====== Question 1, Review Exercise ======
Solutions of Question 1 of Review Exercise of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
=====Question 1=====
Select the best matching option.
Chose the correct option.
i. If order of $A$ is $m \times n$ and order of $B$ is $n \times p$ then order of $A B$ is:\\
* (a) $n \times p$\\
* (b) $m \times p$\\
* %%(c)%% $p \times m$\\
* (d) $n \times n$ \\ See Answer%%(b)%%: $m \times p$
ii. If $A$ is a row matrix of order $1 \times n$ then order of $A^{t} A$ is:\\
* (a) $1 \times n$\\
* (b) $n \times 1$\\
* %%(c)%% $1 \times 1$\\
* (d) $n \times n$ \\ See Answer(d): $n \times n$
iii. For an element $a_{i j}$ of a square matrix $A$ :\\
* (a) $a_{i j}=(-1)^{i+j} A_{i j}$\\
* (b)$a_{i j}=(-1)^{i+j} M_{i j}$\\
* %%(c)%% $\frac{A_{i j}}{M_{i j}}=(-1)^{i+j}$\\
* (d) $a_{i j}=M_{i j}$ \\ See Answer(d): $a_{i j}=M_{i j}$
iv. If $A$ is any matrix then $A$ and $A^{t}$ are always conformable for:\\
* (a) addition\\
* (b) multiplication\\
* %%(c)%% subtraction\\
* (d) all of these \\ See Answer(b): multiplication
v. If $A$ is a square matrix of order $3 \times 3$ and $|A|=3$ then value of $|\operatorname{adj} A|$ is:\\
* (a) $3$
* (b) $1 / 3$
* %%(c)%% $9$
* (d) $6$ \\ See Answer(c): $9$
vi. For the square matrix $A$ of order $3 \times 3$ with $|A|=9 ; A_{21}=2 ; A_{22}=3 ; A_{23}=-1$; $a_{21}=1 ; a_{23}=2$, the value of $a_{22}$ is:
* (a) $2$
* (b) $3$
* %%(c)%% $9$
* (d) $-1$ \\ See Answer(b): $3$
vii. System of homogeneous linear equations has non-trivial solution if:
* (a) $|A|>0$
* (b) $|A|<0$
* %%(c)%% $|A|=0$
* (d) $|A| \neq 0$ \\ See Answer%%(d)%%: $|A| \neq 0$
viii. For non-homogeneous system of equations; the system is inconsistent if:
* (a) $\operatorname{RankA}=\operatorname{Rank} A_{b}$$
* (b) $\operatorname{RankA} \neq \operatorname{Rank} A_{b}$
* %%(c)%% RankA < no. of variables
* (d) Rank $A_{b}>$ no. of variables \\ See Answer%%(c)%%: RankA < no. of variables
ix. For a system of non-homogeneous equations with three variables system will have unique solution if:
* (a) $\operatorname{RankA}<3$
* (b) $\operatorname{Rank} A_{b}<3$
* %%(c)%% $\operatorname{RankA}=\operatorname{RankA}_{b}=3$
* (d) $\operatorname{Rank} A=\operatorname{Rank} A_{b}<3$ \\ See Answer%%(c)%%:$\operatorname{RankA}=\operatorname{RankA}_{b}=3$
x. A system of non- homogeneous equation having infinite many solutions can be solved by using:
* (a) Inversion method
* (b) Cramer's rule
* %%(c)%% Gauss-Jordan method
* (d) all of these \\ See Answer%%(d)%%: all of these
====Go to ====
[[math-11-nbf:sol:unit02:Re-ex-p2|Question 2 &3 >]]