Table of Contents

Question 5 and 6, Exercise 4.5

Solutions of Question 5 and 6 of Exercise 4.5 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Question 5

Find the sum of the geometric series. $a_{1}=7, r=2, n=14$

Solution.

Given $a_1 = 7$, $r = 2$ and $n = 14$.

The formula to find the sum of $n$ terms of a geometric series is
$$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}, \quad r \neq 1.$$ Thus, \begin{align*} S_{14} &= \frac{7 \left(1 - 2^{14}\right)}{1 - 2} \\ &= \frac{7 \left(1 - 16384\right)}{-1} \\ &= \frac{7 \times (-16383)}{-1} \\ &= 7 \times 16383 \\ &= 114681. \end{align*} Hence, the required sum is $114681$.

Question 6

Find the sum of the geometric series. $a_{1}=12, a_{5}=972, r=-3$

Solution.

Given $a_1 = 12$, $a_5 = 972$ and $r = -3$.
Now, we can use \(r = -3\) (as given) to find the number of terms, \(n\): To find $n$, we use $$a_n = a_1 \cdot r^{n-1}$$ \begin{align*} 972 &= 12 (-3)^{n-1}\\ 81 &= (-3)^{n-1}\\ (-3)^{n-1} &= 3^{4}\\ \implies n-1 &= 4 \\ n &= 5\end{align*} The formula to find the sum of \(n\) terms of a geometric series is $$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}, \quad r \neq 1.$$ Thus, \begin{align*} S_5 &= \frac{12 \left(1 - (-3)^{5}\right)}{1 - (-3)} \\ &= \frac{12 \left(1 + 243\right)}{4} \\ &= \frac{12 \times 244}{4} \\ &= 12 \times 61 \\ &= 732. \end{align*} Hence, the required sum is $4732$.

Go to

<btn type=“primary”>< Question 3 & 4</btn> <btn type=“success”>Question 7 & 8 ></btn>