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— Definition 1: Continuity

A function f : I = R, where [ is interval in IR, is said to be continuous at point

xo € I if for all ¢ > 0, there exists § > 0 such that

|f(x) — f(x0)| < e whenever |x — xo| < é.

A function f is said to be continuous on [ if it is continuous on each point of I.

—| Definition 2: Uniform Continuity

A function f : I = R, where I is an interval in IR, is said to be uniformly contin-

uous on [ if for all e > 0 and x,y € I, there exists & > 0 such that

|f(x) = f(y)| < e whenever |x —y| < 6.

From the definition of uniform continuity, one can derive the following remark:

Remark 3: Uniform Continuity Implies Continuity

If a function f is uniformly continuous on I, then it is continuous on I.

Theorem 4

If f: I — Risconvex on I, then f is continuous on I°, where I° represents

interior of I.

Proof

Let [a,b] C I°. We choose ¢ > 0 so thata —e and b+ ¢ belong to I. As f is

convex, therefore it is bounded on closed interval [a — ¢, b + €]. So assume m and



M are the lower and upper bounds of f on [a — ¢, b + €] respectively.

If x,y are different points of [a, b, set
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that is we have that y = Az + (1 — A)x, so we have
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That is
fy)—f(x) <Kly—x|.

Since this is true for any x, y € [a,b], we conclude that

[ f(y) = f ()] <Ky — x|
Now if &1 > 0, the above expression gives us

If(y) — f(x)] <e1, whenever |y —x| <&:= %1

Thus f is uniformly continuous on [a, b] and hence f is continuous on [a, b].

Since a and b are arbitrary, therefore f is continuous on interior I° of I. O

Definition 5: Increasing Function

A function f : I — R is said to be increasing if for any x,y € I such that x < y,
there holds the inequality

f(x) < f(y)- (1)

A function is said to be strictly increasing on I if strict inequality holds in (1).

—| Definition 6: Left & Right Derivatives

Let f : I — R be a function. The left and right derivatives of f at x € I are

defined as follows:
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Theorem 7

If f: I - Ris convex, then f (x) and f (x) exist and are increasing on I°



Proof

Consider four points w, x, y,z € I° such that

w<x<y<z

Also let P, Q, R and S be the corresponding points
on the graph of f.

Then we have

slope PQ < slope PR < slope QR < slope QS < slope RS
Consider
slope QR < slope RS,

this gives

f) —fx) _ f(z) = fy)

ST 2)

when Q moves towards R, then x 1 y and when S moved towards R then z | y.
As f is continuous on I°, therefore when x 1 y, then f' (y) exists and when z | y

then f, (y) exists.

Also from (2), one can conclude

/ /

f-(y) < f4(y) forally € I°. 3)

Now we consider
slope PQ < slope QR,

that is
fx) = fw) _ fly) = f(x)

~
X —w y—x

When x decreased toward w and x increased toward y, we get

fi(w) < f(y) forall w<y. (4)



Using (3) and (4), we have for all w < y,

fo(w) < frlw) < f(y) < £ (),

So we have proved that for w < y,

and
fi(w) < fi(y)-
This implies f_ and f:r are increasing. O
Remark 8

If f: 1 — Ris strictly convex, then f’ (x) and f/ (x) exist and are strictly in-

creasing on I°.

— Review

e Assume that the function f is differentiable on interval I. Then f is increas-
ing on [ if and only if f/(x) > O forall x € I.

* Assume that the function f is differentiable on interval I. Then f is strictly

increasing on I if and only if f/(x) > 0 forall x € I.

* Suppose f is differentiable on (a,b). Then f is convex [strictly convex] if,

and only if, f is increasing [strictly increasing] on (a,b).

Theorem 9

Let f is twice differentiable on (a,b). Then f is convex on (a, b) iff f/(x) > 0 for
allx € (a,b). If f’(x) > Oforall x € (a,b), then f is strictly convex on (a, b).

Exercises 1. Prove that a function e* is convex on (—o0, c0).
2. Prove that a function sin x is convex on interval [, 277].

3. Find the value of p for which x” is convex on (0, ).
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In the following theorem, we prove that sum of two convex functions is convex.

Theorem 10

If f:1 -+ Randg:I— Rareconvex then f + g is convex on I.

Proof

Since f and g are convex therefore for x,y € Iand A € (0,1)

fAx+ 1 =A)y) <Af(x)+(1—A)f(y) (5)
and
gAx+(1-AN)y) <Ag(x)+(1-A)g(y). (6)

Now we consider

e A+ (1-2)y) = fAx+(1-AN)y)+gAx+(1-N)y)
< AME)FA=A)fy)+Ag(x) +(1-2A)g(y)

Af () +8(x)+(A=A)(f(y) +&(¥))

Af+8) () + (1 =A)(f+8)(y)-

Hence (f + g) is convex on I. O

In the similar way, one can prove the following;:

Theorem 11

If f:I— Risconvexand a > 0, then af is convex on I.



Definition 12: Line of Support

A function f defined on I has support at xg € I if there exists a function
A(x) = f(xo) +m(x — xo)

such that A(x) < f(x) for every x € I.

The graph of the support function A is called a line of support for f at xj.

Theorem 13

A function f : (a,b) — R is convex if and only if there is at least one line of

support for f at each xg € (a,b).

Proof

Suppose f is convex and xg € (a,b). Then f’, f exist and f’ (xp) < fi (xo) for
all xg € (a,b).

Choose m € [’ (x9), f(x0)]. Then we have

FO=fX0) S 0 for x> xg
X — X0 o
and
M<m for x < xo.
X—xg

That is, we have

f(x) = f(x0) 2
= f(x) = f(xo) +

m(x —xg) forall x € (a,b),
m(x —xg) forall x € (a,b) (7)
If we consider A(x) = f(xo) + m(x — xo) be support function at xy € (a,b), then
from (7), we have

f(x) > A(x) forall x € (a,b).
This proves that f has a line of support at each xg € (a,b).

Conversely, suppose that f has a line of support at each point of (a,b) and A(x)




define above be support function, then
A(x) < f(x) forall x € (a,b).
Letx,y € (a,b) and xg = Ax + (1 — A)y, A € [0,1], then
A(xo) = f(x0) —m(xo — x0) = f(x0)-

Now
f(x0) = Alxo)
=AAx+(1—-A)y)
= f(xo) + m(Ax 4+ (1= A)y — xo)
= A+ @ =A)]f(x0) +m[Ax+ (1= A)y —{A+ (1 —A)}x0]
= Alf(x0) +m(x —xo)] + (1 = A)[f (x0) + m(y — x0)]
=AA(x)+ (1—-)1)A(y)
S Af(x)+ (1 =A)f(y).

That is, we have proved that
fAx+(1=A)y) <Af(x)+(1—=A)f(y) forall x € (a,b),A€[0,1].

Hence f is convex on (a,b). O

Remark 14

In previous theorem, we take f’ (xo) < m < f! (xp). If the function f is differen-

tiable on (4, b), then we have

fL(x0) = fi(x0) = f'(x0)-
Hence A(x) = f(x0) + f'(x0)(x — x0) will be line of support of f at x.

For example: If f(x) = e* for x € R, then
Alx) =e+e(x—1) =ex

is support function for e* at point x = 1.



It can also be written as y = ex or ex —y = 0.

In the similar way, what about support function of e* at x = 0?

Review

* A function f defined on I has support at xy € I if there exists a function
A(x) = f(xo) +m(x — xo)
such that A(x) < f(x) for every x € I.

e A function f : (a,b) — Ris convex if and only if there is at least one line of

support for f at each xy € (a,b).

e From the proof of theorem stated in above clause, we have f’ (xp) < m <
f(xp) for line of support at point xg. If the function f is differentiable on
(a,b), then m = f'(x).

Exercise: Find the line of supports for the function defined below at x = 1.

X2, x>1;
-]

x, x<I.

Solution. A function
A(x) = f(x0) +m(x — xo)
is line of support at x = xo, where m € [f’ (xp), i (x0)]-

So we have

fL(x)=1 and f(x)
= f(1)=1 and fi(1)

2x.
2

Thus

A(x)=f(1)+m(x—1), where m € [1,2],
= A(x)=1+m(x—1), where me[l,2].



Remark 15

If we are asked to find the line of support at x = 2 for the function f defined

above, that is, for function

X2, x>1;
flx) =

x, x<I1.

We see, the function is differentiable at x = 2, so m = f/(2) = 4. Thus, we have

A(x) = f(2) + m(x —2),
= A(x)=4+4(x—-2),
= A(x) =4x—4.

is required line of support.

References:

* A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York,
1973.

e C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, A

Contemporary Approach, Springer, New York, 2006.

¢ Thanks for unknown developer for background image (search web).

10



