====== Question 4(i-iv), Exercise 9.1 ====== Solutions of Question 4(i-iv) of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 4(i)===== Check whether the function is odd or even: $y=\sin x+x \cdot \cos x$ ** Solution. ** Consider $f(x)=\sin x+x \cdot \cos x$. Take \begin{align*} f(-x) = \sin (-x) + (-x)\cdot \cos (-x) \end{align*} As we know $\sin(-x)=-\sin x$ and $\cos (-x) = \cos x$, so \begin{align*} f(x) & = -\sin x - x \cdot \cos x \\ & = -(\sin x + x \cdot \cos x) \\ & = -f(x) \end{align*} Thus the given function is odd. =====Question 4(ii)===== Check whether the function is odd or even: $y=x^{3} \cdot \sin x \cdot \cos x$ ** Solution. ** Consider $f(x)=x^{3} \cdot \sin x \cdot \cos x$. Take \begin{align*} f(-x) = (-x)^{3} \cdot \sin (-x) \cdot \cos (-x) \end{align*} As we know $\sin(-x)=-\sin x$ and $\cos (-x) = \cos x$, so \begin{align*} f(-x) & = -x^3 (-\sin x) (\cos x) \\ & = x^{3} \cdot \sin x \cdot \cos x \\ & = f(x) \end{align*} Thus the given function is even. =====Question 4(iii)===== Check whether the function is odd or even: $y=\dfrac{x^{2} \cdot \tan x}{x+\sin x}$ ** Solution. ** Consider \[y = \frac{x^2 \cdot \tan x}{x + \sin x}.\] Take\\ \[y(-x) = \frac{(-x)^2 \cdot \tan(-x)}{-x + \sin(-x)}.\] \begin{align*} y(-x) &= \frac{(-x)^2 \cdot \tan(-x)}{-x + \sin(-x)} \\ &= \frac{x^2 \cdot (-\tan x)}{-x - \sin x}\\ &= \frac{-x^2 \cdot \tan x}{-(x + \sin x)}\\ &= \frac{x^2 \cdot \tan x}{x + \sin x}\\ &=y(x) \end{align*} Thus, the given function is even. =====Question 4(iv)===== Check whether the function is odd or even: $y=x^{3}\sin x \cos^2 x$ ** Solution. ** Consider \[y = x^3 \sin x \cos^2 x.\] Take \[y(-x) = (-x)^3 \sin(-x) \cos^2(-x)\] \begin{align*} y(-x) &= (-x)^3 \cdot (-\sin x) \cdot (\cos^2 x) \\ &= -x^3 \cdot (-\sin x) \cdot \cos^2 x \\ &= -x^3 \sin x \cos^2 x\\ &=-y(x) \end{align*} Hence, the given function is odd. ====Go to ==== [[math-11-nbf:sol:unit09:ex9-1-p3|< Question 3 ]] [[math-11-nbf:sol:unit09:ex9-1-p5|Question 4(v-viii) >]]