=======Exercise 2.3 (Solutions)======== ====Question 1==== Write each radical expression in exponential notation and each exponential expression in radical notation, Do not simplify.\\ *(i) $\sqrt[3]{-64}$ *(ii) $2^{35}$\\ * (iii) $-7^\frac{1}{3}$ * (iv) $y^\frac{-2}{3}$\\ **Solution**\\ * (i) $\sqrt[3]{-64} = -64^\frac{1}{3}$ ( Exponential form) * (ii) $2^\frac{3}{5} = \sqrt[5]{2}^{3}$ (Radical form) * (iii) $-7^\frac{1}{3} = -\sqrt[3]{7}$ (Radical form) * (iv) $y^\frac{-2}{3} = \sqrt[3]{y}^{-2}$ (Radical form) ====Question 2==== Tell whether the following statements are true or false\\ * (i) $ 5^\frac{1}{5} = \sqrt{5}$\\ * (ii) $2^\frac{2}{3} = \sqrt[3]{4}$\\ * (iii) $\sqrt{49} = \sqrt{7}$\\ * (iv) $\sqrt[3]{x}^{27} = x^3$\\ **Solution**\\ * (i) False * (ii) True * (iii) False * (iv) False ====Question 3==== Simplify the following radical expression * (i) $\sqrt[3]{-125}$ * (ii) $\sqrt[4]{32}$ * (iii) $\sqrt[5]{\frac{3}{32}}$ * (iv) $\sqrt[3]{\frac{-8}{27}}$ **Soluton**\\ (i) $$\begin{array}{cl} \sqrt[3]{-125} &= \sqrt[3]{-5^3}\\ & = {-5}^{3\times\frac{1}{3}}\\ &= {-5} \end{array}$$ (ii) $$\begin{array}{cl} \sqrt[4]{32} &= \sqrt[4]{{2}^5}\\ &= \left(2^{4}\times{2}\right)^\frac{1}{4}\\ &= \left(2^{4})^\frac{1}{4}\right)\times\sqrt[4]{2}\\ &= 2\sqrt[4]{2} \end{array}$$ (iii) $$\begin{array}{cl} \sqrt[5]{\frac{3}{32}} &= \left(\frac{3}{{2^5}}\right)^\frac{1}{5}\\ &= \frac{\sqrt[5]{3}}{2} \end{array}$$ (iv) $$\begin{array}{cl} \sqrt[3]{\frac{-8}{27}} &= \sqrt[3]{\left(\frac{-2^3}{3^3}\right)}\\ &= \left(\frac{-2}{3}\right)^{3\times\frac{1}{3}}\\ &= \frac{-2}{3} \end{array}$$