====== Question 5, 6 and 7, Exercise 4.4 ====== Solutions of Question 5, 6 and 7 of Exercise 4.4 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 5===== Find the first four terms of the geometric sequence.$a_{1}=3, r=-2$ ** Solution. ** Given $a_{1}=3$ and $r=-2$. Use the formula $$a_{n}=a_{1} r^{n-1}.$$ Then \begin{align*} & a_{2}=a_{1} r=(3)(-2)= -6 \\ & a_{3}=a_{1} r^{2}=(3)(-2)^{2}=3 (4)= 12 \\ & a_{4}=a_{1} r^{3}=(3)(-2)^{3}=3 (-8) = -24 \end{align*} Hence $a_1=3$, $a_2=-6$, $a_3=12$, $a_4=-24$. GOOD =====Question 6===== Find the first four terms of the geometric sequence. $a_{1}=27, r=-\frac{1}{3}$ ** Solution. ** Given $a_{1}=27$ and $r=-\frac{1}{3}$. Use the formula $$a_{n}=a_{1} r^{n-1}.$$ Then \begin{align*} & a_{2}=a_{1} r=(27)\left(-\frac{1}{3}\right) = -9 \\ & a_{3}=a_{1} r^{2}=(27)\left(-\frac{1}{3}\right)^{2} = 27 \cdot \frac{1}{9} = 3 \\ & a_{4}=a_{1} r^{3}=(27)\left(-\frac{1}{3}\right)^{3} = 27 \cdot \left(-\frac{1}{27}\right) = -1 \end{align*} Hence $a_1=27$, $a_2=-9$, $a_3=3$, $a_4=-1$. GOOD =====Question 7===== Find the first four terms of the geometric sequence. $\quad a_{1}=12, r=\frac{1}{2}$ ** Solution. ** Given $a_{1}=12$ and $r=\frac{1}{2}$. Use the formula $$a_{n}=a_{1} r^{n-1}.$$ Then \begin{align*} & a_{2}=a_{1} r=(12)\left(\frac{1}{2}\right) = 6 \\ & a_{3}=a_{1} r^{2}=(12)\left(\frac{1}{2}\right)^{2} = 12 \cdot \frac{1}{4} = 3 \\ & a_{4}=a_{1} r^{3}=(12)\left(\frac{1}{2}\right)^{3} = 12 \cdot \frac{1}{8} = 1.5 \end{align*} Hence $a_1=12$, $a_2=6$, $a_3=3$, $a_4=1.5$. GOOD ====Go to ==== [[math-11-nbf:sol:unit04:ex4-4-p2|< Question 3 & 4]] [[math-11-nbf:sol:unit04:ex4-4-p4|Question 8 & 9 >]]