Table of Contents

Question 4, Exercise 1.3

Solutions of Question 4 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Question 4(i)

Solve the simultaneous system of linear equation with complex coefficients: $(1-i) z+(1+i) \omega=3 ; 2 z-(2+5 i) \omega=2+3 i$.

Solution.

\begin{align} &(1-i) z+(1+i) \omega=3 \quad \cdots(1)\\ &2 z-(2+5 i) \omega=2+3i \quad\cdots(2) \end{align} Multiplying Eq. (1) by $2$: \begin{align} &(2-2i)z+(2+2i) \omega=6 \quad \cdots (3) \end{align} Multiplying Eq. (2) by $(1-i)$: \begin{align} &2(1-i)z-(1-i) (2+5 i)\omega=(1-i) (2+3i)\\ \implies & (2-2i)z-(2+5+5i-2i)\omega=2+3+3i-2i \\ \implies & (2-2i)z-(7+3i)\omega=5+i \quad \cdots (4) \end{align} $(3)-(4)$ implies \begin{align} (9+5i) \omega=1-i \end{align} \begin{align} \implies \omega & =\dfrac{1-i}{9+5i}\\ &=\dfrac{1-i}{9+5i}\times\dfrac{9-5i}{9-5i}\\ &=\dfrac{9-5-5i-9i}{81+25}\\ &=\dfrac{4-14i}{106}\\ &=\dfrac{2}{53}-\dfrac{7}{53}i\end{align} Put value of $\omega$ in (1), we have \begin{align} &(1-i) z+(1+i)\left(\dfrac{2}{53}-\dfrac{7}{53}i \right)=3\\ \implies &(1-i) z+\dfrac{2}{53}+\dfrac{7}{53}-\dfrac{7}{53}i+\dfrac{2}{53}i=3\\ \implies &(1-i) z+\dfrac{9}{53}-\dfrac{5}{53}i=3\\ \implies &(1-i) z=3-\dfrac{9}{53}-\dfrac{5}{53}i\\ \implies &(1-i) z=\dfrac{150}{53}-\dfrac{5}{53}i\\ \end{align} \begin{align} \implies z&=\dfrac{\dfrac{150}{53}-\dfrac{5}{53}i}{1-i}\\ &=\dfrac{1}{53}\dfrac{150-5i}{1-i}\\ &=\dfrac{1}{53}\dfrac{150-5i}{1-i}\times \dfrac{1+i}{1+i}\\ &=\dfrac{1}{53}\dfrac{150+5+150i-5i}{1+1}\\ &=\dfrac{1}{53}\dfrac{155+145i}{2}\\ &=\dfrac{155}{106}+\dfrac{145}{106}i\end{align} Thus, we have $$z=\dfrac{155}{106}+\dfrac{145}{106}i, \omega=\dfrac{2}{53}-\dfrac{7}{53}i.$$ GOOD

Question 4(ii)

Solve the simultaneous system of linear equation with complex coefficients: $2 i z+(3-2 i) \omega=1+i ;(1-2 i) z+(3+2 i) \omega=5+6 i$.

Solution.

\begin{align} &2 i z+(3-2 i) \omega=1+i \quad \cdots(1)\\ &(1-2 i) z+(3+2 i) \omega=5+6 i \quad \cdots(2) \end{align}

Multiplying $(1)$ by $(1-2i)$, we get:

\begin{align} &(1-2i)(2i z) + (1-2i)(3-2i) \omega = (1-2i)(1+i)\\ \implies &(2i+4)z + (3-4-2i-6i) \omega = 1+2+i-2i\\ \implies &(4+2i)z + (-1-8i) \omega = 3-i \quad \cdots(3) \end{align}

Multiplying equation (2) by $2i$, we get:

\begin{align} &2i(1-2i) z + 2i(3+2i) \omega = 2i(5+6i)\\ \implies &(2i+4) z + (6i-4) \omega = 10i-12 \\ \implies &(4+2i) z + (-4+6i) \omega = -12+10i \quad \cdots(4) \end{align} $(3)-(4)$,we have \begin{align} &(-1-8i+4-6i)\omega=3-i+12-10i\\ \implies &(3-14i)\omega=15-11i\\ \end{align} \begin{align} \implies \omega & =\dfrac{15-11i}{3-14i}\\ &= \dfrac{15 - 11i}{3 - 14i} \cdot \dfrac{3 + 14i}{3 + 14i}\\ &= \dfrac{45 + 154 + 210i - 33i}{9 + 196} \\ &= \dfrac{199 + 177i}{205}\\ \implies \omega & = \dfrac{199}{205} + \dfrac{177}{205}i. \end{align} Now, substituting $\omega$ back into equation $(1)$ to find $z$: \begin{align} &2iz + (3-2i)\left( \dfrac{199}{205} + \dfrac{177}{205}i\right) = 1 + i \\ \implies & 2iz + \dfrac{597}{205}+\dfrac{354}{205}-\dfrac{398}{205}i+\dfrac{531}{205}i= 1 + i\\ \implies & 2iz + \dfrac{951}{205}+\dfrac{133}{205}i = 1 + i\\ \implies & 2iz = 1 + i - \dfrac{951}{205}-\dfrac{133}{205}i\\ \implies & 2iz = -\dfrac{746}{205}+\dfrac{72}{205}i \end{align} Dividing by $2i$ \begin{align} z &= -\dfrac{373}{205i}+\dfrac{36i}{205i}\\ &= \dfrac{373}{205}i+\dfrac{36}{205} \quad \because \dfrac{1}{i}=-i\\ &=\dfrac{36}{205}+\dfrac{373}{205}i \end{align} Thus, we have: $$z = \dfrac{36}{205} + \dfrac{373}{205}i;\quad \omega = \dfrac{199}{205} + \dfrac{177}{205}i.$$ GOOD

Question 4(iii)

Solve the simultaneous system of linear equation with complex coefficients: $\dfrac{3}{i} z-(6+2 i) \omega=5 ; \quad \dfrac{i}{2} z+\left(\dfrac{3}{4}-\dfrac{1}{2} i\right) \omega=\left(\dfrac{1}{2}+2 i\right)$.

Solution. Given: \begin{align} &\dfrac{3}{i} z - (6 + 2i) \omega = 5\\ &-3i z - (6 + 2i) \omega = 5 \quad \cdots(1) \quad \because \dfrac{1}{i}=-i.\\ &\dfrac{i}{2} z + \left( \dfrac{3}{4} - \dfrac{1}{2}i\right) \omega = \left( \dfrac{1}{2} + 2i \right) \quad \cdots(2) \end{align} Multiply (1) by $2$ and (2) by $12$, we have \begin{align}-6i z - (12 + 4i) \omega = 10 \quad \cdots(3)\end{align} \begin{align} 6iz + (9-6i) \omega = 6+24i \quad \cdots(4) \end{align} $(3)+(4)$, we have \begin{align} &(-3-10i)\omega = 16+24i\\ \implies & \omega = \dfrac{16+24i}{-3-10i}\\ \,\,\, &= \dfrac{16+24i}{-3-10i}\times \dfrac{-3+10i}{-3+10i}\\ \,\,\, &= \dfrac{-288+88i}{109}\\ \implies &\omega= -\dfrac{288}{109}+ \dfrac{88}{109}i\end{align} Put vale of $\omega$ in $(1)$, we have \begin{align} & -3i z - (6 + 2i)\left( -\dfrac{288}{109} + \dfrac{88}{109}i\right) = 5\\ \implies &-3i z - \left(-\dfrac{1728}{109}- \dfrac{176}{109} + \dfrac{528}{109}i - \dfrac{576}{109}i \right) = 5\\ \implies &-3i z - \left(-\dfrac{1904}{109} - \dfrac{48}{109}i\right) = 5\\ \implies &-3i z = 5 - \dfrac{1904}{109} - \dfrac{48}{109}i\\ \implies &-3i z = -\dfrac{1359}{109} - \dfrac{48}{109}i\\ \implies & 3i z = \dfrac{1359}{109} + \dfrac{48}{109}i \end{align} Dividing by $3i$, we get \begin{align} &z = \dfrac{453}{109i} + \dfrac{16i}{109i}\\ \implies &z = \dfrac{16}{109}-\dfrac{453}{109}i \quad \because \frac{1}{i}=-i. \end{align}

Thus, we have: $$z = \dfrac{16}{109}-\dfrac{453}{109}i;\omega= -\dfrac{288}{109}+ \dfrac{88}{109}i$$ GOOD

Question 4(iv)

Solve the simultaneous system of linear equation with complex coefficients: $\dfrac{1}{1-i} z+(1+i) \omega=3 ; \quad \dfrac{2}{i} z-(2-3 i) \omega=2+6 i$.

Solution.

Given \begin{align} \dfrac{1}{1-i} z + (1+i) \omega &= 3 \quad \cdots(1)\\ \dfrac{2}{i} z - (2-3i) \omega &= 2 + 6i \quad \cdots(2) \end{align} Multiply (1) by $2(1-i)$, we have \begin{align} &2z+ 2(1+i)(1-i)\omega =6(1-i)\\ \implies &2z+4\omega=6-6i\quad\cdots(3)\end{align} Multiply $i$ by (2), we have \begin{align} 2z-(3+2i)\omega=-6+2i\quad \cdots(4) \end{align} $(3)-(4)$ we have, \begin{align} & 4\omega+(3+2i)\omega=-4i\\ \implies &(7+2i)\omega= 12-8i \end{align} \begin{align} \implies \omega&=\dfrac{12-8i}{7+2i}\\ &=\dfrac{12-8i}{7+2i}\times\dfrac{7-2i}{7-2i}\\ &=\dfrac{84-16-24i-56i^2}{49+4}\\ &=\dfrac{68-80i}{53}\\ &=\dfrac{68}{53}-\dfrac{80}{53}i\end{align} Putting value of $\omega$ in $(3)$, we get \begin{align} &2z+4\left(\dfrac{68}{53}-\dfrac{80}{53}i \right)=6-6i \\ \implies & 2z = 6-6i-\dfrac{272}{53}+\dfrac{320}{53}i\\ \implies & 2z = \dfrac{46}{53}+\dfrac{2}{53}i\\ \implies & z = \dfrac{23}{53}+\dfrac{1}{53}i \end{align} Hence, we have $$z = \dfrac{23}{53}+\dfrac{1}{53}i; \omega=\dfrac{68}{53}-\dfrac{80}{53}i.$$ GOOD

Go to

<btn type=“primary”>< Question 3</btn>