====== Question 1(ix, x & xi) Exercise 8.3 ====== Solutions of Question 1(ix, x & xi) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 1(ix)===== Use the product-to-sum formula to change the sum or difference: $2 \sin 75{\circ} \sin 15{\circ}$. ** Solution. ** \begin{align*} &\quad2 \sin 75^{\circ} \sin 15^{\circ} \\ &= \cos(75^{\circ} - 15^{\circ}) - \cos(75^{\circ} + 15^{\circ}) \\ &= \cos 60^{\circ} - \cos 90^{\circ} \\ \end{align*} GOOD =====Question 1(x)===== Use the product-to-sum formula to change the sum or difference: $4 \sin \frac{u+v}{2} \cos \frac{u-v}{2} $. ** Solution. ** \begin{align*} &4 \sin \frac{u+v}{2} \cos \frac{u-v}{2} \\ &= 2 \cdot 2 \sin \frac{u+v}{2} \cos \frac{u-v}{2} \\ &= 2[\sin\left( \frac{u+v}{2} + \frac{u-v}{2} \right) + \sin\left( \frac{u+v}{2} - \frac{u-v}{2} \right)] \\ &= 2[\sin u + \sin v ] \end{align*} GOOD =====Question 1(xi)===== Use the product-to-sum formula to change the sum or difference: $2 \cos \frac{2u+2v}{2}\sin \frac{2u-2v}{2} $. ** Solution. ** \begin{align*} & 2 \cos \frac{2u+2v}{2}\sin \frac{2u-2v}{2} \\ & = 2 \cos (u+v) \sin (u-v) \\ & = \sin \left(u+v+u-v \right) - \sin\left(u+v-u+v \right) \\ & = \sin 2u - \sin 2v \end{align*} GOOD ====Go to ==== [[math-11-nbf:sol:unit08:ex8-3-p2|< Question 1(v, vi, vii & viii) ]] [[math-11-nbf:sol:unit08:ex8-3-p4|Question 2(i, ii, iii, iv and v) >]]