====== Question 17, 18 and 19, Exercise 4.3 ====== Solutions of Question 17, 18 and 19 of Exercise 4.3 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 17===== Find sum of the arithmetic series. $6+12+18+\ldots+96$. ** Solution. ** Given arithmetic series: $$6+12+18+\ldots+96.$$ So, $a_{1}=6$, $d=12-6=6$, $a_{n}=96$, $n=?$.\\ We have \begin{align} & a_n=a_1+(n-1)d \\ \implies & 96=6+(n-1)(6) \\ \implies & 96=6+6n-6 \\ \implies & 6n=96 \\ \implies & n = 24. \end{align} Now \begin{align} S_n&=\frac{n}{2}[a_1+a_n] \\ \implies S_{24}&=\frac{24}{2}[6+96]\\ &=12\times 102\\ &=1224. \end{align} Hence the sum of given series is $1224$. =====Question 18===== Find sum of the arithmetic series. $34+30+26+\ldots+2$ ** Solution. ** Given arithmetic series: $$34+30+26+\ldots+2.$$ So, $a_{1}=34$, $d=30-34=-4$, $a_{n}=2$, $n=?$. We have \begin{align} & a_n=a_1+(n-1)d \\ \implies & 2=34+(n-1)(-4) \\ \implies & 2=34-4n+4 \\ \implies & 2=38-4n \\ \implies & 4n=36 \\ \implies & n = 9. \end{align} Now \begin{align} S_n&=\frac{n}{2}[a_1+a_n] \\ \implies S_{9}&=\frac{9}{2}[34+2]\\ &=\frac{9}{2}\times 36\\ &=162. \end{align} Hence the sum of the given series is $162$. =====Question 19===== Find sum of the arithmetic series. $10+4+(-2)+\ldots+(-50)$ ** Solution. ** Given arithmetic series: $$10+4+(-2)+\ldots+(-50).$$ So, $a_{1}=10$, $d=4-10=-6$, $a_{n}=-50$, $n=?$. We have \begin{align} & a_n=a_1+(n-1)d \\ \implies & -50=10+(n-1)(-6) \\ \implies & -50=10-6n+6 \\ \implies & 6n=16+50 \\ \implies & 6n= 66 \\ \implies & n = 11. \end{align} Now \begin{align} S_n&=\frac{n}{2}[a_1+a_n] \\ \implies S_{11}&=\frac{11}{2}[10+(-50)]\\ &=\frac{11}{2}\times (-40)\\ &=-220. \end{align} Hence the sum of the given series is $-220$.GOOD ====Go to ==== [[math-11-nbf:sol:unit04:ex4-3-p8|< Question 15 & 16]] [[math-11-nbf:sol:unit04:ex4-3-p10|Question 20, 21 & 22 >]]