====== Question 1, Review Exercise ======
Solutions of Question 1 of Review Exercise of Unit 05: Polynomials. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
=====Question 1=====
Select the best matching option.
Chose the correct option.\\
i. Factors of $-2-x+x^{2}$ are:\\
* (a) $(x-2)(x-1)$\\
* (b) $(x+1)(x+2)$\\
* %%(c)%% $(x+2)(x-1)$\\
* (d) $(x+1)(x-2)$ \\ See Answer%%(d)%%: $(x+1)(x-2)$
ii. Divide $9 y^{2}+9 y-10$ by $3 y-2$, then remainder is:\\
* (a) $ 0$\\
* (b) $1$\\
* %%(c)%% $2$\\
* (d) $3$ \\ See Answer(a): $ 0$
iii. $\frac{x^{2}-x-9}{x-3}=x+2+\frac{?}{x-3}$\\
* (a) $-27$\\
* (b)$-3$\\
* %%(c)%% $\frac{3}{x-3}+x+2$\\
* (d) $ 3$ \\ See Answer(b): $-3$
iv. If $3 x^{3}-2 x^{2}+5$ is divided by $x+1$, then $x+1$ will be its:\\
* (a) divisor as well as factor\\
* (b) dividend\\
* %%(c)%% quotient\\
* (d) remainder \\ See Answer(a): divisor as well as factor
v. If 2 is a zero of the polynomial $x^{3}+5 x^{2}-4 x+k$, then the value of $k$ will be:\\
* (a) $-4$
* (b) $-20$
* %%(c)%% $20$
* (d) $0$ \\ See Answer(b): $-20$
vi. If $x-b$ is the factor of $q(x)$, then $\mathrm{q}(\mathrm{b})$ is:\\
* (a) factor\\
* (b) divisor\\
* %%(c)%% remainder\\
* (d) dividend \\ See Answer(c): remainder
vii. If the expression $2 x^{3}+3 p x^{2}-4 x$ has a remainder of 4 when divided by $x+2$, then $\mathbf{p}=$\\
* (a) $-2$
* (b) $ 1$
* %%(c)%% $-1$
* (d) $ 0$ \\ See Answer%%(b)%%: $ 1$
viii. If $f(x)$ is divided by $x-2$, then remainder is 12 . What is $f(2)$ ?\\
* (a) $-12$
* (b) $\quad f(-2)$
* %%(c)%% $12$
* (d) zero\\ See Answer%%(c)%%: $12$
====Go to ====
[[math-11-nbf:sol:unit05:Re-ex-p2|Question 2 & 3>]]