====== Question 3, Exercise 9.1 ====== Solutions of Question 3 of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 3(i)===== Find domain and range: $y=7 \cos 4x$ ** Solution. ** AS \begin{align*} & -1\leq \cos 4x \leq 1 \,\, \forall \,\, x\in \mathbb{R} \\ \implies & -7\leq 7 \cos 4x \leq 7 \\ \end{align*} Thus domain $= ]-\infty, \infty[ = \mathbb{R}$ Range $=[-7,7]$. =====Question 3(ii)===== Find domain and range: $y=\cos \frac{x}{3}$ ** Solution. ** AS \begin{align*} & -1\leq \cos \frac{x}{3} \leq 1 \,\, \forall \,\, x\in \mathbb{R} \\ \end{align*} Thus domain $= ]-\infty, \infty[ = \mathbb{R}$ Range $=[-1,1]$. =====Question 3(iii)===== Find domain and range: $y=\sin \frac{2 x}{3}$ ** Solution. ** AS \begin{align*} & -1 \leq \sin \frac{2x}{3} \leq 1 \,\, \forall \,\, x \in \mathbb{R} \end{align*} Thus domain $= ]-\infty, \infty[ = \mathbb{R}$ Range $=[-1, 1]$. =====Question 3(iv)===== Find domain and range: $y=7 \cot \frac{\pi}{2} x$ ** Solution. ** Let $\theta=\frac{\pi}{2} x$. Then $$y=7 \cot \theta$$ Domain of $y=\left\{\theta: \theta\in \mathbb{R} \text{ and } \theta \neq n\pi, n\text{ is integer} \right\}$ Range of $y=\mathbb{R}$ As \begin{align*} & \theta \neq n\pi \\ \implies & \dfrac{\pi}{2} x \neq n\pi \\ \implies & x \neq 2n \end{align*} Hence domain of $y=\left\{x: x\in \mathbb{R} \text{ and } x \neq 2n, n\text{ is integer} \right\}$ Range of $y=\mathbb{R}$. GOOD =====Question 3(v)===== Find domain and range: $y=4 \tan \pi x$. ** Solution. ** Let $\theta=\pi x$. Then $$y=4 \tan \theta$$ Domain of $y=\left\{\theta: \theta\in \mathbb{R} \text{ and } \theta \neq (2n+1)\frac{\pi}{2}, n\text{ is integer} \right\}$ Range of $y=\mathbb{R}$ As \begin{align*} & \theta \neq (2n+1)\frac{\pi}{2} \\ \implies & \pi x \neq (2n+1)\frac{\pi}{2} \\ \implies & x \neq \frac{2n+1}{2} \end{align*} Hence domain of $y=\left\{x: x\in \mathbb{R} \text{ and } x \neq \frac{2n+1}{2}, n\text{ is integer}\right\}$ Range of $y=\mathbb{R}$. GOOD =====Question 3(vi)===== Find domain and range: $y=\operatorname{Cosec} 4 x$ ** Solution. ** Let $\theta=4 x$. Then $$y= \operatorname{Cosec} \theta$$ Domain of $y=\left\{\theta: \theta\in \mathbb{R} \text{ and } \theta \neq n\pi, n\text{ is integer} \right\}$ Range: $y\leq -1 \text{ and } y\geq 1$. As \begin{align*} & \theta \neq n\pi \\ \implies & 4 x \neq n\pi \\ \implies & x \neq \frac{n \pi}{4} \end{align*} Hence domain of $y=\left\{x: x\in \mathbb{R} \text{ and } x \neq \frac{n \pi}{4}, n\text{ is integer} \right\}$ Range: $y\leq -1 \text{ and } y\geq 1$. GOOD ====Go to ==== [[math-11-nbf:sol:unit09:ex9-1-p2|< Question 2 ]] [[math-11-nbf:sol:unit09:ex9-1-p4|Question 4(i-iv) >]]