====== Question 3, Exercise 8.1 ====== Solutions of Question 3 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. ===== Question 3(a)===== Find the exact value of $\cos 120^{\circ}$ by using $\cos \left(180^{\circ}-60^{\circ}\right)$ and $\cos \left(90^{\circ}+30^{\circ}\right)$. ** Solution. ** \begin{align*} \cos 120^{\circ} & = \cos \left(180^{\circ}-60^{\circ}\right) \\ &= - \cos 60 ^{\circ}\\ &= -\dfrac{1}{2}. \end{align*} Also \begin{align*} \cos 120^{\circ} & = \cos \left(90^{\circ}+30^{\circ}\right) \\ &= - \sin 30^{\circ}\\ &= -\dfrac{1}{2}. \end{align*} GOOD ===== Question 3(b)===== Find the exact value of $\sin 120^{\circ}$ and then $\tan 120^{\circ}$. ** Solution. ** \begin{align*} \sin 120^{\circ} & = \sin \left(180^{\circ}-60^{\circ}\right) \\ &= \sin 60 ^{\circ}\\ &= \dfrac{\sqrt{3}}{2}. \end{align*} Also, we have \begin{align*} \cos 120^{\circ} & = \cos \left(180^{\circ}-60^{\circ}\right) \\ &= - \cos 60 ^{\circ}\\ &= -\dfrac{1}{2}. \end{align*} Now \begin{align*} \tan 120^{\circ} & = \dfrac{\sin 120^{\circ}}{\cos 120^{\circ}} \\ &= \dfrac{\sqrt{3}/2}{-1/2}\\ &= -\sqrt{3}. \end{align*} ===== Question 3(c)===== Find the exact value of $\cos 75^{\circ}$ by using $\cos \left(120^{\circ}-45^{\circ}\right)$. ** Solution. ** \begin{align*} \cos 75^{\circ} & = \cos \left(120^{\circ}-45^{\circ}\right) \\ &= \cos 120^{\circ} \cos 45^{\circ} + \sin 120^{\circ} \sin 45^{\circ} \\ &= \left(-\frac{1}{2} \right) \left(\frac{1}{\sqrt{2}} \right) + \left(\frac{\sqrt{3}}{2} \right) \left(\frac{1}{\sqrt{2}}\right) \\ &= -\frac{1}{2\sqrt{2}}+\frac{\sqrt{3}}{2\sqrt{2}}\\ &= \frac{\sqrt{3}-1}{2\sqrt{2}}. \end{align*} GOOD ===== Question 3(d)===== Use the value of $\cos 75^{\circ}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}$ to find $\cos 105^{\circ}$ by using $\cos \left(180^{\circ}-75^{\circ}\right)$. ** Solution. ** \begin{align*} \cos 105^\circ & = \cos(180^\circ - 75^\circ) \\ & = -\cos 75^\circ \quad (\because \cos(180^\circ - \theta) = -\cos \theta) \\ & = -\left( \dfrac{\sqrt{3} - 1}{2\sqrt{2}} \right) \\ & = \dfrac{-(\sqrt{3} - 1)}{2\sqrt{2}} \\ & = \dfrac{1 - \sqrt{3}}{2\sqrt{2}}. \end{align*} ===== Question 3(e)===== Use the value of $\cos 75^{\circ}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}$ to find $\cos 285^{\circ}$ by using $\cos \left(360^{\circ}-75^{\circ}\right)$. ** Solution. ** \begin{align*} \cos 285^{\circ} & = \cos \left(360^{\circ} - 75^{\circ}\right) \\ & = \cos 75^{\circ} \quad (\because \cos(360^{\circ} - \theta) = \cos \theta) \\ & = \dfrac{\sqrt{3} - 1}{2\sqrt{2}}. \end{align*} ===== Question 3(f)===== Find the exact value of $\sin 15^{\circ}$. ** Solution. ** \begin{align*} \sin 15^{\circ} & = \sin \left(45^{\circ} - 30^{\circ}\right) \\ &= \sin 45 \cos 30 - \cos 45 \sin 30 \\ &= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right) \\ &= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} \\ &= \frac{\sqrt{3} - 1}{2\sqrt{2}}. \end{align*} ====Go to ==== [[math-11-nbf:sol:unit08:ex8-1-p2|< Question 2 ]] [[math-11-nbf:sol:unit08:ex8-1-p4|Question 4 >]]