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We have seen that a function f that is the sum of two or more functions will share
certain desirable properties with those functions. For example, our study of continuity,
differentiation, and integration allows us to state if

f=hA+fattfn

on an interval I = [a, D], then

o If f1, f2, ..., fn are continuous on I, so is f.

o If f1, f5,..., fn are differentiable on I, so is f, and
ff=A+fh++fu

o If f1, f5,..., fn are integrable on I, so is f, and

/abf(x)dx = /abﬁdx + /abfz(x)dx — /abfn(x)dx,

It is natural to ask whether the corresponding results hold when f is the sum of an
infinite series of functions,

f=fithitfito=Y f
k=0

Such type of questions lead us to the theory of sequence of functions and series of functions.
If f1, f2, f3, ... are real valued function defined on an interval I of the reals numbers. We
say that {f,} is an infinite sequence of functions on I and Y ;2 ; fx or Y fx represents the
infinite series of functions on 1.

Definition 1: Pointwise convergence of sequences of functions

Suppose that {f,} is a sequence of functions on an interval I and the sequence of
values {f,(x)} converges for each x € I. Then we say that {f,,} converges point-
wise on I to the limit function f, defined by

f(x) = lim f,(x), xel
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Thus if f is the pointwise limit of a sequence of function {f,} define on [g, b], then to
each ¢ > 0 and to each x € [g, b], there correspond an integer m such that

[fa(x) = f(x)[ <& Vnzm 1)

Definition 2: Pointwise convergence of series of functions

Suppose that } ;7 ; fx is a series of functions on I. If the series ) ;. ; fx converges for

every point x € I, and we define

(o]

f(X):ka, x €l

k=1

the function f is called the sum or the point-wise sum of the series ) f, on I.

Examples:

(1) Consider a sequence {f,(x)} define by f,(x) = x" on [0,1]. One can note that
nl1_r>n fn(x) =0, when x € [0,1) and li_I>n fn(1) = 1. Thus we have
o0 n—oo
0 if 0<x<1,
1 if x=1.

n—o00

f(x):= lim f,(x) = {

So the pointwise limit f of the sequence of continuous functions { f, } is discontinu-
ousatx =1.

sinnx

Vn

for real x. Since —1 < sinnx <1

(2) Consider a sequence { f,,}, where f,(x) =

and \/n > 0, therefore we have

This give f(x) := lim f,(x) = 0.

n—o00

One can note that f),(x) = y/ncosnx, so that f,,(0) = /n — coasn — oo but

f(0)=0
Thus at x = 0, the sequence {f;(x)} diverges whereas the limit function f’(x) = 0,
i.e., the limit of differentials is not equal to the differential of the limit.

(3) The geometric series
T+x+a2+2°+..

converges to (1 — x)~! in the interval —1 < x < 1. Note that all the terms are
bounded without the sum being so.



Definition 3: Uniform convergence of sequence of functions

A sequence of functions { f,;} is said to converge uniformly on an interval [a, b] to a
function f if for any ¢ > 0 and for all x € [a, b] there exist an integer N (independent
of x but dependent of ¢) such that

|fu(x) — f(x)| <e, Vn>Nandux € [a,b]. (2)

It is clear that every uniformly convergent sequence is pointwise convergent, and the
uniform limit function is same as the pointwise limit function.

The difference between the two concepts is this: In case of pointwise convergence, for
e > 0 and for each x € [a, b] there exist an integer N (depending on & and x both) such
that (1) holds for n > m; whereas in uniform convergence for each ¢ > 0, it is possible
to find one integer N (depend on ¢ alone) which will do for all x € [a, b].

Note: Uniform convergence = pointwise convergence but not vice-versa.
Also a sequence which is not pointwise convergent cannot be uniformly convergent.

Definition 4: Uniform convergence of series of functions

A series of functions Y, f,, is said to converges uniformly on [a, b] if the sequence {s, }
of partial sums, defined by

converges uniformly on [g, b].

Thus, a series of functions ) f,, converge uniformly to f on [a,b] if for ¢ > 0 and all
x € [a,b] there exists an integer N (independent of x and dependent of ¢) such that for
all x in [a, ]

1) + fal) + e+ fu(x) = f(x)] < & forn > N.

Review: (Cauchy’s general principle of convergence)
A necessary and sufficient condition for the convergence of a sequence of numbers {s, }
is that, for each & > 0 there exists a positive integer m such that

|Susp—su| <&, Yn>m A p>1.

Note: The proof of above result can be seen in [1, p.73]. It is equivalent to the statement;
“A sequence of real numbers is convergent if and only if it is Cauchy sequence”.



Theorem 5: Cauchy’s criterion for uniform convergence of sequence

A sequence of functions {f,} defined on [a,b] converges uniformly on [g, b] if and
only if for every € > 0 and for all x € [a, b], there exist an integer N such that

|furp(x) — fu(x)| <&, n>N,p>1. (3)

Proof. Let the sequence { f, } uniformly converge on [g, b] to the limit function f, so that
for a given ¢ > 0 and for all x € [a, b], there exist integers my, m, such that

fal) — ) <5 Vnzm
and .
[foip(x) = f(X)| <5 YVnZmyp>1.

Let N = max(my,m;). Then

‘fﬂ+p(x) _fn(x)} = |fn+p(x) — f(x) + f(x) _fn(x>’
< | furp(x) = FO)] + | fu(x) = f(x)]

£ €
-+ = = > > 1.
<2+2 g, Vn>N,p>

Conversely, suppose that the given condition (3) holds.

By Cauchy’s general principle of convergence, {f,} converges for each x € [a,b] to a
limit, say f. Thus the sequence converges pointwise to f. Let us now prove that the

convergence is uniform.

For a given ¢ > 0, let us choose an integer N such that (3) holds. Fix n, and consider
p — oo in (3). This gives us f, 4, — f as p — o0, so we get

|f(x) — fu(x)| <e n>N,allx € [a,b],

which proves that f,(x) — f(x) uniformly on [a, b]. O
Theorem 6: Cauchy’s criterion for uniform convergence of series

A series of functions Y f, defined on [a, b] converges uniformly on [a, b] if and only
if for every € > 0 and for all x € [g, b], there exist an integer N such that

| fur1 () + far2(x) + o+ fasp(x)| <&, n>N,p>1 4)

The proof of above theorem is left as part of assignment.

Note: Relation (4) in the statement may be replaced by
[ frnt1(X) + fr2(x) + .+ fulx)| <& n,m=N.
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Example: Consider a sequence of function {f, }, where

fu(x)

nx

= m, for all x € R.

Prove that {f,} is pointwise convergent but not uniformly convergent on an interval
containing 0.

Solution.
. o nx X
flx) = nll_r>ro10fn(x) - nh—r>r.}ol+n2x2 = i, 1/n + nx?
=0 VxelR.

Hence sequence { f, } converges pointwise to f(x) = 0 for all real x.

Let {f,} converges uniformly in any interval [a, ], so that the pointwise limit is also
the uniform limit. Therefore for given ¢ > 0, there exists an integer N such that for all
x € [a,b]

‘ nx

m—0’<€ VHEN

In particular, we take ¢ = %, then we have

1

‘ i <§ \V/TIZN

14 n2x2

Let m be an integer greater than N such that % € [a,b]. Now if we take n = m and
X = %, then we have

nx _l,1
1+ n2x2 273 7

B m-(1/m)
N ‘1+m2-(1/m2)

We thus arrive at a contradiction and so the sequence is not uniformly convergent in
the interval [a, b], which contains the point 1/m. Since 1/m can tends to 0, therefore the
interval [a, b] contains 0.

Hence the sequence is not uniformly convergent on any interval [, ] containing 0.

Theorem 7

Let { f»} be a sequence of functions, such that

lim f,(x) = f(x), x € [a,b]

n—o00

and let

My = sup |fu(x) = f(x)].

X€E[a,b]

Then f, — f uniformly on [a, ] if and only if M,, — 0 as n — oo.



Proof. Let f, — f uniformly on [a, b], so that for a given ¢ > 0, there exists an integer N
such that
|fu(x) — f(x)| <e, Vn>N,Vxe]ab]

= M, := sup |fu(x)—f(x)|<e Vn>N.
x€[a,b]

= M, -0 as n — oo.

Conversely, suppose that M,, — 0asn — oo, i.e. li_r)n M, = 0.
n o0

This gives for all ¢ > 0, there exists an integer N such that

IM,, —0| <¢, Vn>N,
= M,<e Vn>N,

that is
sup [fulx) — f(x)] <&, Vn=N,
x€[a,b]
= |fu(x)—f(x)|<e, Vn>N,Vxelab)]
= fu — f unifromly on [a, b].
This complete the proof. O

Question: Use the above theorem to prove that a sequence { f, }, where

fu(x)

nx
1+ n2x2

is not uniformly convergent on any interval containing zero.

Solve the above question as part of assignment.



Question: Prove that the sequence { f,, }, where

x
ful¥) =7 + nx2
is uniformly convergent on any interval I.
Solution. Here the pointwise limit
. , X
f(x):= nlgrgofn(x) _nlgro}ol—knxz =0 VxeR
Now let
x
My = sup |fu(x) — f(x)] = sup |——— .
e vt | T
If we take g(x) = ﬁ, then
/(x) = (1+nx?)-1—x-2nx  1+nx?*—2nx?
WS T a2 T (14
11— nx?
(1 +nx2)?
Put g’(x) = 0, we get
2 2 2 _ 1 1
l-nx*=0 = nx"=1 = x"=- = x=+—.
n Vn
This gives functions has extreme values at x = +—-.
NG
Now
) = (14 nx?)? . (—2nx) — (1 — nx?) - 2(1 + nx?)(2nx)
g N (1+ nx2)4
~ 2nx(1+nx?)(1+nx?+2—2nx?)  —2nx(3 — nx?)
B (1 + nx2)* (1 +mna?)3
Since

g (%) = —\/TE <0 and ¢ (—Ln) = \/Tﬁ > 0,

this gives ¢ has extreme value at x = j:\/iﬁ and g (:I:\/Lﬁ) =+

Hence

M, = and M, — 0asn — oo.

1
2y/n
This implies { f,,} converges uniformly on I.

Exercises
1. Show that the sequence {f, }, where
falx) = nxe™, x>0,
is not uniformly convergent on [0, k|, k > 0.
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2. Show that the sequence {x"} is not uniformly convergent on [0, 1].
3. Show that the sequence {exp(—nx)} is not uniformly convergent on [0, k], k > 0.

4. Test the following sequences for uniform convergence.

a. {SI%x},ngSZTL

b. { ad },03x§k,wherek>0.
n-+x
X

c.{ },O§x<00.
n+x

Review: (Cauchy’s criterion for convergence of series)

A necessary and sufficient condition for the convergence of a series of numbers ) x; is
that, for each e > 0 there exists a positive integer m such that

}xnﬂ + Xpqo + .o+ anrp} <e formn>mandp > 1.

Theorem 8: Weierstrass’s M-test

A series of functions Y f, will converge uniformly (and absolutely) on [a, b] if there
exists a convergent series ) M, of positive numbers such that for all x € [a, ]

|fu(x)| < M, forall n.

Proof. Since ) M,, is convergent, therefore by Cauchy criterion for convergence of series,
for all e > 0, there exists and integer N such that

‘Mn+1—|-Mn+2—|—...—|—Mn+p| <e Vn>Nandp>1,

ie. Myp1+Mypo+..+Mpypp<e Vn>Nandp>1 as M, >0V n.

Hence for all x € [a,b] and foralln > N, p > 1, we have

| fur1 (%) +fur2(x) 4o 4 frip(x)]
< a1 (O] + far2 ()] + oo+ | frgp(x)]
< Mn+1 + Mn+2 + .+ Mn+p
< €

(5)

This gives that ) f, is uniformly convergent on [4, b]. Also from (5), one can conclude
that )" f, is absolutely convergent on [a, ]. O



Remark: The converse of above theorem is not true, i.e. non-convergence of ), M, does
not imply anything as for as ) f, is concerned.

osn 9

Example: Consider the series Z for all § € R. Since we have

1

‘Zcosnﬂ

We know that ) nl—p is convergent for p > 1. Hence we conclude that the given series is

uniformly convergent on any interval in R.

Exercise: Prove that the following series are uniformly convergent for all real x.

sin(x? 2
0 LGEnT @ T

(_1)nx2n

p > 0.

Theorem 9: Uniform convergence and continuity

Let {fu} be a sequence of functions defined on an interval I, and xo € I. If the se-
quence { f, } converges uniformly to some function f on I and if each of the function
fn is continuous at xy, then the function f is also continuous at xy.

Proof. Since f, — f uniformly on I, for given € > 0, there exists an integer N such that
]fn(x)—f(x)]<§, Vn>N,Vxel 6)
As we have given, each f, is continuous at x, there isa § > 0 such that

| fu(x) = fu(x0)] < g, whenever |x — xq| < 4. (7)

Now for all x € I and all # > N such that |x — x| < J, we have

[f(x) = f(xo)| = [f(x) = fu(x) + fu(x) = fu(x0) + fu(x0) — f(x0)]
< 1f(x) = fa () + [ fa(x) = fulx0)] + | fu(x0) — £ (x0)]
< % + g + g =g, by using (6) and (7).
This conclude that f is continuous at x. O

Corollary 9

Let {f.} be a sequence of functions defined on an interval I. If the sequence {f,}
converges uniformly to some function f on I and if each of the function f, is con-
tinuous on I, then the function f is also continuous on I.



Theorem 10: Uniform convergence and integration

Let {f.} be a sequence of functions defined on [a,b]. If f, — f uniformly on [a, ]
and each function f, is continuous on [a, b], then

b b
/u F(x)dx = lim /a Fu(x)dox. ®)

n—oo

Proof. Since each f, is continuous and f, — f uniformly on [a, b], therefore f is contin-
uous on [4,b] and hence | ab f(x)dx exists.

\/fn yix— [ fx)dx

Now

< [ max [fu(x) - f(x)]dx

a x€lab]
b
= max | fu(x) — f(x)] : dx,
that is, we have
[ s [ 5| < - 0) max If(3) - s ©)

Since f;, — f uniformly on [g, b], for all € > 0, there exists an integer N such that

[fulx) = f)] < 5=

Vn>N,Vxelab,

—a
this gives
€
—f(x)]| < V' n>N.
max fu(x) = f)] < =5 >
Thus for n > N, expression (9) leads us to
b b e
/ fn(x)dx—/ f(x)dx| < (b—a)- =g,
a a b—a
which is equivalent to the required result. O

Disclaimer: Most of the contents in these notes are taken from [1]. These notes are made
for students and they are encourage to read the book. Also see some other useful books

in references.
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