====== Question 21 and 22, Exercise 4.7 ====== Solutions of Question 21 and 22 of Exercise 4.7 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 21===== Sum the series up to $n$ term: $1 \times 4+2 \times 7+3 \times 10+\cdots$ ** Solution. ** Take $4+7+10+\ldots$\\ This is A.P with kth term $a_k=4+(k-1)(3)=4+3k-3=3k+1$. \\ Also kth term of $1+2+3+...$ is $k$. So we have required kth term $k(3k+1)$. Consider $T_k$ represents the $k$th term of the sereies, then \begin{align*}T_k&=k(3k+1) \\ &=3k^2+k. \end{align*} Taking summation, we have \begin{align*}\sum_{k=1}^{n} T_{k} &= \sum_{k=1}^{n} (3k^2 +k)\\ & = 3 \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k \\ & = 3\left( \frac{n(n+1)(2n+1)}{6} \right) + \frac{n(n+1)}{2} \\ & = \frac{n(n+1)}{2}(2n+1+1) \\ & = \frac{n(n+1)}{2}(2n+2) \\ & = \frac{2n(n+1)}{2}(n+1) \\ & = n(n+1)^2 \end{align*} Thus, the sum of the series is $\sum\limits_{k=1}^{n} T_{k} = n(n+1)^2.$ GOOD m( =====Question 22===== Sum the series up to $n$ term: $1 \times 3 \times 5+3 \times 5 \times 7+5 \times 7 \times 9+\cdots$ to $n$ term. ** Solution. ** Take $1+3+5+\ldots$.\\ This is A.P with kth term $a_k=1+(k-1)(2)=1+2k-2=2k-1$. \\ Take $3+5+7+\ldots$.\\ This is A.P with kth term $a_k=3+(k-1)(2)=3+2k-2=2k+1$. \\ Take $5+7+9+\ldots$.\\ This is A.P with kth term $a_k=5+(k-1)(2)=5+2k-2=2k+3$. \\ Thus required kth term is $(2k-1)(2k+1)(2k+3)$.\\ Consider $T_k$ represents the $k$th term of the sereies, then \begin{align*}T_k&=(2k-1)(2k+1)(2k+3) \\ &=(4k^2-1)(2k+3)\\ &=8k^3+12k^2-2k-3\end{align*} Taking summation, we have \begin{align*}\sum_{k=1}^{n} T_{k} &= \sum_{k=1}^{n} (8k^3+12k^2-2k-3)\\ & = 8 \sum_{k=1}^{n} k^3 +12 \sum_{k=1}^{n} k^2-2 \sum_{k=1}^{n} k -3 \sum_{k=1}^{n} 1 \\ & = 8\left(\frac{n(n+1)}{2}\right)^3+12\left(\frac{n(n+1)(2n+1)}{6}\right)-2\left( \frac{n(n+1)}{2} \right) - 3n \\ & = \left(n(n+1)\right)^3+2\left(n(n+1)(2n+1)\right)-\left( n(n+1) \right) - 3n \\ &=n[\left(n^2(n^3+3n^2+3n+1)\right)+2\left(2n^2+3n+1\right)-\left( (n+1) \right) - 3] \\ & = n[n^5+3n^4+3n^3+n^2+4n^2+6n+2-n-1 - 3] \\ & = n[n^5+3n^4+3n^3+5n^2+5n-2] \\ & = n(n+2)(n^4+n^3+n^2+3n-1) \end{align*}FIXME Thus, the sum of the series is $\sum\limits_{k=1}^{n} T_{k} =n(n+2)(n^4+n^3+n^2+3n-1).$ ====Go to ==== [[math-11-nbf:sol:unit04:ex4-7-p10|< Question 19 & 20]] [[math-11-nbf:sol:unit04:ex4-7-p12|Question 23 & 24 >]]