====== Question 1, Review Exercise ====== Solutions of Question 1 of Review Exercise of Unit 05: Polynomials. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 1===== Select the best matching option. Chose the correct option.\\ i. Factors of $-2-x+x^{2}$ are:\\ * (a) $(x-2)(x-1)$\\ * (b) $(x+1)(x+2)$\\ * %%(c)%% $(x+2)(x-1)$\\ * (d) $(x+1)(x-2)$ \\ See Answer%%(d)%%: $(x+1)(x-2)$ ii. Divide $9 y^{2}+9 y-10$ by $3 y-2$, then remainder is:\\ * (a) $ 0$\\ * (b) $1$\\ * %%(c)%% $2$\\ * (d) $3$ \\ See Answer(a): $ 0$ iii. $\frac{x^{2}-x-9}{x-3}=x+2+\frac{?}{x-3}$\\ * (a) $-27$\\ * (b)$-3$\\ * %%(c)%% $\frac{3}{x-3}+x+2$\\ * (d) $ 3$ \\ See Answer(b): $-3$ iv. If $3 x^{3}-2 x^{2}+5$ is divided by $x+1$, then $x+1$ will be its:\\ * (a) divisor as well as factor\\ * (b) dividend\\ * %%(c)%% quotient\\ * (d) remainder \\ See Answer(a): divisor as well as factor v. If 2 is a zero of the polynomial $x^{3}+5 x^{2}-4 x+k$, then the value of $k$ will be:\\ * (a) $-4$ * (b) $-20$ * %%(c)%% $20$ * (d) $0$ \\ See Answer(b): $-20$ vi. If $x-b$ is the factor of $q(x)$, then $\mathrm{q}(\mathrm{b})$ is:\\ * (a) factor\\ * (b) divisor\\ * %%(c)%% remainder\\ * (d) dividend \\ See Answer(c): remainder vii. If the expression $2 x^{3}+3 p x^{2}-4 x$ has a remainder of 4 when divided by $x+2$, then $\mathbf{p}=$\\ * (a) $-2$ * (b) $ 1$ * %%(c)%% $-1$ * (d) $ 0$ \\ See Answer%%(b)%%: $ 1$ viii. If $f(x)$ is divided by $x-2$, then remainder is 12 . What is $f(2)$ ?\\ * (a) $-12$ * (b) $\quad f(-2)$ * %%(c)%% $12$ * (d) zero\\ See Answer%%(c)%%: $12$ ====Go to ==== [[math-11-nbf:sol:unit05:Re-ex-p2|Question 2 & 3>]]