====== Question 4(v-viii), Exercise 9.1 ====== Solutions of Question 4(v-viii) of Exercise 9.1 of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan. =====Question 4(v)===== Check whether the function is odd or even: $y=\dfrac{\sin ^{2} x}{x+\tan x}$ ** Solution. ** Consider \[y = \frac{\sin^2 x}{x + \tan x}\] Take \begin{align*} y(-x) &= \frac{\big(-\sin x\big)^2}{-x - \tan x} \\ &= \frac{\sin^2 x}{-x - \tan x}\\ & = \frac{\sin^2 x}{-(x + \tan x)}\\ & = -\frac{\sin^2 x}{x + \tan x}\\ &=-y(x)\end{align*} Thus, the given function is odd. =====Question 4(vi)===== Check whether the function is odd or even: $y=\dfrac{\tan x-\sin x}{\sin^3 x}$ ** Solution. ** Consider \[y = \frac{\tan x - \sin x}{\sin^3 x}\] Take \begin{align*} y(-x) &= \frac{-\tan x - (-\sin x)}{(-\sin x)^3} \\ &= \frac{-\tan x + \sin x}{-\sin^3 x}\\ &= \frac{-(\tan x - \sin x)}{\sin^3 x}\\ &= -\frac{\tan x - \sin x}{\sin^3 x}\\ & = -y(x) \end{align*} Thus, the given function is odd. =====Question 4(vii)===== Check whether the function is odd or even: $y=\dfrac{\sec x}{x+\tan x}$ ** Solution. ** Consider \[y = \frac{\tan x - \sin x}{\sin^3 x}\] Take \begin{align*} y(-x) &= \frac{-\tan x - (-\sin x)}{(-\sin x)^3} \\ &= \frac{-\tan x + \sin x}{-\sin^3 x}\\ &= \frac{-(\tan x - \sin x)}{\sin^3 x}\\ &=-\frac{\tan x - \sin x}{\sin^3 x}\\ &= -y(x)\end{align*} Thus, the given function is odd. =====Question 4(viii)===== Check whether the function is odd or even: $y=x^{2} \cdot \sin x -\cot x$ ** Solution. ** Consider \[y = x^2 \cdot \sin x - \cot x\] Take \begin{align*} y(-x) &= (-x)^2 \cdot (-\sin x) - (-\cot x) \\ &= x^2 \cdot (-\sin x) + \cot x \\ &= -x^2 \cdot \sin x + \cot x\\ &=-y(x)\end{align*} Thus, the given function is odd. ====Go to ==== [[math-11-nbf:sol:unit09:ex9-1-p4|< Question 4(i-iv) ]] [[math-11-nbf:sol:unit09:ex9-1-p6|Question 5(i-v) >]]