====== Question 1, Review Exercise ====== Solutions of Question 1 of Review Exercise of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 1===== Select the best matching option. Chose the correct option. i. If order of $A$ is $m \times n$ and order of $B$ is $n \times p$ then order of $A B$ is:\\ * (a) $n \times p$\\ * (b) $m \times p$\\ * %%(c)%% $p \times m$\\ * (d) $n \times n$ \\ See Answer%%(b)%%: $m \times p$ ii. If $A$ is a row matrix of order $1 \times n$ then order of $A^{t} A$ is:\\ * (a) $1 \times n$\\ * (b) $n \times 1$\\ * %%(c)%% $1 \times 1$\\ * (d) $n \times n$ \\ See Answer(d): $n \times n$ iii. For an element $a_{i j}$ of a square matrix $A$ :\\ * (a) $a_{i j}=(-1)^{i+j} A_{i j}$\\ * (b)$a_{i j}=(-1)^{i+j} M_{i j}$\\ * %%(c)%% $\frac{A_{i j}}{M_{i j}}=(-1)^{i+j}$\\ * (d) $a_{i j}=M_{i j}$ \\ See Answer(d): $a_{i j}=M_{i j}$ iv. If $A$ is any matrix then $A$ and $A^{t}$ are always conformable for:\\ * (a) addition\\ * (b) multiplication\\ * %%(c)%% subtraction\\ * (d) all of these \\ See Answer(b): multiplication v. If $A$ is a square matrix of order $3 \times 3$ and $|A|=3$ then value of $|\operatorname{adj} A|$ is:\\ * (a) $3$ * (b) $1 / 3$ * %%(c)%% $9$ * (d) $6$ \\ See Answer(c): $9$ vi. For the square matrix $A$ of order $3 \times 3$ with $|A|=9 ; A_{21}=2 ; A_{22}=3 ; A_{23}=-1$; $a_{21}=1 ; a_{23}=2$, the value of $a_{22}$ is: * (a) $2$ * (b) $3$ * %%(c)%% $9$ * (d) $-1$ \\ See Answer(b): $3$ vii. System of homogeneous linear equations has non-trivial solution if: * (a) $|A|>0$ * (b) $|A|<0$ * %%(c)%% $|A|=0$ * (d) $|A| \neq 0$ \\ See Answer%%(d)%%: $|A| \neq 0$ viii. For non-homogeneous system of equations; the system is inconsistent if: * (a) $\operatorname{RankA}=\operatorname{Rank} A_{b}$$ * (b) $\operatorname{RankA} \neq \operatorname{Rank} A_{b}$ * %%(c)%% RankA < no. of variables * (d) Rank $A_{b}>$ no. of variables \\ See Answer%%(c)%%: RankA < no. of variables ix. For a system of non-homogeneous equations with three variables system will have unique solution if: * (a) $\operatorname{RankA}<3$ * (b) $\operatorname{Rank} A_{b}<3$ * %%(c)%% $\operatorname{RankA}=\operatorname{RankA}_{b}=3$ * (d) $\operatorname{Rank} A=\operatorname{Rank} A_{b}<3$ \\ See Answer%%(c)%%:$\operatorname{RankA}=\operatorname{RankA}_{b}=3$ x. A system of non- homogeneous equation having infinite many solutions can be solved by using: * (a) Inversion method * (b) Cramer's rule * %%(c)%% Gauss-Jordan method * (d) all of these \\ See Answer%%(d)%%: all of these ====Go to ==== [[math-11-nbf:sol:unit02:Re-ex-p2|Question 2 &3 >]]