====== Question 2, Exercise 9.1 ====== Solutions of Question 2 of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 2(i)===== Find the maximum and minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{4+3 \operatorname{Sin} \theta}$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname{Sin} \theta \leq 1 \end{align*} Multiplying with $3$ \begin{align*} -3 \leq 3 \operatorname{Sin} \theta \leq 3 \end{align*} Adding $4$ \begin{align*} & 1 \leq 4+3 \operatorname{Sin} \theta \leq 7 \\ \implies & 1 \geq \frac{1}{4+3 \operatorname{Sin}} \theta \geq \frac{1}{7} \\ \implies & \frac{1}{7} \leq \frac{1}{4+3 \operatorname{Sin}} \theta\leq 1 \\ \end{align*} Hence maximum value $(M) = 1$ \\ and minimum value $(m) = \dfrac{1}{7}$. GOOD =====Question 2(ii)===== Find the maximum and minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{\frac{1}{2}-5 \operatorname{Cos} \theta}$ ** Solution. ** {{ :math-11-nbf:sol:unit09:math-11-nbf-ex9-1-q2_ii_.png?400 |Graph of y}} **From the graph, we see that given $y$ is not bounded and hence its maximum and minimum value doesn't exist.** As $y=\dfrac{1}{\frac{1}{2}-5 \operatorname{Cos} \theta}$ don't have any maximum or minimum value so asking to find out the maximum and minimum values is not appropriate. =====Question 2(iii)===== Find the maximum and minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{\frac{1}{3}-4 \sin (2 \theta-5)}$ ** Solution. ** **Same as Question 2(ii), we see that given $\dfrac{1}{\frac{1}{3}-4 \sin (2 \theta-5)}$ is not bounded and hence its maximum and minimum value doesn't exist.** As $\dfrac{1}{\frac{1}{3}-4 \sin (2 \theta-5)}$ don't have any finite maximum or minimum value so asking to find out the maximum and minimum values is not appropriate. =====Question 2(iv)===== Find the maximum and minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{3+\frac{2}{5} \sin (5 \theta-7)}$ ** Solution. ** We know \begin{align*} -1 \leq \operatorname{Sin(5 \theta-7)} \theta \leq 1 \end{align*} Multiplying by \(\frac{2}{5}\): \\ \begin{align*} &-\frac{2}{5} \leq \frac{2}{5} \operatorname{Sin(5 \theta-7)} \theta \leq \frac{2}{5}\end{align*} Adding 3:\\ \begin{align*} & 3 - \frac{2}{5} \leq 3 + \frac{2}{5} \operatorname{Sin(5 \theta-7)} \theta \leq 3 + \frac{2}{5}\\ \implies & \dfrac{13}{5} \geq \frac{1}{4+3 \operatorname{Sin(5 \theta-7)}} \theta \geq \dfrac{17}{5} \\ \implies & \dfrac{5}{13} \geq \frac{1}{4+3 \operatorname{Sin(5 \theta-7)}} \theta \geq \dfrac{5}{17} \\ \end{align*} Hence maximum value $(M) = \dfrac{5}{13}$ \\ and minimum value $(m) = \dfrac{5}{17}$. ====Go to ==== [[math-11-nbf:sol:unit09:ex9-1-p1|< Question 1 ]] [[math-11-nbf:sol:unit09:ex9-1-p3|Question 3 >]]