ &=\frac{-13 + 13 + 104}{52}\\ &= \frac{104}{52} = 2 \end{align*} Thus, the solution set is $(3, 1, 2)$. =====Question 5(ii)===== Solve the system of linear equation by using Cramer's rule.\\ $2 x_{1}+2 x_{2}+x_{3}=0$\\ $-2 x_{1}+5 x_{2}+2 x_{3}=1$\\ $8 x_{1}+x_{2}+4 x_{3}=-1$\\ ** Solution. ** The above system maybe written as $AX = B $, where: \begin{align*} &A = \begin{bmatrix} 2 & 2 & 1 \\ -2 & 5 & 2 \\ 8 & 1 & 4 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}\\ |A| &= \begin{vmatrix} 2 & 2 & 1 \\ -2 & 5 & 2 \\ 8 & 1 & 4 \end{vmatrix}\\ &=2 \left( 20 - 2 \right) - 2 \left( -8 - 16 \right) + \left( -2 - 40 \right)\\ &=36 + 48 - 42\\ &=42\neq 0\end{align*} $A$ is non-singular. NOw \begin{align*} x_1 &= \frac{|A_1|}{|A|}\\ &=\frac{\begin{vmatrix} 0 & 2 & 1 \\ 1 & 5 & 2 \\ -1 & 1 & 4 \end{vmatrix}}{42}\\ &=\frac{ 0-2 ( 4 + 2) + 1(1 + 5)}{42}\\ &=\frac{ -12 + 6}{42}\\ &=-\frac{6}{42}\\ &=-\frac{1}{7}\end{align*} Now\begin{align*} x_2 &=\frac{|A_2|}{|A|}\\ &= \frac{ \begin{vmatrix} 2 & 0 & 1 \\ -2 & 1 & 2 \\ 8 & -1 & 4 \end{vmatrix}}{42}\\ &=\frac{2 ( 4 + 2 )-0 + 1(2 - 8)}{42}\\ &=\frac{ 12 - 6}{42}\\ &=\frac{6}{42}\\ & = \frac{1}{7} \end{align*} \begin{align*} x_3 &= \frac{|A_3|}{|A|}\\ &=\frac{\begin{vmatrix} 2 & 2 & 0 \\ -2 & 5 & 1 \\ 8 & 1 & -1 \end{vmatrix}}{42}\\ &=\frac{2 ( -5 - 1 ) - 2 ( 2 - 8 )+0}{42}\\ &=\frac{-12 + 12}{42}\\ &= \frac{0}{42} = 0 \end{align*} The solution set for the given system of equations using Cramer's rule is: $$( -\frac{1}{7}, \frac{1}{7}, 0 )$$ =====Question 5(iii)===== Solve the system of linear equation by using Cramer's rule.\\ $-2 x_{2}+3 x_{3}=1$\\ $3 x_{1}+6 x_{2}-3 x_{3}=-2$\\ $6 x_{1}+6 x_{2}+3 x_{3}=5$\\ ** Solution. ** The above system maybe written as $AX = B $, where: \begin{align*} &A = \begin{bmatrix} 0 & -2 & 3 \\ 3 & 6 & -3 \\ 6 & 6 & 3 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}\\ |A| &= \begin{vmatrix} 0 & -2 & 3 \\ 3 & 6 & -3 \\ 6 & 6 & 3 \end{vmatrix}\\ &=0+ 2(9 + 18) + 3(18 - 36)\\ &= 54 - 54 = 0\end{align*} $A$ is singular,so solution is not possible. =====Question 5(iv)===== Solve the system of linear equation by using Cramer's rule.\\ $2 x_{1}+x_{2}+3 x_{3}=1$\\ $x_{1}-2 x_{2}+x_{3}=2$\\ $3 x_{1}-4 x_{2}-x_{3}=4$ ** Solution. ** Do yourself. ====Go to ==== [[math-11-nbf:sol:unit02:ex2-6-p4|< Question 4]] [[math-11-nbf:sol:unit02:ex2-6-p6|Question 6 >]]