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We have seen that a function f that is the sum of two or more functions will share certain desir-
able properties with those functions. For example, our study of continuity, differentiation, and

integration allows us to state if
f=HA+fot+..+fu

on an interval I = [a, ], then

o If f1, f2,..., fn are continuous on I, so is f.

o If f1, 2, ..., fn are differentiable on I, so is f, and
ff=f+f+..+f.

o If f1, fo,..., fn are integrable on I, so is f, and

/abf(X)dx = /abfldx + /abfz(x)dx 4o+ /abfn(X)dx.

It is natural to ask whether the corresponding results hold when f is the sum of an infinite series

of functions,

f=fththto=Y f
k=1

Such type of questions lead us to the theory of sequence of functions and series of functions. If
f1, f2, f3, ... are real valued function defined on an interval I of the reals numbers. We say that
{fu} is an infinite sequence of functions on I and Y ;> fx or Y_ fi represents the infinite series of
functions on 1.

Definition 1: Pointwise convergence of sequences of functions

Suppose that {f,} is a sequence of functions on an interval I and the sequence of values
{fu(x)} converges for each x € I. Then we say that {f,} converges pointwise on I to the
limit function f, defined by

f(x) = lim f,(x), xel.

n—00

Thus if f is the pointwise limit of a sequence of function {f, } define on [a, b], then to each e > 0
and to each x € [a, b], there correspond an integer m such that

() = f(¥)] <& Vnzm @)



Definition 2: Pointwise convergence of series of functions

Suppose that Y ;7 ; fi is a series of functions on I. If the series ) 7, fx converges for every
point x € I, and we define

f) =Y fu rel
k=1

the function f is called the sum or the point-wise sum of the series ) f, on I.

Examples:

(1) Consider a sequence {f,(x)} define by f,(x) = x" on [0, 1]. One can note that lijll fu(x) =0,
when x € [0,1) and 1Lm fn(1) = 1. Thus we have

F(x) = lim fu(x) =

0 if 0<x<1],
1 if x=1.

So the pointwise limit f of the sequence of continuous functions {f,} is discontinuous at
x =1

(2) Consider a sequence {f,}, where f,(x) = ST for real x. Since —1 < sinnx < 1and

NG

\/n > 0, therefore we have

This give f(x) := nlgrolofn(x) =0.

One can note that f},(x) = \/ncos nx, so that f,,(0) = /n — oo as n — oo but f/'(0) = 0.
Thus at x = 0, the sequence {f;(x)} diverges whereas the limit function f'(x) = 0, i.e., the
limit of differentials is not equal to the differential of the limit.

(3) The geometric series
T+x+x2 425+

converges to (1 — x)~! in the interval —1 < x < 1. Note that all the terms are bounded
without the sum being so.

Definition 3: Uniform convergence of sequence of functions

A sequence of functions { f,, } is said to converge uniformly on an interval [a, b] to a function f
if forany ¢ > Oand for all x € [a, b] there exist an integer N (independent of x but dependent
of €) such that

|fu(x) — f(x)|<e, Vn>Nandx € ab]. (2)

It is clear that every uniformly convergent sequence is pointwise convergent, and the uniform
limit function is same as the pointwise limit function.

The difference between the two concepts is this: In case of pointwise convergence, for ¢ > 0
and for each x € [a,]] there exist an integer N (depending on ¢ and x both) such that (1) holds
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for n > m; whereas in uniform convergence for each ¢ > 0, it is possible to find one integer N
(depend on ¢ alone) which will do for all x € [a, b].

Note: Uniform convergence = pointwise convergence but not vice-versa.

Also a sequence which is not pointwise convergent cannot be uniformly convergent.

Definition 4: Uniform convergence of series of functions

A series of functions Y, f,, is said to converges uniformly on [a, b] if the sequence {s, } of partial
sums, defined by

converges uniformly on |4, b].

Thus, a series of functions }_ f,, converge uniformly to f on [a,b] if for ¢ > 0 and all x € [a,]]
there exists an integer N (independent of x and dependent of ¢) such that for all x in [a, b]

|f1(x) 4+ fa(x) + ... + fu(x) — f(x)| < e forn > N.
Review: (Cauchy’s general principle of convergence)

A necessary and sufficient condition for the convergence of a sequence of numbers {s,} is that,
for each € > 0 there exists a positive integer m such that

Suap —su| <&, Vn>m A p>1

Note: The proof of above result can be seen in [1, p.73]. It is equivalent to the statement; “A
sequence of real numbers is convergent if and only if it is Cauchy sequence”.

Theorem 5: Cauchy’s criterion for uniform convergence of sequence

A sequence of functions {f,} defined on [a, b] converges uniformly on [a, b] if and only if
for every € > 0 and for all x € [a, b], there exist an integer N such that

‘fn+p(x)—fn(x)’ <g n>N,p>1 (3)

Proof. Let the sequence {f,} uniformly converge on [a,b] to the limit function f, so that for a
given ¢ > 0 and for all x € [a, b], there exist integers my, m; such that

fule) = f@I <5 Vnzm
and

’fn+p(x) _f(x)‘ <

Let N = max(mq,my). Then

‘fner(x) _fn(x)l = ‘fnﬂ?(x) — f(x) + f(x) _fn(x)l
< | fuep(x) = | + | fu(x) = f(2)]

i) &
— 4 - = > > 1.
<2+2 g, Vn>N,p>

Vn>myp>1

N ™



Conversely, suppose that the given condition (3) holds.

By Cauchy’s general principle of convergence, { f,} converges for each x € [a,b] to a limit, say f.
Thus the sequence converges pointwise to f. Let us now prove that the convergence is uniform.

For a given € > 0, let us choose an integer N such that (3) holds. Fix n, and consider p — co in

(3). This gives us f, 1, — f as p — o0, s0 we get
|f(x) — fa(x)] <e n>N,allx € a,b],

which proves that f,(x) — f(x) uniformly on [a, b]. O
Theorem 6: Cauchy’s criterion for uniform convergence of series

A series of functions ) f, defined on [, b] converges uniformly on [a, b] if and only if for
every ¢ > 0 and for all x € [a, b], there exist an integer N such that

‘fnﬂ(x) + fuia(x) + .. —|—fn+p(x)] <g¢ n>N,p>1. 4)

The proof of the above theorem is left for the reader.

Note: Relation (4) in the statement may be replaced by
i1 (6) + fursa0) ot ful®)] <& mm = N.

Example: Consider a sequence of function { f,, }, where
nx
X)=-———, forallx € R.
falx) =3 + n2x2
Prove that { f,, } is pointwise convergent but not uniformly convergent on an interval containing
0.

Solution.
, oy XX
f(x) = ,}E},}ofﬂ(x) _,}E}I.}ol+n2x2 _7}1_{1010 1/n+ nx?
=0 VxeR.

Hence sequence { f, } converges pointwise to f(x) = 0 for all real x.

Let { f, } converges uniformly in any interval [, b], so that the pointwise limit is also the uniform
limit. Therefore for given € > 0, there exists an integer N such that for all x € [a, b]
‘ nx

In particular, we take ¢ = %, then we have

1

‘ n <§ VHZN

1+ n2x?

Let m be an integer greater than N such that % € [a,b]. Now if we take n = m and x = %, then

we have
B m-(1/m)

- ‘1+m2-(1/m2)

)

nx
1+ n2x2
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We thus arrive at a contradiction and so the sequence is not uniformly convergent in the interval
[a, b], which contains the point 1/m. Since 1/m can tends to 0, therefore the interval [a, b] contains
0.

Hence the sequence is not uniformly convergent on any interval [a, b] containing 0.

Theorem 7

Let { f,} be a sequence of functions, such that

lim f,(x) = f(x), x € [a,]]

and let
My = sup |fu(x) — f(x)].

x€[a,b]

Then f, — f uniformly on [a, b] if and only if M,, — 0 as n — co.

Proof. Let f, — f uniformly on [a, b], so that for a given ¢ > 0, there exists an integer N such that

|fu(x) — f(x)| <e, VYn>N,Vxeclab]

= M, := sup |fu(x) — f(x)| <e, Vn>N.

x€[a,b]

= M, —0 as n — oo.

Conversely, suppose that M,, — 0asn — oo, i.e. lgn M, = 0.
n—oo

This gives for all € > 0, there exists an integer N such that

M, —0| <e Vn>N,
= M, <e Vn>N,

that is
sup |fu(x) — f(x)] <& Vn>N,
X€E[a,b]
= |fu(x)—f(x)|<e Vn>N,Vxeliabl],
= fy — f unifromly on [a, b].
This complete the proof. ]

Question: Use the above theorem to prove that a sequence { f,, }, where

. onx
14 n2a2

fu(x)

is not uniformly convergent on any interval containing zero.

Solution of the above question left for the reader.



Question: Prove that the sequence {f,, }, where

X
o) = T35
is uniformly convergent on any interval I.
Solution. Here the pointwise limit
. . x
f(x) = JLI;l;}Ofn(x) —r}gflgom —O VXEIR
Now let
x
M, = su (x) = f(x)| =sup |— |-
! erI) o Sl erI) 1+ nx?
X
If we take g(x) = T’ then
(x) = (1+nx?)-1—x-2nx 1+ nx>—2nx?
g\ = (1+ nx2)2 (14 nx?)2
1—nx?
T (1+nx2)?

Put ¢’(x) =0, we get

1-nx*=0 = nm*=1 = x2:1 = x::ti.
n Vn
This gives g(x) has extreme values at x = iﬁ.
Now
x) = (1+nx?)?2- (=2nx) — (1 —nx?) - 2(1 + nx?)(2nx)
3 N (14 nx2)4
_ —2nx(1+nx?)(1+nx®+2—2nx%)  —2nx(3 — nx?)
N (14 nx2)* (14 nx2)3
Since /i Ji
(1Y _ Vi (L1 _ VA
g(\/ﬁ—2<0andg n_2>0'
this gives g has extreme value at x = iﬁ and g (:l:ﬁ) = iﬁ.
Hence

M, = sup

1
g(i\f)‘: and M, — 0asn — oo.
n 2

This implies { f, } converges uniformly on I.

Exercises
1. Show that the sequence { f, }, where
falx) = nxe ™™, x>0,
is not uniformly convergent on [0, k], k > 0.

2. Show that the sequence {x"} is not uniformly convergent on [0, 1].



3. Show that the sequence {exp(—nx)} is not uniformly convergent on [0, k], k > 0.

4. Test the following sequences for uniform convergence.

sinnx
a. ,0<x<2m.
V)

n

b.{ X },0§x§k,wherek>0.
n—+x

c.{ X },0§x<oo.
n—+x

Review: (Cauchy’s criterion for convergence of series)

A necessary and sufficient condition for the convergence of a series of numbers ) x;, is that, for
each ¢ > 0 there exists a positive integer m such that

|Xp41+ Xns2 + o+ Xngp| <€ forn>mand p>1.

Theorem 8: Weierstrass’s M-test

A series of functions } f,, will converge uniformly (and absolutely) on [a, b] if there exists a
convergent series ) M, of positive numbers such that for all x € [a, b]

|fu(x)| < M, forall n.

Proof. Since }_ M, is convergent, therefore by Cauchy criterion for convergence of series, for all
e > 0, there exists and integer N such that

|Mys1+ Mygo+ ..+ Myypy| <e Vn>Nandp>1,

ie. My +Mypo+..+Myyp<e Vn>Nandp>1 as M, >0V n.

Hence for all x € [a,b] and foralln > N, p > 1, we have

|1 (%) +fur2(x) + oo fuip(%)]
< fur1 ()] + [fur2(X)| + oo 4 [ frrp(x)]
< M1+ Mpyo + o+ My
< €

This gives that }_ f, is uniformly convergent on [a, b]. Also from (5), one can conclude that }_, f,,
is absolutely convergent on [g, b]. O

Remark: The converse of above theorem is not true, i.e. non-convergence of ) M, does not
imply anything as for as ), f,, is concerned.

0
Example: Consider the series Z CO;: for all # € R. Since we have
cos nf 1
np np




We know that Y -, is convergent for p > 1. Hence we conclude that the given series is uniformly

convergent on any interval in R.
Exercise: Prove that the following series are uniformly convergent for all real x.

(_1)nx2n
nPH1(1 + x21)’

sin(x? + n?
() LTI )y

n(n+1) p>0.

Theorem 9: Uniform convergence and continuity

Let { f } be a sequence of functions defined on an interval I, and x € I. If the sequence { f,, }
converges uniformly to some function f on I and if each of the function f, is continuous at
xp, then the function f is also continuous at xo.

Proof. Since f, — f uniformly on I, for given & > 0, there exists an integer N such that
|fn(x)—f(x)|<§, Vn>N,Vxel (6)
As we have given, each f, is continuous at x, there is a § > 0 such that
|fn(x) — fu(x0)] < g, whenever |x — x| < 6. (7)
Now for all x € I and all n > N such that |x — x| < J, we have

f(x) = f(xo)| = |f (%) = fulx) + fu(x) = fu(x0) + ful(x0) = f(x0)]
< f(x) = fu () + [ fu(x) = fulx0)| + | fu(x0) = f(x0)]

€ € € .
<§+§+§—€, by using (6) and (7).

This conclude that f is continuous at xo. O

Corollary 9

Let { f,. } be a sequence of functions defined on an interval I. If the sequence { f, } converges
uniformly to some function f on I and if each of the function f, is continuous on I, then the
function f is also continuous on I.



Theorem 10: Uniform convergence and integration

Let { f.} be a sequence of functions defined on [a, b]. If f, — f uniformly on [a,b] and each
function f, is continuous on [a, b], then

/abf(x)dx — Iim /ubfn(x)dx. ®)

n—oo

Proof. Since each f, is continuous and f, — f uniformly on [a, b], therefore f is continuous on
[a,b] and hence fah f(x)dx exists.

Now

(fn( ) = f(x))dx

L/m ~ f()|d

< [ max |[fu(x) = f(x)] dx

dx—/f x)dx| =

a x€lab]
= max |fu(x / dx,
xe[a b]
that is, we have
[ = [ ] < @-a) max () - 001 ©

Since f, — f uniformly on [a, ], for all ¢ > 0, there exists an integer N such that

€

) = ()] < 5=

Vn>N,VxEeE|ab],

this gives
€
< V'n>N.

max fu(x) = fOO)| < g Vi 2

Thus for n > N, expression (9) leads us to
€
‘/fn dx—/f x| < (b—a)- - =,

which is equivalent to the required result. O

Review: Mean value theorem (see [5, Page 108])
If f is a real continuous function on [4,b] which is differentiable in (a,b), then there is a point
€ (a,b) at which
f(b) = f(a) = (b —a)f'(c).
Review: Fundamental theorem of calculus (see [5, Page 134])
If ¢ is integrable over [4, b] and there exists a differentiable function f on [a, b] such that f' = ¢
then



Theorem 11: Uniform convergence and differentiation

Let {f»} be a sequence of functions defined on [a, b] such that f,(x) converges for some
point xg on [a,b]. If each f, is differentiable and {f,} converges uniformly on [a, ], then
{fu} converges uniformly on [, b], to a function f, and

f/(x) = lim fi(x) (a<x<b)

n—o00

Proof. Let e > 0 be given. Choose N such that n,m > N implies

[fax0) = fun(o)| < 5 (10)

and
€

‘fr/l(t)_fr;(t)‘ < m (a <t<b). (11)

If we apply the mean value theorem to function f, — f,,, we have

fu(x) = fn(x) = fult) + fiu(t)

x—t

= fu(c) = fu(c) (12)
for any x and tin [a,b], ¢ € (a,b) and n,m > N.
Using it in (11), we have

|x —tle

a(2) = i) = fult) + fu(8)] < 5

< (13)

€
2
Now we have
(%) = fun ()] = [fu(x) = fin(x) = fu(x0) + fin(x0) + fu(x0) — fin (x0)]
< | fu(x) = fin(x) = fu(x0) + fin(x0)| + | fu(x0) — fmn(x0)|
Using (10) and (13) in above inequality, we have
fuld) = fu(@) < 545 =¢ @<x<bmm=N),

This implies { f, } converges uniformly on [a, b]. Let

f(x) = lim fu(x) (a <x<b). (14)

n—oo

Since we have given that { f; } is uniformly convergent, therefore consider

¢(x) = lim fi(x) (a<x<b).

n—oo

Let us know fix a point x on [4, b]. Then we have

[ ode= [ tim fi(n)a

= lim / f,(t)dx  (as f}, is uniformly convergent)
n—oo Jg

= li_r>n [fu(x) — fu(a)] (by fundamental theorem of calculus)
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By using (14), we get that

Now again by using fundamental theorem of calculus, we get that

p(x) = f(x) (a<x<b).

This complete the proof. O

Disclaimer: Most of the contents in these notes are taken from [1]. These notes are made for stu-
dents and they are encourage to read the books. Also see some other useful books in references.
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