====== Question 21 and 22, Exercise 4.1 ====== Solutions of Question 21 and 22 of Exercise 4.1 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 21===== Predict the general term or nth term, $a_{n}$, of the sequence. $\sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}, \sqrt{10}, \ldots$ ** Solution. ** The given sequence is $$\sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}, \sqrt{10}, \ldots$$ The terms can be rewritten as: \begin{align*} &a_1=\sqrt{2 \cdot 1}, \\ &a_2=\sqrt{4}=\sqrt{2 \cdot 2} \\ &a_3=\sqrt{6}=\sqrt{2 \cdot 3}\\ &a_4=\sqrt{8}=\sqrt{2 \cdot 4}\\ &a_5=\sqrt{10}=\sqrt{2 \cdot 5} \end{align*} Thus, we can predict $a_n=\sqrt{2n}$. GOOD =====Question 22===== Predict the general term or nth term, $a_{n}$, of the sequence. $1.2,2.3,3.4,4.5, \ldots$ ** Solution. ** The given sequence is in arithmetic in which $a_1=1.2$, $d=2.3-1.2=1.1$, thus \begin{align*} a_n &= a + (n - 1) d\\ &=1.2+(n-1)(1.1)\\ &=1.2+1.1n-1.1\\ &=1.1n+0.1 \end{align*} Thus the general term is $a_n=1.1n+0.1$. GOOD ====Go to ==== [[math-11-nbf:sol:unit04:ex4-1-p10|< Question 19 & 20]]