MTH321: Real Analysis I (Fall 2022)

~~DISCUSSION~~ Photo-illustration of Zeno's Paradox

At the end of this course the students will be able to understand the basic set theoretic statements and emphasize the proofs’ development of various statements by induction. Define the limit of, a function at a value, a sequence and the Cauchy criterion. Prove various theorems about limits of sequences and functions and emphasize the proofs’ development. Define continuity of a function and uniform continuity of a function, prove various theorems about continuous functions and emphasize the proofs’ development. Define the derivative of a function, prove various theorems about the derivatives of functions and emphasize the proofs’ development. Define a cluster point and an accumulation point, prove the Bolzano-Weierstrass theorem, Rolles’s Theorem, extreme value theorem, and the Mean Value theorem and emphasize the proofs’ development. Define Riemann integral and Riemann sums, prove various theorems about Riemann sums and Riemann integrals and emphasize the proofs’ development.

Course contents

<callout type=“tip” icon=“true”> Did you know?

</callout>

Schedule

Notes, assignments, quizzes & handout

Notes

Please download PDF files of the notes given below. To view PDF files, there must be PDF Reader (Viewer) installed on your PC or mobile or smartphone. It can be downloaded from Software section or a user viewing on Android Smartphone may consider EBookDroid to view PDF on their smartphone.

Assignments

Please click on View Online to see inside the PDF.

Online resources

  1. Rudin, W. (1976). Principle of Mathematical Analysis, McGraw Hills Inc.
  2. Bartle, R.G., and D.R. Sherbert, (2011): Introduction to Real Analysis, 4th Edition, John Wiley & Sons, Inc.
  3. Apostol, Tom M. (1974), Mathematical Analysis, Pearson; 2nd edition.