====== Question 18 and 19, Exercise 4.4 ====== Solutions of Question 18 and 19 of Exercise 4.4 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 18===== Find the nth term of the geometric sequence if $a_{1}=32, n=6, r=-\frac{1}{2}$ ** Solution. ** Given $a_{1}=32$, $n=6$, $r=-\frac{1}{2}$.\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_6 &= 32 \times \left(-\frac{1}{2}\right)^{6-1} \\ &= 32 \times \left(-\frac{1}{2}\right)^{5} \\ &= 32 \times \left(-\frac{1}{32}\right) \\ &= -1. \end{align*} Hence $a_6=-1$. =====Question 19===== Find the nth term of the geometric sequence if $a_{1}=16, n=8, r=\frac{1}{2}$ ** Solution. ** Given $a_{1}=16$, $n=8$, $r=\frac{1}{2}$.\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_8 &= 16 \times \left(\frac{1}{2}\right)^{8-1} \\ &= 16 \times \left(\frac{1}{2}\right)^{7} \\ &= 16 \times \frac{1}{128} \\ &= \frac{16}{128} = \frac{1}{8}. \end{align*} Hence $a_8=\frac{1}{8}$. ====Go to ==== [[math-11-nbf:sol:unit04:ex4-4-p8|< Question 16 & 17]] [[math-11-nbf:sol:unit04:ex4-4-p10|Question 20 & 21 >]]