IMPROPER INTEGRAL OF THE SECOND KIND

> Definition

Let f be defined on the half open interval (a,b] and assume that $f \in R(\alpha;x,b)$ for every $x \in (a,b]$. Define a function I on (a,b] as follows:

$$I(x) = \int_{x}^{b} f \, d\alpha \quad \text{if} \quad x \in (a, b] \dots \dots (i)$$

The function I so defined is called an improper integral of the second kind and is denoted by the symbol $\int_{a+}^{b} f(t) d\alpha(t)$ or $\int_{a+}^{b} f d\alpha$.

The integral $\int_{a+}^{b} f d\alpha$ is said to converge if the limit

$$\lim_{x\to a+} I(x) \quad \dots (ii) \quad \text{exists (finite)}.$$

Otherwise, $\int_{a+}^{b} f d\alpha$ is said to diverge. If the limit in (ii) exists and equals A, the

number A is called the value of the integral and we write $\int_{0}^{\pi} f d\alpha = A$.

Similarly, if f is defined on [a,b) and $f \in R(\alpha; a, x) \ \forall \ x \in [a,b)$ then

 $I(x) = \int_{a}^{x} f d\alpha$ if $x \in [a,b)$ is also an improper integral of the second kind and is

denoted as $\int_{a}^{b-1} f d\alpha$ and is convergent if $\lim_{x \to b-} I(x)$ exists (finite).

> Example

 $f(x) = x^{-p}$ is defined on (0,b] and $f \in R(x,b)$ for every $x \in (0,b]$.

$$I(x) = \int_{x}^{b} x^{-p} dx \quad \text{if} \quad x \in (0,b]$$

$$= \int_{0+}^{b} x^{-p} dx = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{b} x^{-p} dx$$

$$= \lim_{\varepsilon \to 0} \left| \frac{x^{1-p}}{1-p} \right|_{\varepsilon}^{b} = \lim_{\varepsilon \to 0} \frac{b^{1-p} - \varepsilon^{1-p}}{1-p} \quad , \quad (p \neq 1)$$

$$= \begin{bmatrix} \text{finite} & , & p < 1 \\ \text{infinite} & , & p > 1 \end{bmatrix}$$
When $p = 1$, we get $\int_{\varepsilon}^{b} \frac{1}{x} dx = \log b - \log \varepsilon \to \infty$ as $\varepsilon \to 0$.

$$\Rightarrow \int_{0+}^{b} x^{-1} dx$$
 also diverges.

Hence the integral converges when p < 1 and diverges when $p \ge 1$.

> Note

If the two integrals $\int_{a+}^{c} f d\alpha$ and $\int_{c}^{b-} f d\alpha$ both converge, we write $\int_{a+}^{b-} f d\alpha = \int_{c}^{c} f d\alpha + \int_{a}^{b-} f d\alpha$

$$\int_{a+}^{b-} f \, d\alpha = \int_{a+}^{c} f \, d\alpha + \int_{c}^{b-} f \, d\alpha$$

The definition can be extended to cover the case of any finite number of sums. We can also consider mixed combinations such as

$$\int_{a+}^{b} f \, d\alpha + \int_{b}^{\infty} f \, d\alpha \quad \text{which can be written as} \quad \int_{a+}^{\infty} f \, d\alpha.$$

> Example

Consider
$$\int_{0+}^{\infty} e^{-x} x^{p-1} dx , \quad (p > 0)$$

This integral must be interpreted as a sum as

 I_2 , the second integral, converges for every real p as proved earlier.

To test
$$I_1$$
, put $t = \frac{1}{x}$ $\Rightarrow dx = -\frac{1}{t^2} dt$

$$\Rightarrow I_1 = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} e^{-x} x^{p-1} dx = \lim_{\varepsilon \to 0} \int_{1/\varepsilon}^{1} e^{-\frac{1}{t}} t^{1-p} \left(-\frac{1}{t^2} dt \right) = \lim_{\varepsilon \to 0} \int_{1}^{1/\varepsilon} e^{-\frac{1}{t}} t^{-p-1} dt$$

Take
$$f(t) = e^{-\frac{1}{t}} t^{-p-1}$$
 and $g(t) = t^{-p-1}$

Then
$$\lim_{t\to\infty} \frac{f(t)}{g(t)} = \lim_{t\to\infty} \frac{e^{-\frac{1}{t}} \cdot t^{-p-1}}{t^{-p-1}} = 1$$
 and since $\int_{1}^{\infty} t^{-p-1} dt$ converges when $p > 0$

$$\therefore \int_{1}^{\infty} e^{-\frac{1}{t}} t^{-p-1} dt \text{ converges when } p > 0$$

Thus
$$\int_{0+}^{\infty} e^{-x} x^{p-1} dx$$
 converges when $p > 0$.

When p > 0, the value of the sum in (i) is denoted by $\Gamma(p)$. The function so defined is called the Gamma function.

> Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

> A Useful Comparison Integral

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}}$$

We have, if $n \neq 1$,

$$\int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^{n}} = \left| \frac{1}{(1-n)(x-a)^{n-1}} \right|_{a+\varepsilon}^{b}$$
$$= \frac{1}{(1-n)} \left(\frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right)$$

Which tends to $\frac{1}{(1-n)(b-a)^{n-1}}$ or $+\infty$ according as n < 1 or n > 1, as $\varepsilon \to 0$.

Again, if n=1,

$$\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \log(b-a) - \log \varepsilon \to +\infty \quad \text{as} \quad \varepsilon \to 0.$$

Hence the improper integral $\int_{-\infty}^{b} \frac{dx}{(x-a)^n}$ converges iff n < 1.

> Question

Examine the convergence of

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} \left(1 + x^{2}\right)}$$

(ii)
$$\int_{0}^{1} \frac{dx}{x^{2}(1+x)^{2}}$$

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^{2})}$$
 (ii) $\int_{0}^{1} \frac{dx}{x^{2}(1+x)^{2}}$ (iii) $\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}}$

Solution

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} \left(1 + x^{2}\right)}$$

Here '0' is the only point of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{3}} (1 + x^2)}$$

Take
$$g(x) = \frac{1}{x^{1/3}}$$

Then
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{1}{1+x^2} = 1$$

 $\Rightarrow \int_0^1 f(x) dx$ and $\int_0^1 g(x) dx$ have identical behaviours.
 $\therefore \int_0^1 \frac{dx}{x^{\frac{1}{3}}}$ converges $\therefore \int_0^1 \frac{dx}{x^{\frac{1}{3}} (1+x^2)}$ also converges.

(ii)
$$\int_{0}^{1} \frac{dx}{x^{2}(1+x)^{2}}$$

Here '0' is the only point of infinite discontinuity of the given integrand. We have

$$f(x) = \frac{1}{x^2 (1+x)^2}$$

Take
$$g(x) = \frac{1}{x^2}$$

Then
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1+x)^2} = 1$$

$$\Rightarrow \int_0^1 f(x) dx$$
 and $\int_0^1 g(x) dx$ behave alike.

But n = 2 being greater than 1, the integral $\int_0^1 g(x) dx$ does not converge. Hence the given integral also does not converge.

(iii)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

Here '0' and '1' are the two points of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

We take any number between 0 and 1, say $\frac{1}{2}$, and examine the convergence of

the improper integrals $\int_{0}^{\frac{1}{2}} f(x)dx$ and $\int_{\frac{1}{2}}^{1} f(x)dx$.

To examine the convergence of $\int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$, we take $g(x) = \frac{1}{x^{\frac{1}{2}}}$

Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1-x)^{1/3}} = 1$$

$$\therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}} dx \text{ converges } \therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

To examine the convergence of
$$\int_{1/2}^{1} \frac{1}{x^{1/2}(1-x)^{1/3}} dx$$
, we take $g(x) = \frac{1}{(1-x)^{1/3}}$

Then

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1}{x^{\frac{1}{2}}} = 1$$

$$\therefore \int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{\frac{1}{3}}} dx \text{ converges } \therefore \int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

Hence $\int_0^1 f(x) dx$ converges.

> Question

Show that $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists iff m, n are both positive.

Solution

The integral is proper if $m \ge 1$ and $n \ge 1$.

The number '0' is a point of infinite discontinuity if m < 1 and the number '1' is a point of infinite discontinuity if n < 1.

Let m < 1 and n < 1.

We take any number, say $\frac{1}{2}$, between 0 & 1 and examine the convergence of the

improper integrals
$$\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$$
 and $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ at '0' and '1'

respectively.

Convergence at 0:

We write

$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}}$$
 and take $g(x) = \frac{1}{x^{1-m}}$

Then
$$\frac{f(x)}{g(x)} \to 1$$
 as $x \to 0$

As
$$\int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx$$
 is convergent at 0 iff $1-m < 1$ i.e. $m > 0$

We deduce that the integral $\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$ is convergent at 0, iff m is +ive.

Convergence at 1:

We write
$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$
 and take $g(x) = \frac{1}{(1-x)^{1-n}}$

Then
$$\frac{f(x)}{g(x)} \to 1$$
 as $x \to 1$

As
$$\int_{1/2}^{1} \frac{1}{(1-x)^{1-n}} dx$$
 is convergent, iff $1-n < 1$ i.e. $n > 0$.

We deduce that the integral $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ converges iff n > 0.

Thus
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
 exists for positive values of m , n only.

It is a function which depends upon m & n and is defined for all positive values of m & n. It is called Beta function.

> Question

Show that the following improper integrals are convergent.

(i)
$$\int_{1}^{\infty} \sin^2 \frac{1}{x} dx$$
 (ii) $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ (iii) $\int_{0}^{1} \frac{x \log x}{(1+x)^2} dx$ (iv) $\int_{0}^{1} \log x \cdot \log(1+x) dx$

Solution

(i) Let
$$f(x) = \sin^2 \frac{1}{x}$$
 and $g(x) = \frac{1}{x^2}$

then
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin^2 \frac{1}{x}}{\frac{1}{x^2}} = \lim_{y \to 0} \left(\frac{\sin y}{y}\right)^2 = 1$$

$$\Rightarrow \int_{1}^{\infty} f(x) dx$$
 and $\int_{1}^{\infty} \frac{1}{x^2} dx$ behave alike.

$$\therefore \int_{1}^{\infty} \frac{1}{x^2} dx \text{ is convergent } \therefore \int_{1}^{\infty} \sin^2 \frac{1}{x} dx \text{ is also convergent.}$$

$$(ii) \quad \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx$$

Take
$$f(x) = \frac{\sin^2 x}{x^2}$$
 and $g(x) = \frac{1}{x^2}$

$$\sin^2 x \le 1 \quad \Rightarrow \quad \frac{\sin^2 x}{x^2} \le \frac{1}{x^2} \quad \forall \quad x \in (1, \infty)$$

and
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 converges $\therefore \int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ converges.

> Note

$$\int_{0}^{1} \frac{\sin^{2} x}{x^{2}} dx$$
 is a proper integral because $\lim_{x \to 0} \frac{\sin^{2} x}{x^{2}} = 1$ so that '0' is not a point of

infinite discontinuity. Therefore $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$ is convergent.

(iii)
$$\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx$$

$$\therefore \log x < x , x \in (0,1)$$

$$\therefore x \log x < x^{2}$$

$$\Rightarrow \frac{x \log x}{(1+x)^{2}} < \frac{x^{2}}{(1+x)^{2}}$$
Now
$$\int_{0}^{1} x^{2} dx \text{ is a proper in } (0,1)$$

Now $\int_{0}^{1} \frac{x^2}{(1+x)^2} dx$ is a proper integral.

$$\therefore \int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx \text{ is convergent.}$$

(iv)
$$\int_{0}^{1} \log x \cdot \log(1+x) \, dx$$

$$\therefore \log x < x \quad \therefore \log(x+1) < x+1$$

$$\Rightarrow \log x \cdot \log(1+x) < x(x+1)$$

$$\therefore \int_{0}^{1} x(x+1) \, dx \text{ is a proper integral } \therefore \int_{0}^{1} \log x \cdot \log(1+x) \, dx \text{ is convergent.}$$

> Note

(i) $\int_{0}^{a} \frac{1}{x^{p}} dx$ diverges when $p \ge 1$ and converges when p < 1.

(ii)
$$\int_{-\infty}^{\infty} \frac{1}{x^p} dx$$
 converges iff $p > 1$.
