====== Question 8(iv, v & vi) Exercise 8.2 ======
Solutions of Question 8(iv, v & vi) of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
=====Question 8(iv)=====
Verify the identities: $\csc 2 \alpha=\dfrac{\tan \alpha+\cot \alpha}{2}$
** Solution. **
\begin{align*}
RHS & = \dfrac{\tan \alpha+\cot \alpha}{2} \\
& = \dfrac{1}{2}\left(\frac{\sin\alpha}{\cos\alpha}+\frac{\cos\alpha}{\sin\alpha} \right)\\
\end{align*}
=====Question 8(v)=====
Verify the identities: $8 \sin^4 \theta =3+\cos 4 \theta-4 \cos 2 \theta$
** Solution. **
\begin{align*}
LHS &= 8 \sin^4 \theta \\
&= 8(\frac{1-cos2 \theta}{2})^2\\
&=2 (1-\cos 2 \theta)^2\\
&= 2(1+cos^2 2 \theta -2\cos 2\theta)\\
&=2(1+\frac{1+cos4 \theta}{2}-2 \cos2 \theta)\\
&=2+1+\cos 4 \theta -4 \cos 2 \theta\\
&= 3+\cos 4 \theta -4 \cos 2 \theta
\end{align*}
=====Question 8(vi)=====
Verify the identities: $\sin 4 \theta=4 \sin \theta \cos ^{3} \theta-4 \sin ^{3} \theta \cos \theta$
** Solution. **
\begin{align*}
RHS &= 4 \sin \theta \cos ^{3} \theta-4 \sin ^{3} \theta \cos \theta \\
&= 4 \sin \theta \cos \theta \cos ^{2} \theta-2 \sin ^{2} \theta 2\sin \theta \cos \theta\\
&= 2 \sin2 \theta( \frac{1+\cos2\theta}{2})-2 ( \frac{1-\cos2\theta}{2})\sin2 \theta\\
&= \sin2 \theta+ \sin2 \theta \cos2 \theta- \sin2 \theta +\sin 2\theta \cos2 \theta\\
&=2\sin 2\theta \cos2 \theta\\
&=\sin 4\theta\\
&=LHS
\end{align*}
====Go to ====
[[math-11-nbf:sol:unit08:ex8-2-p6|< Question 8(i, ii & iii) ]]
[[math-11-nbf:sol:unit08:ex8-2-p8|Question 8(vii, viii & ix) >]]