====== Question 13, 14 and 15, Exercise 4.8 ====== Solutions of Question 13, 14 and 15 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 13===== Evaluate the sum of the series: $\frac{1}{5 \cdot 11}+\frac{1}{7 \cdot 13}+\frac{1}{9 \cdot 15}+\ldots \ldots$ to $n$ term. ** Solution. ** Let $T_k$ represent the $k$th term of the series. Then \begin{align*} T_k &= \frac{1}{(2k+3)(2k+9)}. \end{align*} Resolving it into partial fractions: \begin{align*} \frac{1}{(2k+3)(2k+9)} = \frac{A}{2k+3} + \frac{B}{2k+9} \ldots (1) \end{align*} Multiplying both sides by $(2k+3)(2k+9)$, we get \begin{align*} 1 = (2k+9)A + (2k+3)B \ldots (2) \end{align*} Now, put $2k+3 = 0 \implies k = -\frac{3}{2}$ in equation (2): \begin{align*} 1 &= (2 \times \left(-\frac{3}{2}\right)+9)A + 0 \\ 1 &= 6A \\ \implies A &= \frac{1}{6}. \end{align*} Next, put $2k+9 = 0 \implies k = -\frac{9}{2}$ in equation (2): \begin{align*} 1 &= 0 + (2 \times \left(-\frac{9}{2}\right)+3)B \\ 1 &= (-9+3)B \\ 1 &= -6B \\ \implies B &= -\frac{1}{6}. \end{align*} Using the values of $A$ and $B$ in equation (1), we get \begin{align*} \frac{1}{(2k+3)(2k+9)} &= \frac{1}{6(2k+3)} - \frac{1}{6(2k+9)}. \end{align*} Thus, \begin{align*} T_k &= \frac{1}{6} \left( \frac{1}{2k+3} - \frac{1}{2k+9} \right). \end{align*} Taking the sum, we have \begin{align*} S_n &= \sum_{k=1}^n T_k = \frac{1}{6} \sum_{k=1}^n \left( \frac{1}{2k+3} - \frac{1}{2k+9} \right). \end{align*} The solution seems very lengthy, it will be solved later. =====Question 14===== Evaluate the sum of the series: $\sum_{k=1}^{n} \frac{1}{9 k^{2}+2 k-2}$ ** Solution. ** =====Question 15===== Evaluate the sum of the series: $\sum_{k=2}^{n} \frac{1}{k^{2}-k}$ ** Solution. ** ====Go to ==== [[math-11-nbf:sol:unit04:ex4-8-p6|< Question 11 & 12]]