====== Question 6, Exercise 2.6 ======
Solutions of Question 6 of Exercise 2.6 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
=====Question 6(i)=====
Solve the system of linear equation by matrix inversion method.FIXME\\
$5 x+3 y+z=6$\\
$2 x+y+3 z=19$\\
$x+2 y+4 z=25$\\
** Solution. **
For this system of equations; we have
\begin{align*}
A &= \begin{bmatrix}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{bmatrix}, \quad
X = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}, \quad
B = \begin{bmatrix}
6 \\
19 \\
25
\end{bmatrix}
\end{align*}
And \begin{align*}
|A|& = \left| \begin{array}{ccc}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array} \right|\\
&=5(4 - 6) - 3(8 - 3) + 1(4 - 1)\\
&= -10 - 15 + 3\\
&=-22
\end{align*}
This system is consistent. Now to find $A^{-1}$, we calculate the cofactors of each element .
\begin{align*}
A_{11} &= (-1)^{1+1} \left| \begin{array}{cc}
1 & 3 \\
2 & 4
\end{array} \right| = 4 - 6 = -2\\
A_{12} &= (-1)^{1+2} \left| \begin{array}{cc}
2 & 3 \\
1 & 4
\end{array} \right| = -(8 - 3) = -5\\
A_{13} &= (-1)^{1+3} \left| \begin{array}{cc}
2 & 1 \\
1 & 2
\end{array} \right| = 4 - 1 = 3\\
A_{21} &= (-1)^{2+1} \left| \begin{array}{cc}
3 & 1 \\
2 & 4
\end{array} \right| = -(12 - 2) = -10\\
A_{22} &= (-1)^{2+2} \left| \begin{array}{cc}
5 & 1 \\
1 & 4
\end{array} \right| = 20 - 1 = 19\\
A_{23} &= (-1)^{2+3} \left| \begin{array}{cc}
5 & 3 \\
1 & 2
\end{array} \right| = -(10 - 3) = -7\\
A_{31} &= (-1)^{3+1} \left| \begin{array}{cc}
3 & 1 \\
1 & 3
\end{array} \right| = 9 - 1 = 8\\
A_{32} &= (-1)^{3+2} \left| \begin{array}{cc}
5 & 1 \\
2 & 4
\end{array} \right| = -(20 - 2) = -18\\
A_{33} &= (-1)^{3+3} \left| \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right| = 5 - 6 = -1\\
A&= \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}\\
A &=\begin{bmatrix}
-2 & -5 & 3 \\
-10 & 19 & -7 \\
8 & -18 & -1
\end{bmatrix}\\
\text{adj}(A)& = \begin{bmatrix}
-2 & -10 & 8 \\
-5 & 19 & -18 \\
3 & -7 & -1
\end{bmatrix}\\
A^{-1}& = \frac{1}{|A|} \text{adj}(A) \\
&= \frac{1}{-22} \begin{bmatrix}
-2 & -10 & 8 \\
-5 & 19 & -18 \\
3 & -7 & -1
\end{bmatrix}\\
A^{-1} &= \begin{bmatrix}
\frac{2}{22} & \frac{10}{22} & \frac{-8}{22} \\
\frac{5}{22} & \frac{-19}{22} & \frac{18}{22} \\
\frac{-3}{22} & \frac{7}{22} & \frac{1}{22}
\end{bmatrix}\\
\implies A^{-1} &= \begin{bmatrix}
\frac{1}{11} & \frac{5}{11} & \frac{-4}{11} \\
\frac{5}{22} & \frac{-19}{22} & \frac{18}{22} \\
\frac{-3}{22} & \frac{7}{22} & \frac{1}{22}
\end{bmatrix}\end{align*}
Since \begin{align*}
X &= A^{-1}B \\
\implies X &= A^{-1}B = \begin{bmatrix}
\frac{1}{11} & \frac{5}{11} & \frac{-4}{11} \\
\frac{5}{22} & \frac{-19}{22} & \frac{18}{22} \\
\frac{-3}{22} & \frac{7}{22} & \frac{1}{22}
\end{bmatrix} \begin{bmatrix}
6 \\
19 \\
25
\end{bmatrix}\\
\implies X &= \begin{bmatrix}
\frac{6 + 95 - 100}{11} \\
\frac{30 - 361 + 450}{22} \\
\frac{-18 + 133 + 25}{22}
\end{bmatrix}\\
\implies X &= \begin{bmatrix}
\frac{1}{11} \\
\frac{119}{22} \\
\frac{140}{22}
\end{bmatrix}\\
\implies X &= \begin{bmatrix}
\frac{1}{11} \\
\frac{119}{11} \\
\frac{70}{11}
\end{bmatrix}
\end{align*}
Therefore, the solution to the system of equations is:
$$x = \frac{1}{11}, \quad y =\frac{119}{11}, \quad z = \frac{70}{11}$$
=====Question 6(ii)=====
Solve the system of linear equation by matrix inversion method.\\
$x+2 y-3 z=5$\\
$2 x-3 y+2 z=1$\\
$-x+2 y-5 z=-3$
** Solution. **
For this system of equations; we have
\begin{align*}
A& = \begin{bmatrix}
1 & 2 & -3 \\
2 & -3 & 2 \\
-1 & 2 & -5
\end{bmatrix}, \quad
X = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}, \quad
B = \begin{bmatrix}
5 \\
1 \\
-3
\end{bmatrix}\\
|A| &= \left| \begin{array}{ccc}
1 & 2 & -3 \\
2 & -3 & 2 \\
-1 & 2 & -5
\end{array} \right|\\
&= 1 (15 - 4) - 2 (-10 + 2) - 3 (4 - 3)\\
&= 11 + 16 - 3 = 24\neq 0
\end{align*}
This system is consistent. Now to find $A^{-1}$, we calculate the cofactors of each element .
\begin{align*}
A_{11} &= (-1)^{1+1} \left| \begin{array}{cc}
-3 & 2 \\
2 & -5
\end{array} \right| = 15 - 4 = 11\\
A_{12} &= (-1)^{1+2} \left| \begin{array}{cc}
2 & 2 \\
-1 & -5
\end{array} \right| = -(-10 + 2) = 8\\
A_{13} &= (-1)^{1+3} \left| \begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array} \right| = 4 - 3 = 1\\
A_{21} &= (-1)^{2+1} \left| \begin{array}{cc}
2 & -3 \\
2 & -5
\end{array} \right| = -(-10 + 6) = 4\\
A_{22} &= (-1)^{2+2} \left| \begin{array}{cc}
1 & -3 \\
-1 & -5
\end{array} \right| = -5 - 3 = -8\\
A_{23} &= (-1)^{2+3} \left| \begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array} \right| = -(2+ 2 )= -4\\
A_{31} &= (-1)^{3+1} \left| \begin{array}{cc}
2 & -3 \\
-3 & 2
\end{array} \right| = 4-9 = -5\\
A_{32} &= (-1)^{3+2} \left| \begin{array}{cc}
1 & -3 \\
2 & 2
\end{array} \right| = -(2 + 6) = -8\\
A_{33} &= (-1)^{3+3} \left| \begin{array}{cc}
1 & 2 \\
2 & -3
\end{array} \right| = -3 - 4 = -7\\
A&= \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}\\
\text{Cofactor matrix} &= \begin{bmatrix}
11 & 8 & 1 \\
4 & -8 & -4 \\
-5 & -8 & -7
\end{bmatrix}\\
\text{adj}(A) &= \begin{bmatrix}
11 & 4 & -5 \\
8 & -8 & -8 \\
1 & -4 & -7
\end{bmatrix}\\
A^{-1} &= \frac{1}{24} \begin{bmatrix}
11 & 4 & -5 \\
8 & -8 & -8 \\
1 & -4 & -7
\end{bmatrix}\\
\text{Now}\\
X &= A^{-1}B\\
&= \frac{1}{24} \begin{bmatrix}
11 & 4 & -5 \\
8 & -8 & -8 \\
1 & -4 & -7
\end{bmatrix}
\begin{bmatrix}
5 \\
1 \\
-3
\end{bmatrix}\\
&= \frac{1}{24} \begin{bmatrix}
55 + 4 + 15 \\
40 - 8 + 24 \\
5 - 4+ 21
\end{bmatrix}\\
&= \frac{1}{24} \begin{bmatrix}
74 \\
56 \\
22\end{bmatrix}\\
&= \begin{bmatrix}
\frac{74}{24} \\
\frac{56}{24} \\
\frac{22}{24}
\end{bmatrix}\\
&= \begin{bmatrix}
\frac{37}{12} \\
\frac{7}{3} \\
\frac{11}{12}
\end{bmatrix}
\end{align*}
Therefore, the solution to the system of equations is:
$$ x = \frac{37}{12}, \quad y = \frac{7}{3}, \quad z = \frac{11}{12}$$
=====Question 6(iii)=====
Solve the system of linear equation by matrix inversion method.\\
$-x+3 y-5 z=0$\\
$2 x+4 y-6 z=1$\\
$x-2 y+3 z=3$\\
** Solution. **
Do yourself.
=====Question 6(iv)=====
Solve the system of linear equation by matrix inversion method.\\
$\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{10}{z}=4$\\
$\dfrac{4}{x}-\dfrac{6}{y}+\dfrac{5}{z}=1$\\
$\dfrac{6}{x}+\dfrac{9}{y}-\dfrac{20}{z}=2$
** Solution. **
Do yourself.
====Go to ====
[[math-11-nbf:sol:unit02:ex2-6-p5|< Question 5]]
[[math-11-nbf:sol:unit02:ex2-6-p7|Question 7 & 8 >]]