CHAPTER 02

Sequences and Series of Functions
Course Instructor: Dr. Atig ur Rehman

Course URL: http://www.mathcity.org/atiq/spl7-mth322

We have seen that a function f that is the sum of two or more functions will share cer-
tain desirable properties with those functions. For example, our study of continuity,
differentiation, and integration allows us to state if

f=h+fi+...+fn
on aninterval I =[aq, b], then
e If f1,f2,...,fn are continuous onI, so is f.
e If f1,f2, ..., fn are differentiable on I, so is f, and
ff=fi+f+. ... +f.

e If f1,f2,...,fn are integrable on I, so is f, and

b b b b
f f(x)dx=f fldx+f fz(x)dx+....+f fn(x)dx.

It is natural to ask whether the corresponding results hold when f is the sum of an
infinite series of functions,

f=h+fo+fs+..= D fe
k=1

Such type of questions lead us to the theory of sequence of functions and series of
functions. If f1, f2, f3, ... are real valued function defined on an interval I of the reals
numbers. We say that {f,} is an infinite sequence of functions on I and Zlefk or
> fk represents the infinite series of functions on I.

Definition 1: Pointwise convergence of sequences of functions
Suppose that {f,} is a sequence of functions on an interval I and the sequence

of values {fn(x)} converges for each x € I. Then we say that {f,} converges
pointwise on I to the limit function f, defined by

fO) = lim fa(x), xe€l

Thus if f is the pointwise limit of a sequence of function {f,} define on [q, b], then
to each € > 0 and to each x € [a, b], there correspond an integer m such that

Ifn(X)—f(X)|<e, Vn=m. (1)



Definition 2: Pointwise convergence of series of functions

Suppose that Z,ilfk is a series of functions on an interval I. If the series
Z,ilfk(x) converges for every point x €I, then we say Zlefk converges point-
wise on I. We define -
f0O=>fc, xe€l,
k=1
the function f is called the sum or the pointwise sum of the series >.f, on I.

Examples:

(1) Let {fn} be a sequence of functions on R define by
X

fn(x)=—.
n

This sequence converges pointwise to the zero function on R. Indeed, given and
£ >0, choose N > |%| then

X
Ifn(x)— 0] = ’— <
n

—‘ <E, for n>N.

N

(2) Consider a sequence {fn(x)} define by fn(x) = x" on [0,1]. One can note that
nli_)rrgof,,(x) =0, whenx€[0,1) and ALrQofn(l) = 1. Thus we have

0 if 0<x<1,

f(X):=r;Lngofn(X)={1 i ox=1

Remark: Note that the pointwise limit f of the sequence of continuous functions
{fn} is discontinuous at x = 1.

sinnx

Jn

(3) Consider a sequence {fn}, where f,(x) = for real x. Since —1 <sinnx <1

and +/n > 0, therefore we have

sin nx

Jn

<

<

S
5/

This give f(x) := ,!Lngofn(x) = 0.

Remark: One can note thatff’)(x) = 4/ncosnx, so thatf,;(O) = 4/n. It is clear that
f7(0) —» o as n — o but f/(0) = 0.

Thus at x = 0, the sequence {fr’I(x)} diverges whereas the limit function f/(x) = 0,
i.e., the limit of differentials is not equal to the differential of the limit.

(4) The geometric series
1+x+x2+x3+...

converges to (1 —x)"! in the interval =1 < x < 1.

Remark: Note that all the terms are bounded without the sum being so.
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(5) Consider the sequence {f,}, where
fr(x)=nx(1—x%)", xe[0,1].

For x =0 or x =1, we have ALrgofn(x) =0.

For x € (0, 1), we have

l = i 1) = lim —— o
nl—mofn(x)_nl—monx( _X) —anT;o (1—X2)_n
X
= lim by L'Hospital rule
n—-o (1 —x2)""|n(1—x2) (by P )
x(1—x2)"

= I1Im ———=
n—o |n(1—x2)

Thus the limit f(x) = I!Lr&fn(x) =0forall xe[0,1].

1
Remark: Note that J f(x)dx =0 and
0

1 1 —n (1
f fn(x)dx:J nx(l—xz)”dx:—J (1 —x2)"(—2x)dx
0 0 2 Jo

(1_X2)n+1 1

n+1

—n

2

_ n
2(n+1)

0

1
1
So that lim f fn(x)dx = —.
n—oo0 0 2
1 1
Thus lim f frn(x)dx ;éf lim fnr(x)dx.
n—oo 0 0 n—oo

These few examples should convince us that a quite new category of problems arises
with the consideration of sequences (series) of variable terms. We have to to in-
vestigate under what supplementary conditions some properties (like boundedness,
continuity, differential etc.) of the terms f, are transferred to the limit function f. A
concept of great importance in this respect is that known as uniform convergence of
a sequences (series) in its domain of definition [a, b].

Definition 3: Uniform convergence of sequence of functions

A sequence of functions {f,} is said to converge uniformly on an interval [q, b]
to a function f if for any € > 0 and for all x € [a, b] there exist an integer N
(independent of x but dependent of €) such that

fn(xX)—f(X)<e, Vnx>=Nandxelaq,b]. (2)

It is clear that every uniformly convergent sequence is pointwise convergent, and
the uniform limit function is same as the pointwise limit function.



The difference between the two concepts is this: In case of pointwise convergence,
for € > 0 and for each x € [q, b] there exist an integer N (depending on € and x both)
such that (1) holds for n > N; whereas in uniform convergence for each € > 0, it is
possible to find one integer N (depend on € alone) which will do for all x € [aq, b].

Note: Uniform convergence = pointwise convergence but not vice-versa.
Also a sequence which is not pointwise convergent cannot be uniformly convergent.

Example:

Consider a sequence of functions {fn(x)} on [0, b], b > 0, where f,(x) =

X+n
Here

f):=limfr(x)=0  Vxe€[0,b],
so that the sequence converges pointwise to 0.

Forany € > 0,

1
fn(xX)—f(X)|= ——<e
X+n

1 1
If n > —— x, which decreases with x, the maximum value being —. Let N be an
3 3

1
integer greater than or equal to —, so that for € > 0, there exists N such that
£
lfn(xX)—f(X)l <&, VYn=N.
Hence the sequence is uniformly convergent in any interval [0, b], b > 0.

Definition 4: Uniform convergence of series of functions

A series of functions >_f, is said to converges uniformly on [a, b] if the sequence
{sn} of partial sums, defined by

Sn(X) = > fi(x)
=1

converges uniformly on [a, b].

Thus, a series of functions > f, converge uniformly to f on [a, b] if for € > 0 and all
X € [a, b] there exists an integer N (independent of x and dependent of €) such that
forall xin[a, b]

1)+ () + ... + fn(xX)—f(xX)| < &€ forn> N.

Review: (Cauchy’s general principle of convergence)
A necessary and sufficient condition for the convergence of a sequence of numbers
{sn} is that, for each € > 0 there exists a positive integer m such that

|Snep—Sn| <& VYnz=m A p>1.



Note: The proof of above result can be seen in [1, p.73]. It is equivalent to the
statement; “A sequence of real numbers is convergent if and only if it is Cauchy
sequence”.

Theorem 5: Cauchy'’s criterion for uniform convergence of sequence

A sequence of functions {f,} defined on [a, b] converges uniformly on [aq, b] if
and only if for every € > 0 and for all x € [q, b], there exist an integer N such
that

[frsp(X)—fa(X)| <€, n=N,p=1andxel[a,bl (3)

Proof. Let the sequence {f,} uniformly converge on [aq, b] to the limit function f, so
that for a given € > 0 and for all x € [q, b], there exist integers m;, m, such that

200 —f)] < ; Vnsm

and .
[frep()=f0| <5 Vnzmyp21.

Let N = max(m1, m>2). Then

frsp(X) = fn ()| = [fasp(X) — F(X) + F(X) — fa (X))
< |farp(X) = FO)| + Ifn(x) — F(X)
& &

<—+—=5 Vn>=N,p=>1.
2 2

Conversely, suppose that the given condition (3) holds.

By Cauchy’s general principle of convergence, {f,} converges for each x € [a, b] to
a limit, say f. Thus the sequence converges pointwise to f. Let us now prove that
the convergence is uniform.

For a given € > 0, let us choose an integer N such that (3) holds. Fix n, and consider
p — oo in (3). This gives us frip — f as p — o, so we get

f)—fa(xX)]<€e n=N, all xe[a,b],

which proves that f,(x) — f(x) uniformly on [q, b]. O

Theorem 6: Cauchy'’s criterion for uniform convergence of series

A series of functions >.f, defined on [a, b] converges uniformly on [a, b] if and
only if for every € > 0 and for all x € [a, b], there exist an integer N such that

[fre10) + fre2() + . + frap(X)| <€, n=N,p>1. (4)



The proof of the above theorem is left for the readers.

Note: Relation (4) in the statement may be replaced by

fm+e10) + frme20) + ...+ fn(X)| <&, n,m=N.
Example: Consider a sequence of function {f,}, where

fn(x) ™ f Il R

X)=———, orall x eR.

" 1+ n2x?

Prove that {f,} is pointwise convergent but not uniformly convergent on an interval
containing 0.

Solution.
, , . X
0= ,J'ergofn(x) - '!I—’rQO 1+ n2x2 - f!LrEL m
=0 VxeR.

Hence sequence {f,} converges pointwise to f(x) = 0 for all real x.

Let {fn} converges uniformly in any interval [q, b], so that the pointwise limit is also
the uniform limit. Therefore for given € > 0, there exists an integer N such that for
all xe[a, b]

0

nx
<& Vn=N.

1+ n2x?
In particular, we take € = % then we have

1
<— Vn=2N.
3

nx
1+ n?x?

Let m be an integer greater than N such that % € [a, b]. Now if we take n =m and
X = % then we have

1 1
= — — =&

2 3

m-(1/m)
1+ m?2-(1/m?)

nx
1+ n2x2

We thus arrive at a contradiction and so the sequence is not uniformly convergent in
the interval [a, b], which contains the point 1/m. Since 1/m can tends to 0, therefore
the interval [q, b] contains O.

Hence the sequence is not uniformly convergent on any interval [a, b] containing O.



Theorem 7

Let {fn} be a sequence of functions, such that

Jim fa(x)=f(x), x€la,b]

and let
Mn = sup [fn(x)—f(x)I.

x€[a,b]

Then f, — f uniformly on [q, b] if and only if M, — 0 as n — oo.

Proof. Let f, — f uniformly on [a, b], so that for a given € > 0, there exists an integer
N such that
fn()—f(X)I<e, Vnx=N, Vxela,b]

= Mp:= sup |[fn(X)—f(xX)|<e&, Vn=N.

x€[a,b]

=2 M,—-0 as n— oo,

Conversely, suppose that M, — 0 as n — oo, i.e. ,!irQOM,, =0.
This gives for all € > 0, there exists an integer N such that

IMh—0|<g, Vnzx=N,
= M,<e Vn=2N,

that is
sup [fn(xX)—f(x)I<e, Vnz=N,
x€[a,b]
= |fn(xX)—f(X)I<e, Vn=N, Vxe[a,b],
= fn — f unifromly on [a, b].
This complete the proof. O

Question: Use the above theorem to prove that a sequence {f,}, where

fa(x) =

1+ n2x2
is not uniformly convergent on any interval containing zero.

Solution of the above question left for the reader.



Question: Prove that the sequence {f,}, where

fn(x) =

1+ nx2
is uniformly convergent on any interval I.

Solution. Here the pointwise limit

f(x):=,!Lngofn(x)=,!|_'ngol+nX2 =0 VxeR
Now let
M, =su X)—f(x)| =su .
n xePLf”( )— ()| Xep T+

X
If we take g(x) = ——, then
9() 1+ nx?

(1+nx?)-1—x-2nx 1+ nx%—2nx?

/
X) = =
g () (1 + nx2)? (1+nx?)?
1—nx?
T (1+nx2)?’

Put g’(x) = 0, we get

1-nx’=0 = nx’=1 = x2=l = x=:|:i.
n J/n
This gives g(x) has extreme values at x = :I:%.
Now
0" (x) = (14 nx2)2.-(=2nx)—(1—nx2)-2(1 + nx2)(2nx)
(1 + nx2)4
—2nx(1+ nx2)(1+ nx?2+2—-2nx2) —=2nx(3—nx2)
- (1 + nx2)* - (1 + nx?)3
Since
g”(i) = —J—ﬁ <0 and g” (—i) = ‘/—ﬁ >0,
J/n 2 n 2
this gives g has extreme value at x = :I:% and g(:l:%) = :I:ﬁ.
Hence 1
M, =sup g(i/_ﬁ) =m and M, —0asn— oo

This implies {f,} converges uniformly on I.

Exercises
1. Show that the sequence {f,}, where
fa0) =nxe ™, x>0,

is not uniformly convergent on [0, k], kK > 0.
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2. Show that the sequence {x"} is not uniformly convergent on [0, 1].
3. Show that the sequence {exp(—nx)} is not uniformly convergent on [0, k], kK > 0.

4. Test the following sequences for uniform convergence.

{sinnx} 0<x<2
,0<x<2m.
Jn

X
b.{ },05xsk,wherel<>0.
n+x

X
c.{ },Osx<oo.
n+x

Review: (Cauchy’s criterion for convergence of series)
A necessary and sufficient condition for the convergence of a series of numbers >’ x,
is that, for each £ > 0 there exists a positive integer m such that

[Xn+1+ Xn+2 + ... + Xpip| <€ forn>mandp>1.
Theorem 8: Weierstrass’s M-test

A series of functions ».f, will converge uniformly (and absolutely) on [a, b] if
there exists a convergent series >. M, of positive numbers such that for all x €
[a, b]

[fn(xX)| <M, foralln.

Proof. Since >.M, is convergent, therefore by Cauchy criterion for convergence of
series, for all € > 0, there exists and integer N such that

IMns1+Mpi2+ ...+ Mpyp| <€ Vn>Nandp>1,

i.e. Mpy1+Mpyo+...+Mpip<e Vn>Nandp=>1 asM,>0Vn.

Hence for all x e [a, b] and forall n > N, p > 1, we have

[fr+100) +Fns206) + ... + frep(X))|
S fne2 0+ [fr2( + .. + fnrp(X)|
SMpi1+Mpi2+ ...+ Mpip
<E&

This gives that >_ f, is uniformly convergent on [a, b]. Also from (5), one can conclude
that >_f, is absolutely convergent on [a, b]. O

Remark: The converse of above theorem is not true, i.e. non-convergence of > M,
does not imply anything as for as >_f, is concerned.

_ _ cosné )
Example: Consider the series Z 5 for all 6 € R. Since we have
n
cosné 1
nP |~ np’




We know that >’ nip is convergent for p > 1. Hence we conclude that the given series
is uniformly convergent on any interval in R.

Exercise: Prove that the following series are uniformly convergent for all real x.

_ sin(x2 + n%x) - (—1)"x2n
© Z n(n+1) (@ Z nP+1(1 + x2n)’ p>0.

Theorem 9: Uniform convergence and continuity

Let {fn} be a sequence of functions defined on an interval I, and xo € I. If the
sequence {fp} converges uniformly to some function f on I and if each of the
function f, is continuous at xg, then the function f is also continuous at xg.

Proof. Since f, — f uniformly on I, for given € > 0, there exists an integer N such that
Lf,,(x)—f(x)|<§, Vn>N, Vxel. (6)

As we have given, each f, is continuous at X, there is a § > 0 such that
[fn(x)—fn(x0)| < ; whenever |x — Xp| < 6. (7)

Now for all x €I and all n = N such that |x — xg| < é, we have

[F(x) = fF(x0)l = [f (x) = fn(X) + fn(X) = fn(X0) + fn(Xx0) — f(Xo0)
< ) = fa N+ [fa(X) = fa(X0)l + [fn(x0) — f(Xo0)|

“ii4l by using (6) and (7)
<—+—-—4+—-—=6€, usin an .
3 3 3 y g

This conclude that f is continuous at xg. O

Corollary 9
Let {fn} be a sequence of functions defined on an interval I. If the sequence

{fn} converges uniformly to some function f on I and if each of the function f, is
continuous on I, then the function f is also continuous on I.
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Theorem 10: Uniform convergence and integration

Let {f,} be a sequence of functions defined on [a, b]. If f, — f uniformly on
[a, b] and each function f, is continuous on [q, b], then

b b
f f(X)dX=,;LrgoJ fn(x)dx. (8)

Proof. Since each f, is continuous and f, — f uniformly on [aq, b], therefore f is con-
tinuous on [q, b] and hence f:f(x)dx exists.

Now

b b b
an(X)dx—J F(x)dx J(fn(X)—f(X))dx

b
SJ [fn(x) — f(x)| dx

b
< J max 1f00)— £l dx

b
= XEE%] [fn(x) — F(X)I L ax,

that is, we have

b b
f fn(x)dX—J fx)dx s(b—a)xrergaaﬁ] [fn(x)—fF()I. (9)

Since f, — f uniformly on [aq, b], for all € > 0, there exists an integer N such that
€
Ifn(x)—F()I < 5—g YnzN Vxe [a, b],
—a

this gives
Yn=N.

Jnax fn()—=f0Il < o —

Thus for n > N, expression (9) leads us to

b b
J fn(X)dx—f f(x)dx

€
<(b—a)-——=g¢,
( ) Py
which is equivalent to the required result. O

Review: Mean value theorem (see [5, Page 108])
If f is a real continuous function on [a, b] which is differentiable in (a, b), then there
is a point ¢ € (a, b) at which

f(b)—f(a) = (b—a)f'(c).
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Review: Fundamental theorem of calculus (see [5, Page 134])
If ¢ is integrable over [a, b] and there exists a differentiable function f on [a, b] such
that f/ = ¢ then

b
J ¢(t)dt = f(b) —f(a).

Theorem 11: Uniform convergence and differentiation

Let {fn} be a sequence of functions defined on [q, b] such that f,(xo) converges
for some point xo on [a, b]. If each f, is differentiable and {f,;} converges uni-
formly on [q, b], then {f,} converges uniformly on [q, b], to a function f, and

fO)=limfix) (a<x<b).

Proof. Let € > 0 be given. Choose N such that n,m > N implies

[fa(x0) = fn (x0)! <§ (10)

and

3
f () —f ()| < m (a<t<h). (11)

If we apply the mean value theorem to function f, — f;, we have

Jn(X) = fm(X) = fa(t) + fm (1)

— =f/(c)—f (c) (12)
forany x and tin[a,b], ce(a,b) and n,m>=N.
Using itin (11), we have
r00 = Fn (O = Fol0) + fn(O] < Tl £ (13)
2(b—a) 2

Now we have

[fn(X) = fm )| = Ifn(X) = fm(X) — fn(X0) + fm(X0) + fn(X0) — fm(Xo)I
< fn(X) = fm(X) — fr(X0) + fm(X0)| + Ifn(X0) — fm(X0).

Using (10) and (13) in above inequality, we have
£ €
[fn(X) — fm (X)) < St5=¢ (a<x<b,n,mz=N),
this implies {f,} converges uniformly on [aq, b]. Let
f) = lim fa(x) (a<x<Db). (14)
Since we have given that {f,;} is uniformly convergent, therefore consider
¢(x) = lim fi(x) (a<x<b).
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Let us know fix a point x on [a, b]. Then we have

f ¢(t)dt=f ALngofI;(t)dt

a
= r!i_)rgofxfé(t)dx (as f7 is uniformly convergent)
= ,!Lrgo [;n(x)—fn(a)] (by fundamental theorem of calculus)
By using (14), we get that .
L ¢(t)dt =f(x)—f(a)
Now again by using fundamental theorem of calculus, we get that
¢(x)=f'(x) (a<x<b).

This complete the proof. O

Disclaimer: Most of the contents in these notes are taken from [1]. These notes are
made for students and they are encourage to read the books. Also see some other
useful books in references.
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