====== Question 1, Exercise 4.2 ====== Solutions of Question 1 of Exercise 4.2 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 1(i)===== Find the first four terms of the arithmetic sequence with $a_{1}=4, d=3$ ** Solution. ** Given: $a_1= 4$, $d=3$.\\ The general term of an arithmetic sequence is: $$a_n = a_1 + (n - 1)d.$$ Now \begin{align*} a_2&=4+(2-1)3=4+3=7\\ a_3 &= 4+ (3-1) 3 = 4 + 6 = 10\\ a_4&=4+(4-1)3=4+9=13 \end{align*} Hence $a_1=4$, $a_2=7$, $a_3=10$, $a_4=13$. GOOD =====Question 1(ii)===== Find the first four terms of the arithmetic sequence with $a_1=7$, $d=5$ ** Solution. ** Given: $a_1= 7$, $d=5$.\\ The general term of an arithmetic sequence is: $$a_n = a_1 + (n - 1)d.$$ Now \begin{align*} a_2&=7+(2-1)(5)=7+5=12\\ a_3 &= 7+ (3-1)(5) = 7 + 10 = 17\\ a_4&=7+(4-1)(5)=7+15=22 \end{align*} Hence $a_1=7$, $a_2=12$, $a_3=17$, $a_4=22$. GOOD =====Question 1(iii)===== Find the first four terms of each arithmetic sequence. $a_{1}=16$, $d=-2$. ** Solution. ** Given: $a_1= 16$, $d=-2$.\\ We have $$a_n = a_1 + (n - 1)d.$$ Now \begin{align*} a_2&=16+(2-1)(-2)=16-2=14\\ a_3 &= 16+ (3-1)(-2) = 16 - 4 = 12\\ a_4&=16+(4-1)(-2)=16-6=10 \end{align*} Hence $a_1=16$, $a_2=14$, $a_3=12$, $a_4=10$. GOOD =====Question 1(iv)===== Find the first four terms of the arithmetic sequence. $a_1=38$, $d=-4$. ** Solution. ** Given: $a_1= 38$, $d=-4$.\\ We have $$a_n = a_1 + (n - 1)d.$$ Now \begin{align*} a_2&=38+(2-1)(-4)=38-4=34\\ a_3 &= 38+ (3-1)(-4) = 38 - 8 = 30\\ a_4&=38+(4-1)(-4)=38-12=26 \end{align*} Hence $a_1=38$, $a_2=34$, $a_3=30$, $a_4=26$. GOOD =====Question 1(v)===== Find the first four terms of each arithmetic sequence. $a_{1}=\frac{3}{4}, d=\frac{1}{4}$ ** Solution. ** Given: $a_1=\frac{3}{4}$, $d=\frac{1}{4}$.\\ We have $$a_n = a_1 + (n - 1)d.$$ Now \begin{align*} a_2&=\frac{3}{4}+(2-1)\cdot\frac{1}{4}=\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1\\ a_3 &= \frac{3}{4}+(3-1)\cdot\frac{1}{4}=\frac{3}{4}+\frac{2}{4}=\frac{5}{4}\\ a_4&=\frac{3}{4}+(4-1)\cdot\frac{1}{4}=\frac{3}{4}+\frac{3}{4}=\frac{6}{4}=1.5 \end{align*} Hence $a_1=\frac{3}{4}$, $a_2=1$, $a_3=\frac{5}{4}$, $a_4=\frac{6}{4}=1.5$. =====Question 1(vi)===== Find the first four terms of each arithmetic sequence. $a_{1}=\frac{3}{8}, d=\frac{5}{8}$ ** Solution. ** Given: $a_1=\frac{3}{8}$, $d=\frac{5}{8}$.\\ We have $$a_n = a_1 + (n - 1)d.$$ Now \begin{align*} a_2 &= \frac{3}{8} + (2-1) \cdot \frac{5}{8} = \frac{3}{8} + \frac{5}{8} = \frac{8}{8} = 1\\ a_3 &= \frac{3}{8} + (3-1) \cdot \frac{5}{8} = \frac{3}{8} + 2 \cdot \frac{5}{8} = \frac{3}{8} + \frac{10}{8} = \frac{13}{8}\\ a_4 &= \frac{3}{8} + (4-1) \cdot \frac{5}{8} = \frac{3}{8} + 3 \cdot \frac{5}{8} = \frac{3}{8} + \frac{15}{8} = \frac{18}{8} = \frac{9}{4} \end{align*} Hence $a_1=\frac{3}{8}$, $a_2=1$, $a_3=\frac{13}{8}$, $a_4=\frac{9}{4}$. ====Go to ==== [[math-11-nbf:sol:unit04:ex4-2-p2|Question 2 >]]