====== Question 14, Exercise 4.5 ====== Solutions of Question 14 of Exercise 4.5 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 14(i)===== Find fractional notation for the infinite geometric series; $0.444...$ ** Solution. ** We can express the decimal as $$0.444... = 0.4+0.04+0.004+...$$ This is infinite geometric series with $a_1=0.4$, $r=\frac{0.04}{0.4}=0.1$.\\ Since $|r|=0.1 < 1$, this series has the sum: \begin{align*} S-\infty & = \frac{a_1}{1-r} \\ & = \frac{0.4}{1.0.1} = \frac{0.4}{0.9} \\ & = \frac{4}{9}. \end{align*} Hence $S_{\infty} =\dfrac{4}{9}$. =====Question 14(ii)===== Find fractional notation for the infinite geometric series; $9.99999 ...$ ** Solution. ** We can express the decimal as $$0.99999 ... = 0.9+0.09+0.009+...$$ This is infinite geometric series with $a_1=0.9$, $r=\frac{0.09}{0.9}=0.1$.\\ Since $|r|=0.1 < 1$, this series has the sum: \begin{align*} S-\infty & = \frac{a_1}{1-r} \\ & = \frac{0.9}{1.0.1} = \frac{0.9}{0.9} \\ & = 1 \end{align*} Hence $S_{\infty}= 1 $. =====Question 14(iii)===== Find fractional notation for the infinite geometric series; $0.5555 \ldots$ ** Solution. ** We can express the decimal as $$0.5555 \ldots = 0.5 + 0.05 + 0.005 + \ldots$$ This is an infinite geometric series with $a_1 = 0.5$ and $r = \frac{0.05}{0.5} = 0.1$.\\ Since $|r| = 0.1 < 1$, this series has the sum: \begin{align*} S_\infty &= \frac{a_1}{1 - r} \\ &= \frac{0.5}{1 - 0.1} \\ &= \frac{0.5}{0.9} \\ &= \frac{5}{9}. \end{align*} Hence, $S_{\infty}= \frac{5}{9}.$ =====Question 14(iv)===== Find fractional notation for the infinite geometric series; $0.6666 \ldots$ ** Solution. ** We can express the decimal as $$0.6666 \ldots = 0.6 + 0.06 + 0.006 + \ldots$$ This is an infinite geometric series with $a_1 = 0.6$ and $r = \frac{0.06}{0.6} = 0.1$\\ Since $|r| = 0.1 < 1$, this series has the sum: \begin{align*} S_\infty &= \frac{a_1}{1 - r} \\ &= \frac{0.6}{1 - 0.1} \\ &= \frac{0.6}{0.9} \\ &= \frac{6}{9} \\ &= \frac{2}{3}. \end{align*} Hence, $S_{\infty}= \frac{2}{3}.$ =====Question 14(v)===== Find fractional notation for the infinite geometric series; $0.15151515 \ldots$ ** Solution. ** We can express the decimal as $$0.151515 \ldots = 0.15 + 0.0015 + 0.000015 + \ldots$$ This is an infinite geometric series with $a_1 = 0.15$ and $r = \frac{0.0015}{0.15} = 0.01$\\ Since $|r| = 0.01 < 1$, this series has the sum: \begin{align*} S_\infty &= \frac{a_1}{1 - r} \\ &= \frac{0.15}{1 - 0.01} \\ &= \frac{0.15}{0.99} \\ &= \frac{15}{99} \\ &= \frac{5}{33}. \end{align*} Hence, $S_{\infty}= \frac{5}{33}.$ =====Question 14(vi)===== Find fractional notation for the infinite geometric series; $0.12121212 \ldots$ ** Solution. ** We can express the decimal as $$0.121212 \ldots = 0.12 + 0.0012 + 0.000012 + \ldots$$ This is an infinite geometric series with $a_1 = 0.12$ and $r = \frac{0.0012}{0.12} = 0.01$\\ Since $|r| = 0.01 < 1$, this series has the sum: \begin{align*} S_\infty &= \frac{a_1}{1 - r} \\ &= \frac{0.12}{1 - 0.01} \\ &= \frac{0.12}{0.99} \\ &= \frac{12}{99} \\ &= \frac{4}{33}. \end{align*} Hence, $S_{\infty} = \frac{4}{33}$ ====Go to ==== [[math-11-nbf:sol:unit04:ex4-5-p6|< Question 11, 12 & 13]] [[math-11-nbf:sol:unit04:ex4-5-p8|Question 15 >]]