====== Question 3, Exercise 9.1 ======
Solutions of Question 3 of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
=====Question 3(i)=====
Find domain and range: $y=7 \cos 4x$
** Solution. **
AS
\begin{align*}
& -1\leq \cos 4x \leq 1 \,\, \forall \,\, x\in \mathbb{R} \\
\implies & -7\leq 7 \cos 4x \leq 7 \\
\end{align*}
Thus domain $= ]-\infty, \infty[ = \mathbb{R}$
Range $=[-7,7]$.
=====Question 3(ii)=====
Find domain and range: $y=\cos \frac{x}{3}$
** Solution. **
AS
\begin{align*}
& -1\leq \cos \frac{x}{3} \leq 1 \,\, \forall \,\, x\in \mathbb{R} \\
\end{align*}
Thus domain $= ]-\infty, \infty[ = \mathbb{R}$
Range $=[-1,1]$.
=====Question 3(iii)=====
Find domain and range: $y=\sin \frac{2 x}{3}$
** Solution. **
AS
\begin{align*}
& -1 \leq \sin \frac{2x}{3} \leq 1 \,\, \forall \,\, x \in \mathbb{R}
\end{align*}
Thus domain $= ]-\infty, \infty[ = \mathbb{R}$
Range $=[-1, 1]$.
=====Question 3(iv)=====
Find domain and range: $y=7 \cot \frac{\pi}{2} x$
** Solution. **
Let $\theta=\frac{\pi}{2} x$. Then
$$y=7 \cot \theta$$
Domain of $y=\left\{\theta: \theta\in \mathbb{R} \text{ and } \theta \neq n\pi, n\text{ is integer} \right\}$
Range of $y=\mathbb{R}$
As
\begin{align*}
& \theta \neq n\pi \\
\implies & \dfrac{\pi}{2} x \neq n\pi \\
\implies & x \neq 2n
\end{align*}
Hence domain of $y=\left\{x: x\in \mathbb{R} \text{ and } x \neq 2n, n\text{ is integer} \right\}$
Range of $y=\mathbb{R}$. GOOD
=====Question 3(v)=====
Find domain and range: $y=4 \tan \pi x$.
** Solution. **
Let $\theta=\pi x$. Then
$$y=4 \tan \theta$$
Domain of $y=\left\{\theta: \theta\in \mathbb{R} \text{ and } \theta \neq (2n+1)\frac{\pi}{2}, n\text{ is integer} \right\}$
Range of $y=\mathbb{R}$
As
\begin{align*}
& \theta \neq (2n+1)\frac{\pi}{2} \\
\implies & \pi x \neq (2n+1)\frac{\pi}{2} \\
\implies & x \neq \frac{2n+1}{2}
\end{align*}
Hence domain of $y=\left\{x: x\in \mathbb{R} \text{ and } x \neq \frac{2n+1}{2}, n\text{ is integer}\right\}$
Range of $y=\mathbb{R}$. GOOD
=====Question 3(vi)=====
Find domain and range: $y=\operatorname{Cosec} 4 x$
** Solution. **
Let $\theta=4 x$. Then
$$y= \operatorname{Cosec} \theta$$
Domain of $y=\left\{\theta: \theta\in \mathbb{R} \text{ and } \theta \neq n\pi, n\text{ is integer} \right\}$
Range: $y\leq -1 \text{ and } y\geq 1$.
As
\begin{align*}
& \theta \neq n\pi \\
\implies & 4 x \neq n\pi \\
\implies & x \neq \frac{n \pi}{4}
\end{align*}
Hence domain of $y=\left\{x: x\in \mathbb{R} \text{ and } x \neq \frac{n \pi}{4}, n\text{ is integer} \right\}$
Range: $y\leq -1 \text{ and } y\geq 1$. GOOD
====Go to ====
[[math-11-nbf:sol:unit09:ex9-1-p2|< Question 2 ]]
[[math-11-nbf:sol:unit09:ex9-1-p4|Question 4(i-iv) >]]