====== Question 1, Exercise 9.1 ====== Solutions of Question 1 of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 1(i)===== Find the maximum and minimum values of the trigonometric function: $y=2-2 \operatorname{Cos} \theta$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname{Cos} \theta \leq 1 \end{align*} Multiplying with $-2$ \begin{align*} & 2 \geq -2 \operatorname{Cos} \theta \geq -2 \end{align*} Adding $2$ \begin{align*} & 4 \geq 2-2 \operatorname{Cos} \theta \geq 0 \\ \implies & 0 \leq 2-2 \operatorname{Cos} \theta \leq 4 \\ \end{align*} Hence maximum value $(M) = 4$ \\ and minimum value $(m) = 0$. GOOD **Alternative Method:** Given: $$y=2-2 \operatorname{Cos} \theta$$ Consider $$y=a+b \operatorname{Cos} \theta$$ Comparing the coeffients: $$a=2, \quad b=-2$$ \begin{align*} \text{Maximum value (M)} & = a+|b|\\ & = 2+|-2| \\ & = 2+2 = 4 \end{align*} \begin{align*} \text{Minimum value (m)} & = a-|b|\\ & = 2-|-2| \\ & = 2-2 = 0 \end{align*} Hence Maximum value (M) = 4 \\ and mimimum value (m) = 0. GOOD =====Question 1(ii)===== Find the maximum and minimum values of the trigonometric function: $y=\dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname{Sin} \theta \leq 1 \end{align*} Multiplying with $-\dfrac{1}{2}$ \begin{align*} & \dfrac{1}{2} \geq -\dfrac{1}{2} \operatorname{Sin} \theta \geq -\dfrac{1}{2} \end{align*} Adding $\dfrac{2}{3}$ \begin{align*} & \dfrac{2}{3}+\dfrac{1}{2} \geq \dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta \geq \dfrac{2}{3}-\dfrac{1}{2} \\ \implies & \dfrac{7}{6} \geq \dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta \geq \dfrac{1}{6} \\ \implies & \dfrac{1}{6} \leq \dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta\leq \dfrac{7}{6} \\ \end{align*} Hence maximum value $(M) = \dfrac{7}{6}$ \\ and minimum value $(m) = \dfrac{1}{6}$. GOOD **Alternative Method:** Given: $$y=\dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta \theta$$ Consider $$y=a+b \operatorname{Sin} \theta$$ Comparing the coeffients: $$a=\dfrac{2}{3}, \quad b=-\dfrac{1}{2}$$ \begin{align*} \text{Maximum value (M)} & = a+|b|\\ & = \dfrac{2}{3}+\left|-\dfrac{1}{2} \right| \\ & = \dfrac{2}{3}+\dfrac{1}{2} = \dfrac{7}{6} \end{align*} \begin{align*} \text{Minimum value (m)} & = a-|b|\\ & = \dfrac{2}{3}-\left|-\dfrac{1}{2} \right| \\ & = \dfrac{2}{3}-\dfrac{1}{2} = \dfrac{1}{6} \end{align*} Hence Maximum value $(M) = \dfrac{7}{6}$ \\ and mimimum value $(m) = \dfrac{1}{6}$. GOOD =====Question 1(iii)===== Find the maximum and minimum values of the trigonometric function: $y=\dfrac{1}{5}-2 \operatorname{Sin}(3 \theta-7)$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname{Sin}(3 \theta-7) \leq 1 \end{align*} Multiplying with $-2$ \begin{align*} & 2 \geq -2 \operatorname{Sin}(3 \theta-7) \geq -2 \end{align*} Adding $2$ \begin{align*} & \dfrac{1}{5}+2 \geq \dfrac{1}{5}-2 \operatorname{Sin}(3 \theta-7) \geq \dfrac{1}{5}-2 \\ \implies & \dfrac{11}{5} \geq \dfrac{1}{5}-2 \operatorname{Sin}(3 \theta-7) \geq -\dfrac{9}{5} \\ \implies & -\dfrac{9}{5} \leq \dfrac{1}{5}-2 \operatorname{Sin}(3 \theta-7) \leq \dfrac{11}{5} \\ \end{align*} Hence maximum value $(M) = \dfrac{11}{5}$ \\ and minimum value $(m) = -\dfrac{9}{5}$. GOOD =====Question 1(iv)===== Find the maximum and minimum values of the trigonometric function: $\mathrm{y}=7+\frac{3}{5} \operatorname{Cos}(2 \theta-1)$ ** Solution. ** Given \[-1 \leq \operatorname{Cos} \theta \leq 1\] Multiplying by \(\frac{3}{5}\): \[-\frac{3}{5} \leq \frac{3}{5} \operatorname{Cos} \theta \leq \frac{3}{5}\] Adding 7: \[7 - \frac{3}{5} \leq 7 + \frac{3}{5} \operatorname{Cos} \theta \leq 7 + \frac{3}{5}\] Now replacing \(\mathrm{y} = 7 + \frac{3}{5} \operatorname{Cos}(2\theta - 1)\):\\ Since the range of \(\operatorname{Cos}(2\theta - 1)\) is the same as that of \(\operatorname{Cos} \theta\),\\ we can write: \[7 - \frac{3}{5} \leq \mathrm{y} \leq 7 + \frac{3}{5}\] Hence,\\ \begin{align*} \text{Maximum value } (M)& = 7 + \dfrac{3}{5} =\dfrac{38}{5},\\ \text{Minimum value } (m)& = 7 - \frac{3}{5} = \frac{32}{5}. \end{align*} ====Go to ==== [[math-11-nbf:sol:unit09:ex9-1-p2|Question 2 >]]