Solutions of Question 8(i, ii & iii) of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Verify the identities: $(\sin \theta+\cos \theta)^{2}=1+\sin 2 \theta$
Solution. \begin{align*} LHS & = (\sin \theta+\cos \theta)^{2} \\ &=\sin^2\theta + \cos^2\theta +2\sin \theta \cos\theta\\ &= 1+2\sin \theta \cos\theta \quad (\because \sin^2\theta+\cos^2\theta=1) \\ &=1+\sin 2\theta \quad (\because \sin2\theta=2\sin\theta \cos\theta) \\ &=RHS \end{align*} GOOD
Verify the identities: $\tan 2 x=\dfrac{1}{1-\tan x}-\dfrac{1}{1+\tan x}$
Solution.
\begin{align*} RHS & = \frac{1}{1-\tan x}-\frac{1}{1+\tan x} \\ &= \frac{1+\tan x-1+\tan x}{(1-\tan x)(1+\tan x)} \\ &= \frac{2\tan x}{1-\tan^2 x} \\ &=\tan 2x \\ & = LHS \end{align*}
Verify the identities: $\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}$
Solution.
\begin{align*} RHS &=\frac{\sin \theta}{1+\cos \theta}\\ &= \frac{2\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2\cos^2 \frac{\theta}{2}}\quad \text(by \,using\, half\, angle\, identity)\\ &=\tan \frac{\theta}{2}\\ &= RHS \end{align*}
<btn type=“primary”>< Question 7 </btn> <btn type=“success”>Question 8(iv, v & vi) ></btn>