====== Question 20, 21 and 22, Exercise 4.3 ====== Solutions of Question 20, 21 and 22 of Exercise 4.3 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 20===== Find the first three terms of the arithmetic series. $a_{1}=7$, $a_{n}=139$, $S_{n}=876$. ** Solution. ** Given $a_{1}=7$, $a_{n}=139$, $S_{n}=876$. First we find $n$ and $d$.\\ As \begin{align} &S_n=\frac{n}{2}[a_1+a_n]\\ \implies & 876=\frac{n}{2}[7+139]\\ \implies & 1752=146n\\ \implies & n=\frac{1752}{146}=12. \end{align} Also we have \begin{align} &a_n=a_1+(n-1)d\\ \implies & 139=7+(12-1)d\\ \implies & 139-7=11d\\ \implies & d=\frac{132}{11}=12. \end{align} Thus \begin{align} &a_2=a_1+d=7+12=19\\ &a_3=a_1+2d=7+2(12)=31.\\ \end{align} Hence $a_1=7$, $a_2=19$, $a_3=31$. =====Question 21===== Find the first three terms of each arithmetic series. $n=14$, $a_{n}=53$, $S_{n}=378$ ** Solution. ** Given $n=14$, $a_{n}=53$, $S_{n}=378$. First we find $a_1$ and $d$.\\ As \begin{align} &S_n=\frac{n}{2}[a_1+a_n]\\ \implies & 378=\frac{14}{2}[a_1+53]\\ \implies & 378=7a_1+ 371\\ \implies & 7a_1=378-371 \\ \implies a_1=1. \end{align} Also we have \begin{align} &a_n=a_1+(n-1)d\\ \implies & 53=1+(14-1)d\\ \implies & 53-1=13d\\ \implies & d=\frac{52}{13}=4. \end{align} Thus \begin{align} &a_2=a_1+d=1+4=5\\ &a_3=a_1+2d=1+2(4)=9.\\ \end{align} Hence $a_1=1$, $a_2=5$, $a_3=9$. GOOD =====Question 22===== Find the first three terms of each arithmetic series. $a_{1}=6$, $a_{n}=306$, $S_{n}=1716$. ** Solution. ** Given $a_{1}=6$, $a_{n}=306$, $S_{n}=1716$. First we find $n$ and $d$.\\ As \begin{align} &S_n=\frac{n}{2}[a_1+a_n]\\ \implies & 1716=\frac{n}{2}[6+306]\\ \implies & 3432=312n\\ \implies & n=\frac{3432}{312}=11. \end{align} Also we have \begin{align} &a_n=a_1+(n-1)d\\ \implies & 306=6+(11-1)d\\ \implies & 306-6=10d\\ \implies & d=\frac{300}{10}=30. \end{align} Thus \begin{align} &a_2=a_1+d=6+30=36\\ &a_3=a_1+2d=6+2(30)=66.\\ \end{align} Hence $a_1=6$, $a_2=36$, $a_3=66$. GOOD ====Go to ==== [[math-11-nbf:sol:unit04:ex4-3-p9|< Question 17, 18 & 19]] [[math-11-nbf:sol:unit04:ex4-3-p11|Question 23 & 24 >]]