====== Question 2, Exercise 8.1 ====== Solutions of Question 2 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ===== Question 2(a)===== Find the exact value of $\cos 15^{\circ}$ by using $\cos \left(45^{\circ}-30^{\circ}\right)$. ** Solution. ** \begin{align*} \cos 15^{\circ} & = \cos \left(45^{\circ}-30^{\circ}\right)\\ &= \cos 45 \cos 30 + \sin 45 \sin 30 \\ &= \dfrac{1}{\sqrt{2}}\cdot \dfrac{\sqrt{3}}{2} + \dfrac{1}{\sqrt{2}}\cdot \dfrac{1}{2} \\ & = \dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\ & = \dfrac{\sqrt{3}+1}{2\sqrt{2}}. \end{align*} GOOD ===== Question 2(b)===== Use the value of $\cos 15^{\circ}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}$ to find $\cos 165^{\circ}$ by using $\cos \left(180^{\circ}-15^{\circ}\right)$. ** Solution. ** \begin{align*} \cos 165^{\circ} & = \cos \left(180^{\circ}-15^{\circ}\right)\\ &= -\cos 15 \quad (\because \cos(180-\theta)=-\cos\theta)\\ & = -\dfrac{\sqrt{3}+1}{2\sqrt{2}}. \end{align*} GOOD **Alternative Method (if $\cos 15^{\circ}$ is not given)** \begin{align*} \cos 165^{\circ} & = \cos \left(180^{\circ}-15^{\circ}\right)\\ &= -\cos 15 \quad (\because \cos(180-\theta)=-\cos\theta)\\ & = -\left[\cos \left(45^{\circ}-30^{\circ}\right) \right]\\ &= -\left[\cos 45 \cos 30 + \sin 45 \sin 30 \right] \\ &= -\left[ \dfrac{1}{\sqrt{2}}\cdot \dfrac{\sqrt{3}}{2} + \dfrac{1}{\sqrt{2}}\cdot \dfrac{1}{2} \right] \\ & = -\left[ \dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \right] \\ & = -\dfrac{\sqrt{3}+1}{2\sqrt{2}}. \end{align*} GOOD ===== Question 2(c)===== Use the value of $\cos 15^{\circ}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}$ to find $\cos 345^{\circ}$ by using $\cos \left(360^{\circ}-15^{\circ}\right)$. ** Solution. ** We are given that $\cos 15^\circ = \dfrac{\sqrt{3}+1}{2\sqrt{2}}$. Now, let's find $\cos 345^\circ$. \begin{align*} \cos 345^\circ & = \cos \left(360^\circ - 15^\circ\right) \\ & = \cos 15^\circ \quad (\because \cos(360^\circ - \theta) = \cos \theta) \\ & = \dfrac{\sqrt{3}+1}{2\sqrt{2}}. \end{align*} Thus, $\cos 345^\circ = \dfrac{\sqrt{3}+1}{2\sqrt{2}}$. **Alternative Method (if $\cos 15^\circ$ is not given)** To find $\cos 345^\circ$, we use the identity $\cos(360^\circ - \theta) = \cos \theta$. \begin{align*} \cos 345^\circ & = \cos(360^\circ - 15^\circ) \\ & = \cos 15^\circ \\ & = \cos(45^\circ - 30^\circ) \\ & = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \\ & = \dfrac{1}{\sqrt{2}} \cdot \dfrac{\sqrt{3}}{2} + \dfrac{1}{\sqrt{2}} \cdot \dfrac{1}{2} \\ & = \dfrac{\sqrt{3}}{2\sqrt{2}} + \dfrac{1}{2\sqrt{2}} \\ & = \dfrac{\sqrt{3} + 1}{2\sqrt{2}}. \end{align*} Thus, $\cos 345^\circ = \dfrac{\sqrt{3} + 1}{2\sqrt{2}}$. ===== Question 2(d)===== Use $\cos A=\sin \left(90^{\circ}-A\right)$ to find the exact value of $\sin 75^{\circ}$ and then find $\tan 75^{\circ}$. ** Solution. ** Given $$\cos A=\sin \left(90^{\circ}-A\right) ... (1)$$ Put $A=15^\circ$, we get \begin{align*} & \sin \left(90-15\right) = \cos 15^\circ \\ \implies & \sin 75^\circ = \cos 15^\circ \\ & = \cos \left(45^{\circ}-30^{\circ}\right)\\ &= \cos 45 \cos 30 + \sin 45 \sin 30 \\ &= \dfrac{1}{\sqrt{2}}\cdot \dfrac{\sqrt{3}}{2} + \dfrac{1}{\sqrt{2}}\cdot \dfrac{1}{2} \\ & = \dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}}\\ \implies & \boxed{\sin 75^\circ = \dfrac{\sqrt{3}+1}{2\sqrt{2}}}. \end{align*} Now put $A=75^\circ$ in (1) \begin{align*} \cos 75^\circ& =\sin \left(90-75\right) \\ & = \sin 15^\circ \\ & = \sin \left(45^{\circ}-30^{\circ}\right)\\ &= \sin 45 \cos 30 - \cos 45 \sin 30 \\ &= \dfrac{1}{\sqrt{2}}\cdot \dfrac{\sqrt{3}}{2} - \dfrac{1}{\sqrt{2}}\cdot \dfrac{1}{2} \\ & = \dfrac{\sqrt{3}}{2\sqrt{2}}-\dfrac{1}{2\sqrt{2}}\\ & = \dfrac{\sqrt{3}-1}{2\sqrt{2}}. \end{align*} Now \begin{align*} \tan 75^\circ & = \frac{\sin 75^\circ}{\cos 75^\circ} \\ & = \frac{(\sqrt{3}+1)/2\sqrt{2}}{(\sqrt{3}-1)/2\sqrt{2}} \end{align*} \begin{align*} \implies \boxed{\tan 75^\circ = \frac{\sqrt{3}+1}{\sqrt{3}-1}} \end{align*} GOOD ====Go to ==== [[math-11-nbf:sol:unit08:ex8-1-p1|< Question 1 ]] [[math-11-nbf:sol:unit08:ex8-1-p3|Question 3 >]]