Solutions of Question 1 of Review Exercise 3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Chose the correct option. <panel> i. The value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$
(a): $0$
ii. The vectors $3 \hat{i}+5 \hat{j}+2 \hat{k}$, $2 \hat{i}-3 \hat{j}-5 \hat{k}$ and $5 \hat{i}+2 \hat{j}-3 \hat{k}$ forms the sides of triangle which is:
(a): Equilateral
iii. Two vectors $\hat{i}-2 \hat{i}+\hat{j}+3 \hat{k}$, $\vec{b}+\hat{i} \cdot \lambda \hat{j} \cdot 6 \hat{k}$ are parallel it $\lambda=$
(d): $-2$
iv. If $\mid \vec{a}+\vec{b}=\vec{a}-\vec{b}$. then
(b): $\vec{a} \perp \vec{b}$
v. The projection of the vector $2 \hat{i}+3 \hat{j}-2 \hat{k}$ on the vector $\hat{i}+2 \hat{j}+3 \hat{k}$ is:
(b): $\dfrac{2}{\sqrt{14}}$
vi. Find nun-zero scalar $\alpha . \beta$ for which $\alpha(\vec{a}+2 \vec{b})-\beta \vec{a}+(4 \vec{b}-\vec{a})=0$ for all vectors $\vec{a}$ and $\vec{b}$
(a): $\alpha=-2, \beta=-3$
vii. If $\vec{a} \cdot \vec{b} . \vec{c}$ are position vectors of the vertices of a $\angle A A B C$. then $\vec{B} \cdot B^2 \cdot(\vec{i}$
(a): $0$
viii. If $\theta$ be the angel between any two vectors $\vec{a}$ and $\vec{b}$. then $\vec{a} \cdot \vec{b} \mid=$ $\vec{a} \times \vec{b}_i$, when $\theta$ is equal to
©: $\dfrac{\pi}{2}$
</panel>
<btn type=“success”>Question 2 & 3 ></btn>