====== Question 11, 12 and 13, Exercise 4.7 ====== Solutions of Question 11, 12 and 13 of Exercise 4.7 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 11===== Rewrite the sum using sigma notation: $-2+4-8+16-32+64$ ** Solution. ** $$ -2 + 4 - 8 + 16 - 32 + 64 = \sum_{k=1}^{6} (-1)^k 2^k $$ =====Question 12===== Rewrite the sum using sigma notation: $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+$ ** Solution. ** $$ \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \ldots = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} $$ =====Question 13===== Prove that $\sum_{k=1}^{n} k^{3}=\left[\frac{n(n+1)}{2}\right]^{3}$ FIXME ** Solution. ** ====Go to ==== [[math-11-nbf:sol:unit04:ex4-7-p5|< Question 9 & 10]] [[math-11-nbf:sol:unit04:ex4-7-p7|Question 14, 15 & 16 >]]