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Number Theory

Divisibility

Divisibility:
Let ‘a’ and ‘b’ be any two integers. We say that ‘a’ divides ‘b’ or ‘b’ is divisible by ‘a’ denoted
by a|b. when there exist integer ‘c’ such that b = ca. If a does not divides b then atb.

Perfect Number:
A number is said to be a perfect number if it is equal to the sum of its all +ve integral divisors.
i.e 6|1, 62, 6|3 without itself 1+2+3=6

Theorem: let a,b and c be integers, then

(1) If a|b, then a|kb, for any integer k

If a|b, then 3 integer k; s.t b=ak..... (1) multiplying equation (1) by integer k
kb=ak k;, where k;,k € Z, sokk; =k, € Z
kb=ak, — albk

(2) If a|b, and b|a, then a=+b
If a|b, bla, then 3 integer k, k; s.t
b=kia.... (1) a=kyb...(2) wuse(2)in (1)
b=k, k, b, k, k=1, which is only possible
when both k=1, k,=1 or k; =-1, k,=-1 wusein (1) and (2)

combine (3), and (4) a=tb

(3) For any non-zero integer k, a|b iff kalkb
If a|b then 3 integer k; s.t

b=kja multiplying by k

bk=ka(k;) -  kalbk

conversely

ka|bk, so 3 integer k; s.t

bk= k,(ka) cancel out k

b=k,a = ajb

Proposition
Let a,b,c be the integers then prove the following axioms.
1)
e a0
0 = 0.a where 0,a be the integers. So al0
o la
Since a=1.a 1, a be the integer. So 1]a
o -lla
Since a=-(-1)(a) — -1]a -1, a be integers. So -1ja
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(2) If a|b and b|c then ac.

As alb so there exist an integer kq s.t b=kia.......... (D
Similarly if b|c there exist an integer k; s.t c=kyb............ )
c=kikyausing (1) kq,k, € Z, so we take k 1k, = k

c=ka— alc.

(3) If a|b and a|c then a|bx+cy for every integer x or y.
If a]b then d an integer kq s.tb=kqa............. (1)
if alc then d an integer k) s.tc=kpa.............. 2)
then  bx+cy=ak x + akyy
=a(kix+kyy) askq ky,x,y€EZ Letkix+k,y=k€Z
bx +cy = ak
— abx +cy

Assignment: If a|b and a|c then alb + ¢ and ab - c.

Proof:
Ifalb so d an integer ky s.tb=kqa........... (1)
if alc so d an integer ky stc=kya.......... .(2) D +Q)

b+c =kjatka
=a(k1+k2) kl,kz €Z,k1+k2:k€Z

b+c =ak
—ab+c
Now (1) - (2)
b-c=kja-kra

=a(k1—k2) kl,kz €Z,k1 -kz =k€Z
b-c=ka—ab-c Hence prove.

Division Algorithm

a=qd+r

a=26,q=8,d=3,r=2
26 =(8)(3) +(2)
26 =126

Division Algorithm. Given integers a and b, with b>0, there exist unique integers q and r satisfying
a=qb+r 0<r<b

The integers q and r are called,respectively,the quotient and remainder in the division of a by b.
Proof. We begin by proving that the set

S ={a — xb|x an integer;a — xb = 0}
is non empty. To do this, it suffices to exhibit a value of x making a — xb nonnegative. Because the
integers b = 1, we have |a|b = |a|, and so

a—(—1llapb=a+alb=a+|al| =0

For the choice x = —|a|, then, a — xb lies S. This paves the way for an application of the well-
ordering principle, from which we infer that the set S contains a smallest integers; call it r. By the
definition of S, there exists an integers q satisfying
r=a-—gqb 0<r

We argue that r < b. If this were not the case then r > b and
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a—(@+Db=(@—gb)—b=r—->b=0

The implication is that the integers a — (q + 1)b has the proper form to belong to the set S. But
a—(q+ 1)b=r—>b <r, leading to a contradiction of the choice of r as the smallest member of S.
Hence, r < b.
Next we turn to the task of showing the uniqueness of ¢ and r. Suppose that a has two representations of
the desired form, say,

a=qgb+r=qb+r
Where 0 <7 < b,0 <1 < b.thenr —r = b(q —q') and, owing to the fact that the absolute value of
a product is equal to the product of the absolute values,

'~ | = blg - q
Upon adding the two inequalities —b < —r < 0 and 0 < r' < b, we obtain
—b < r'—1r < b or,in equivalent terms, |r' — r| < b. thus, b|q — q'| < b, which yeilds

0<lg—q1<1
Because |q — q'| is a nonnegative integers, the only possibility is that | — q'| = 0, where q = q; this,in

turn, gives r = r, ending the proof.

Mathmatical Induction

It is a method which is often used to prove the divisibility based result. It is most powerful tool
to prove the result in exponent form. To prove the result with the help of mathematical induction, we
have to follow the following steps:

e First, we will check the resultatn=1

e In the second step , we suppose that the result is true for n =k

e Now with the help of above supposition, we have to prove that the result is true for n = k+1
Remark :
If a result fulfilled the above three steps, then that result is true mathematically.

Quesion: Show that: a - bla™ - b ¥ a,b € Z, n is +ve
Proof: we prove the result by induction method.

Step 1:

Letn=1thena-bla'—b' ............... (1) which is true for n=1.
Step 2:

Now we suppose it is true forn =k —a-bla"—b*......... 2
Step 3:

Now we want to prove that for n =k + 1 is also satisfy a - bja*"" —b*"'

AR = gk _ b
=aa" — a"b— bb* + a'b +ing and —ing a*b
=a"(a—b)+b(a"—b")

Fromeq(l)a—b|a—banda—b|a“—b" by hypothesis

and we know that, If ajb and alc then ajbx + cy V x,y € Z

Hence a—b |a"(a - b) + b(a" — b*) = a*" — b*"

Sa-b|ak _pkt

Soa-b|a"—b"Va,b € Z, by mathematical induction.
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Question : if n is odd , prove thata+ b |a" +b" V a,b € Z.
Proof :

We will prove above result by induction method.
Letn=1thena+bja' +b'........... (1) which is true for n=1.
Now suppose that above result is true for n =k (k is odd)
—a+ba“+b ... )

Now we have to prove that the result is true for n =k + 2(k is odd) — a + bja""? + b*"
a“"? + b2 = a"a’ + b*b* + a"b” - a"b’ +ing and —ing a"b’
= a“a’- a"b™+ b*b*+ a'b’
_ ak(az _ b2) i bz(ak I bk)
Since a + bja’ — b” also a + bja* + b* by hypothesis.
And we know that if alb, ajc then abx +cy V x,y € Z
Hence a + b | a“"? + b*"? = a"(a’ — b%) + b*(a“ + b")
— the result is true for n =k + 2 & V n by mathematical induction.

Question : Prove that the product of any three consecutive integers is divisible by 6.
Proof:

Let n, nt+1, n+2 be three consecutive integers. Then product of three consecutive integer is
n(n+1)(n+2)
Now we have to prove that 6n (n+ 1) (n+2) ............... (1).We prove it by induction method.

Step 1:
Put n=1
Then6/1 (1+1)(1+2)=6 — 66 so it is true for n=1.

Step 2:

Now we suppose that the result is true for n=k
—6k(k+1)(k+2)ccciiinnnn. 2)
Now we prove it that the result is true forn=k + 1
n+1)(+2)=(k+1)(k+2) (k+3)=k(k+1) (k+2)+3 (k+ 1) (k+2)
By hypothesis factor k (k+ 1) (k +2) is divisible by 6 i.e 6| k (k+ 1) (k+2) .
Now we show that 6|3 (k+ 1) (k + 2)
Here we have two cases.
I' : If k is even say k = 2m, m is integer then
6|3 2m+ 1) 2m + 2)
6|6 2m + 1) (m + 1) which is true
2": Ifk is odd say k = 2m + 1, m is integer then
632m+1+1)2m+1+2)=32m+2)(2m+ 3)
6|6 (m+1) (2m+3) which is true.
We know that if ajb and alc then ajbx +cy Vx,y € Z
So6k(k+1)(k+2)+3(k+2)(k+3)=(k+1)(k+2)k+3)=n(n+1)(n+2)
—6k(k+1)k+2)k+3)
Hence It is proved that product of three consecutive integer is divisible by 6.
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Question : Prove that if n is +ve even integer then a + bja" — b".
Proof:
We prove it by mathematical induction.

Step 1:

Put n=2 because n is +ve even .
—a+bla’—b’........... (1)
—a+b|(a+Db)(a-b)which is tue for n=2.

Step 2:

Now we suppose that the result is true for n = 2k because n is even. k is integer
—a+b|a™-b™ ... )
Now we have to prove that the result is true for n=2k+2 because n is +ve even.

2k+2 2k+2
—a+b|a™ b

A" _ b = g2k 22
=a™a’ - b™b* - a™b* + 2™’  +ing and —ing a™ b’
= g2kg2 a2k 24 a2kpp2 12k 2
= a2(a%b?) + bX(aZ-b%)
Fomeq (1) a+b | a” - b® and by hypothesis a + b| a
So we know that if a|b and a|c then a| bx+cy for every integers x, y
Soa+b| azk(az _ b2) + bz(aZk _ b2k) = Q22 2k
Hence it is prove that if n is +ve even integer then a +b [a" - b" .

2k _ b2k

Example : Show that ¥V n (>0) € Z, 24 2.7" + 3.5"-5

Proof :
We prove it by M.1
Step 1:
Putn=1
2412.7'+3.5'-5=27+35-5=24 —24[24 which is true.
Step 2:
Now we suppose that result is true for n = k then,
24275 +355-5 .. (1)
Step 3:

Now we show that result is true forn =k + 1
2.7+ 354 _5=277+3.555-5
=147+ 15.5-5
=27+ 12.7°+3.5+12.5-5
= Q2.7+ 3.55-5)+12.7% + 12.5*
= 2.7+ 3.55-5) + 12(7° + 55
By hypothesis 24 | 2.7 + 3.5* — 5. Now we will prove that 24 [12(7° + 55
Since 7° and 5* are odd and sum of two odd numbers is even , so the sum of 5* and 7 is even number.
So, 24 | 12 (5" + 75
Thus 24 | (2.7 +3.55-5) + 12(5 + 79
we know that if a|b and a|c then a| bx+cy for every integers x, y
Hence, It is proved that V n (>0) € Z, 24|2.7"+3.5"-5.
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Assignment: Show that ¥V n (>0) € Z, 910" +3.4"*°+5.
Proof: ( do yourself ).
Theorem:Every odd integer can be written in the form of 4k + 1 or 4k + 3,4n + lor 4n — 1.
Proof :
Let a be an odd integer . We want to write in the form of 4n+1 or 4n-1
We prove it by division algorithm method. As a is an odd integer. Let d = 4 then d unique integer “n”

(Y%

and “r”’ s.t

a=4n+r 0<r<d.asd=4sor=0,1,2,3
ifr=0, then,

a=4n.............. (D)

ifr=1,2,3 ,then,

a=4n+1........ 2)

a=4n+2......... 3)

a=4n+3......... 4

where a=4n , a=4n + 2, both are even numbers .
but we given that a is odd so wetakea=4n+1,a=4n+3 ,ie,4n-1
Hence , Every odd integer can be written in the form 4n + 1 or 4n - 3.

G.C.D ( Greatest Common Divisor )or (H.C.F)

Definition:
A +ve integer d is called G.C.D of ‘a’ and ‘b’ if the following are holds
e d>0
e dlaanddb
e if some other integer c exists s.t claand cjb, thenc|dorc <d
gcd of a, b is denoted such as gcd(a, b)=d or simply we can write (a, b)=d

Example: Find gcd(24 , 16) find prime factors of 24 and 16

24=2)(2)(2) 3)
16=(2)(2)(2) (2)

gcd (24, 16) = (2) (2) 2)
ged (24,16) =8

Question : if ¢ is a common divisor of a, b then c|(a, b) .also prove that d is unique.

Proof :

Let (a, b)=d, then there exists some integers X, y s.t axtby=d............. (1)

Since cla and c|b

We know If a]b and ajc then a|bx+cy for every integer x or y

So clax+by— c¢|d from (1)

Now we will prove that gcd of a, b is unique. For this suppose d;, d, be two gcd’s of a, b

Then d,< d, as d, is common divisor and d, is a gcd. Similarly d,< d, as d, is common divisor and d,
is a ged. So that d;=d,.

Theorem: If d = gcd(a, b) then ‘d’ can be expressed as a linear combination of ‘a’ and ‘b’
i.e d = ax + by: where x, y are some integers and a, b not both of which are zero.
Proof :
Let ‘S’ be set defined as S = {au+bv [au+bv >0 ,u,v € Z}
1st we will prove that ‘S’ is non-empty set.
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Let b=0 then

la] = au+b(0) choosing u =1

la]=a(l) €S

Ifu=-1then ‘a’ is (-a)

— Ja|]=(-a) (-1) €S So ‘S’ is non-empty.

{By using well order principle WELL ORDERING PRINCIPLE that Every non — empty set S of Non —
negative integer contains a least element that is there is some integer ain Ss.ta<b, Vb € S}

So S has least element say ‘d’.

Then for some integer x,y we have

we have to prove that ged (a,b) =d.
by using division algorithm . 3 unique integers q & r s.t

a=qdtr............. (2) where 0<r<d.

a=q (axtby) +r from (1)

a=aqgx + gqby +r

a-agx-gby =r

a(l-gx) + b(-qy)=r...... 3) +1,q9,x,y € Z ,(1-gx) , (-qy) are also integers.

Let 1-gx=t,-qy=m putin (3)

Then attbm =r

—at+bmeS —>reS.

If r is the +ve integer r # 0 .Then 0 <r <d. — r € S this shows r is the least element of S. But we
consider ‘d’ is also least element so we take r = 0 then eq (2) becomes

a=qd+0,a=qd — dla

similarly we can show that d|b.

now we will prove ‘d’ is ged of a and b for this let ‘c’ be another common divisor of a,b
—cla,clb

we know that if ab and a|c then a| bx+cy for every integers x, y.

so claxtby;x,y €Z

cld from eq (1)

— e[ =|d|

Hence ‘d’ is the ged of a,b So ged (a,b) = ax+by.

Assignment : Find gcd also write it as linear combination

(1) gecd (49,105)
105 = 2%x49+7 — 105-2%x49 =17
49 =7x7 +0 — 49 -7x7=0 gcd (49,105)=7
7 =105 -2%x49 =1x105 + (-2) x49
Where x =1,y =-2 and a=49, b=105

(2) Find gcd and write it as linear combination form (321 , -86)
Take a=321, b=86 we ignore minus sign when find gcd
321=3%86 + 63 — 321 -3%x86 =063

86 =1%x63+23 — 86 - 1x63 =23
63 =2%23+17 — 63-2%x23=17
23=1x17+ 6 — 23 -1x17=6
17=2%x6 + 5— 17-2x6=5
6=1x5 + 1— 6-1x5=1
5=5%x1 + 0— 5-5x1=0
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1 =6-1X5

1 =6+(-1) X5

1 =6+(-1)(17-2X6)

1 =1X6+(-1) X17+2%6
=-1X17+3%6

1 =-1x17+3x{23-1x17}

1 =-1x17+3%23-3x17

1 =3%23-4x17

1 =3%23-4x{63-2%23}

1 =3%23-4X63+8x%23

1 =-4%x63+11x23

1 =-4x63+11x{86-1x63}

1 =-4%x63+11x86-11x63

1 =11x86-15%63

1 =11x86-15x{321-3x86}

1 =11x86-15%x321+45x86

1 =-15%321+56x86 x=-15,y=156

(3) Find gcd (420, 531)

531 =1x420+111 - 531-1x420=111
420=3%111+ 87 — 420-3x111 =87
111 =1x87 + 24 — 111-1x87 =24
87=3%X24 + 15— 87-3x24 =15

24=1x15 + 9— 24-1x5=9
15=1x9 + 6— 15-1x9=6
9=1x6 + 3— 9-1x6=3
6=2%3+0 — 6-2X3=0 so
gcd (420,531)=3 Now we write as a linear combination
3=9-1x6
3=9+(-1) x6

3 =9+(-1) x{15-1x9}

3=9-1 xX15+1x9

3=-1%x15+2%9

3=-1X15+2%{24-1x15}

3 =-1%x15+2%24-2%x15

3 =2x%x24-3x15

3 =2x%24-3%{87-3%x24}

3 =2x%x24-3x87+9x24

3 =-3x87+11x24
=-3x87+11x{111-1x87}

3 =3x87+11x111-11x87

3=11x111-14x87

3=11x111-14x{420-3x111}

3=11x111-14x420+42x111

3 =-14x420+53x%111

3 =-14x420+53%x{531-1x420}

3 =-14x420+53%531-53%420

3 =53%x531+(-67)x420 —x=-67,y=153
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Theorem: If gcd (a,b) = d then prove that: ( %’ g) =1

Proof :

Since ged (a,b) =d — d|a, d|b So d for some integer k; , k, repectivly s.t
a=kd b=k,d
a b

- =k1 ........ (1) E =k2 ........ (2)

let ‘c’ be the common divisor of ‘k;” and ‘k;’ i.e c|k; and c|k, then d some integer r,s s.t
k; = cr and k, = cs using the values of k; and k; in eq (1) and (2)

% =cr— a = d(cr) cr is integer
S =cs— b =d(cs) cs is integer
—dclaand dc b this shows that dc is common divisor of a,b , but ged (a,b) =d

so dc|d which is only possible if ¢ ==+1 but ‘c’ and ‘d’ both +ve. So c=1
— (k;,k;) =1 From (1) and (2) Hence prove (%, Z) =1.

Theorem: Let ‘a’ and ‘b’ integers , not both zero then ‘a’ and ‘b’ relatively prime if and
only if there exist integers ‘x’ and ‘y’ s.t 1 = ax+by.
Proof :
Since‘a’ and ‘b’ are relatively prime so gcd (a,b) = 1Then by using the result,
A for some integer ‘x” and ‘y’ s.t 1 = ax+tby ** gcd(a, b)=d=ax+by for some integers
Conversely ,
Let 1 =ax+by ......... (D
We have to prove that gcd (a,b) = 1.For this we suppose ged (a,b) = d.We have to prove thatd =1
As gcd (a,b) =d — dla and d|b
Then djax+by V x,y € Z
d|1 from (1) Which is only possible if d =1 So gcd (a,b) = 1.

Question : if alc and b|c with gcd (a,b) = 1 then ab|c.

Proof :
Since ajc and b|c then d some integer t, r s.t
c=ta......... (1) and c=sb......... 2)
Since ged (a,b) =1
axtby=1.......... B)VxyeZzZ X ing eq (3) by ‘¢’
¢ =acx + bey

c =a(sb)x + b(ta)y from (1) and (2)
¢ = absx + abty

c=ab(sx + ty)........ (4) x,y,t,s are integers. so sx + ty is also integers,
letsx +ty=veEZ put in (4) c=ab.v
— ablc

Euclid’s Lemma: If albc with gcd (a,b) = 1 then alc.
Proof:

Since albc so d integer 'k’ st  bc=ka....... (1
since gcd (a,b) = 1 so, there exist integers ‘x’ and ‘y’ s.t
axtby=1........... 2) X ing eq (2) by ‘¢’
acx tbcy =c¢
acx +aky=c froneq (1)
c=a(cxtky) sinceck,x,yEZso,cx+tky=teZ
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c=at — alc

Question : If ged(a,b)=1 then gcd (a-b, a+b)=1 or 2
Proof:
Let gcd(a-b, atb)=d. We have to prove d=1 or 2
By the definition of gcd dja-b and d|at+b
if a|b, alc then aja+b or alb-c
dla-b + at+b & dja-b-a-b
d2a & d-2b ord|2b
~ ged(a,b)=1 ax+by=I....... (1) for some integers x,y  Xing eq (1) by 2
2ax+2by=2...... 2)
As d|2a & d|2b so there exist some integers X, y such that
d2ax+2by from (2) d|2 so which is true for d=1, or 2

Question : Let a,b and c be integers, then ( ca, chb)=c(a, b), for any positive integers c.
Solution:
Let (a,b)=d, then 3 some integers X,y s.t
ax+by=d....... ) multiplying it by ¢
acx+bcy= dc — (ac,bc)=c(a,b)

Theorem : Let a,b an c¢ be integers if (a,b)=1, (a,c)=1, then (a,bc)=1

Solution:
If (a,b)=1, 3 some integers X, y s.t ax+tby=1
If (a,c)=1, 3 some integers u, v s.t autcv=1
by=1-ax.......... (1) cv=l-av......... (2) multiplying (1) and (2)

by cv = (1-ax)(1-au)
be(yv)=1-au-ax-+a’xu

=l-a(ut+x-axu) asy,v,u,X,a€Z,s0,yv=teZ,utx—axu=s€Z
bet=1-as = astbct=1— (a,bc)=1

Least Common Multiples(L.C.M)

Let a,b be two integers not both are zero. Then an integer m is called Least Common Multiple of a,b if

e ajm, bm

o [fthere exist an integer ¢ such that alc, b|c then m < ¢ or m|c . L.C.M of a,b is denoted by

<a, b>=m

Example:Take a= 8, b=12 , m=24,48,72,96 then <8, 12>=24
Another way to find the greatest common divisor and least common factor of two positive integers is to
use the prime factorizations of these integrs,Suppose that the prime factorizations of the positive integrs
aand b are

by _b b . .
a=P".P?% . B, b=p/ D, .......D,” Where each exponent is a non negative

integers.Then ged(a,b) is given by

min (a, by,)

gcd(a,b)=P1min (@1.51), szin @b2) ... P,
their Least Common Multiples is
lem(a,b)= leax (a1,b1,)_ szax (az b)) o anax (@n bn)
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Question : Find the ged and lem of
a=23%11"37°, b=223.527.11.29.37*

Theorem: Let take positive integers ‘a’ and ‘b’ then ged (a,b).lem (a,b)= ab.
Proof:

Let gcd(a,b)=d, lcm(a,b)=m. Now we have to prove d.m=a.b
Since gcd(a,b)=d then H x,y € Z such that (linear combination) ax+by=d ...... (1)
Also dla & d|b then d 1, s Such that
a=rd , b=sd

ab .
fm= - using Then m=as, m=br wherer, s € Z

ajm and bjm now we have to prove that m is the least common multiple.
For this supose ‘¢’ is the multiple of a and b. Then alc, b|c there exist integers ki, k, we have

m  ab/d cme=y

c _ d_c_ c(ax+by) _ cax+chy . _
e . d = ax + by from (1)
b

%=%x+ :—by= (%)x+(§)y where k; = i and k, = E from (2)
%— k2x+k1y A X,y,kl,kz EZ Xk2+ k2y=t
—=t c=mt - mlc ->m<c

ab
m=-= - md = ab

Question : Show that ax+by=m iff ged(a,b) m.
Proof:

Let gcd(a,b)=d so dja & d|b. Then 3 kk;, such that
a=k1d ,b=k2d ; klkZEZ

Put in (1) kdxt+k,dy=m — d(k;xt+k,y)=m

m=kd kix+tk,y=k € Z

dm  but gcd(a, b)=d SO gcd(a, b) jm
conversily

gcd(a, b) jm. Now we have to prove that ax+by=m........... (N
Let gcd(a, b)=d, then djm

ax,tby,=d......... (2) wherex,,y,€EZ

Also djm then there exist integer ts.t  m=dt
atx,tbty,=dt  multi eq (2) by t

m= a(tx,)+b(ty,) Take x,t=x, and y,t=y

so m=ax+tby  proved.
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Prime Numbers

e The numbers which are divisible by 1 and itself only is called prime numbers.
e The numbers which are greater than 1 and divisible by 1 and itself is called prime.
The set of prime is denoted by ‘P’. Example : 2,3,5,7,11 .......

Composite numbers:
The number which are not prime and greater than “1°.
OR The number which can be divide by other number .
Example : 4,6,8,9,10,12,15, .................
Remarks :

» 2isonly even prime .

» 1 is neither even nor odd prime.

Theorem: if ‘p’ is prime and p|ab where a,b € Z then either pla or p|b.
Proof:
Since ‘p’ is prime and p|ab. We have to prove that pla or p|b.
If pla then we have done, and nothing to prove
If ‘p’ is not divides ‘a’ and also ‘p’ is prime so gcd (a,p) =1
By Euclid’s lemma If gcd (a,b) = 1 and a|bc then ajc.
Where gcd (a,p) = 1 and p|ab then p|b — plb.
Similarly we can show pla.

Corollary : If ‘p’ is prime and pla;.a;...... a, , then play for some ay, Where 1 <k <n.
Proof :
we prove it by M.I,

Step 1:
If n=1 then pla;. So the result is true forn =1
If n = 2 then pla,a, — pla, or pla, by above result

Step 2:
Now we suppose that the result is true for n =k
— plaj.as...... a; then p|a; for some 1 (1 <i<k)
Now we will prove for n = k+1
Take pla;.a;......... .2 — pl (a1.2s.....a) (k1)
By using the statement, “ if ‘p’ is prime and p|ab then p|a or p|b
So pla;.a;...... ay OF Play+
Ifplaj.as....... a; then by hypothesis pla; for some i .
and If p|ai+; then obviously result is true for n=k+1.
Hence the result is true for all n by mathematical induction .

Corollary : If p ,q1,42q35+cee .o sqn are all primes and p|q;.q».q;3...... 4. Then p = q; for some k,
where 1 <k <n.
Proof:
Let p,q1,92,93 «---- - gn are prime numbers and
Ifplqi.q2.93 ....... d. we have to show that p = q, for some k (1 <k <n)

we know a result,
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If p is prime and pla;.az.a; ....... a,, then pla, for some a, where 1 <k <n.
Where p is prime so p > 1.

Also p|q1.92.G3 -.-.... dn then plqy for some k (1 <k <n),

Since qy is prime which is divisible by 1 or itself .

Where p|qx and p # 1 so it force to take p = q.

Question : If ‘p’ is a prime s.t pla’ + b” and pla then p|b .

Proof :

Since ‘p’ is prime,
Where if pla then pla” ........ (2) also pla® + b
Let a,b,c are integers If ab , a|c then a|b-c or albtc

where pla® + b*, pla’ then p|a’+b*-a’
— plb* — plb .

Theorem: Every integer n>1 has prime divisors .
Proof : Let n>1 be the integer.

Case 1: If n is prime then ‘n’ divide itself so it has a prime divisor.

Case 2: If ‘n’ is not prime then ‘n’ will be composite . then d integer ‘d’ s.t djn. where 1 <d <n.
Among all such integers ‘d” we suppose ‘p;’ is the smallest divisor of ‘n’ {By well ordering principle}

If p; is prime then we have a prime divisor. And if ‘p;’ is not a prime then p; is composite, then there
exist integer ‘q’ s.t q|p; where 1 < q < p; — q|p; and p;n then gn. Which is contradiction to the choice
of the least element p;.

Therefore we can write n such as n = p;n; where p; is prime and 1 <n; <n.

Fundamental theorem of arithematic
Statement : Every +ve integer n > 1 is either a prime or a product of prime and this
representation is unique , apart from the order in which the factors occur.

Proof : Let n > 1 be the integer.

Case 1: If n is prime then ‘n’ divide itself so it has a prime divisor.

Case 2: If ‘n’ is not prime then ‘n’ will be composite. Then d integer ‘d’ s.t djn. where 1 <d <n.
among all such integers ‘d” we suppose ‘p,’ is the smallest divisor of ‘n’ {By well ordering principle}

If p; is prime then we have a prime divisor. And if ‘p;’ is not a prime then p; is composite, then there
exist integer ‘q’ s.t q|p; where 1 <q <p; — q|p; and p;|n then gjn.

Which is contradiction to the choice of the least element p;.

Therefore we can write n such as n = p;n; where p; is prime and 1 <n; <n.

Next if n; is prime , then we have our prime representation , in the contrary case , the argument is
repeated to produce a second prime p, s.t n; = pon,, where 1 <n, <nj i.e n = pipyn, if n, is prime , then
we have done otherwise n, is composite, write as n, = psn;, with p; is prime and n = p;p, psn;, | <n; <m,
and we obtain a decreasing sequence s.t n>n; > n,........ >1

Can’t continue indefinitely , so that after a finite number of steps ny_; is a prime , call it py this leads to
the prime factorization n = pr.pa.pseeeeeereennnn.. Px-

Uniqueness :
Let us suppose that the integer ‘n’ can be represented as a product of primes in two ways say,

n="Pr.P2P3eeeveee Droveereeennnn (D

n=q.q2q3...---.. o IO (2) withr <s compairing (1) and (2)

P1-P2-P3----- - Pr=q1-Q2-qz-ve-eee Js where p;’s and g;’s are all primes ,
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written in increasing magnitude so that p; <pr<ps ..cceevvennnn.. <SPPSR S3 e Js

because pi|q1.q2-qz.- .- .- qs then p; = qx for some k as qx = q;.Butthenp; >q; ............ 3)
similarly if qi| p;.p2-ps------- P then q; = py, for some m as p,>p1SO QI = Picvvvevnnnnn. @)
combine (3) and (4) p1 = q

P1-P2-P3---- - Pr=qQ1.qQ2-q3- .- ... Js we may cancel this common factor and obtain ,
P2P3eeeeennnn Pr=Q23ceenennnn Js now repeat the procedure to get p, = q, , then we have
P3eeennn Pr=q3.e-... qs continuing in this way , we have if r <s,then 1 =qu . Q2 cvevvvnnnnn Js
Which is wrong because each ;> 1 hencer=sand p;=q1,P2=q2» covrvereene. , §r = Dr

Hence our proof is complete.

Corollary : Show that every odd prime number is either of the form 4n+1 or 4n-1 (4n+3)

Proof :
Suppose ‘m’ be an integer. By using division algorithm , there exist unique integers
‘n’and ‘r’ stm=nd+r ....... (D) where 0 <r<d,taked=4,s0r=0, 1, 2, 3 putin (1),
m=4n........... ) ifr=0
ifr=1,2,3 ,then,
m=4n+1......... 2)
m=4n+2 ......... 3)
m=4n+3 ......... 4

now 4n can’t be prime for any integer n.
4n+2 = 2(2n+1) is prime only for n = 0, which is even prime ,
hence every odd prime is of the form 4n+1 or 4n+3.

Theorem: Prove that there are infinte many prime numbers.
Proof :
Suppose on contrary that prime numbers are finite. i.e { pi.p2.ps....... pn } be the complete list of
prime numbers .
Let N=p..p2.ps-...... pat 1o (D
Case 1: If N is prime then we obtain a prime number greater then all those prime numbers which are
in list , which is contradiction .
Case 2 : If N is not a prime then N will be composite. Write ‘N’ in prime factorization form.

N=pi1.p2-p3------. Po- Let pi | p1-p2-p3---- - - pn for some i. Let pjN ............ (2)

Where p;> 1 — prime number.

— piIN- p1.p2.p3-...... Pu If a]b and a|c then alb - ¢

Pil P1-P2-P3----- - pnt 1 —p1.papse...... Pn —-pi|l  Which is only possible when p; =1,

Which is contradiction because to the choice that p; > 1 . so our supposition wrong .
Hence , prime numbers are infinite .
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Diophantine Equation

Definition:
The simplest type of diophantine equation that we shall consider is the linear Diophantine
equation in two unknown is ax + by = ¢ , where a,b,c are constants .

Theorem: The linear Diophantine equation ax+by = ¢ admits a solution iff d|c , where
d =gcd (a,b).
Proof :
Since gecd (a,b) =d , i.e dja, db. So there exist integers ‘r” and ‘s’ s.t a=dr,b=ds
if a solution of ax+by = c exist. So that ax,+by, = ¢ for suitable ‘x,” and ‘y,’.Then ¢ = ax,+by,
¢ = drx,+dsy, = d(rx,tsy,) , since 1, X,, S, Yo € Z
then ¢ = d(rx,+sy,), XotSYo=q € Z
c=dq,dc
Conversely
Suppose that d|c , then d integer ‘t’ s.t ¢ = dt using ( given integers ‘a’ and ‘b’ no both of which are
zero, then there exist integer ‘x” and ‘y’ s.t d = ax+by. So we can find integer x, and y, s.t ax,+by,=d
multiply this eq by ‘t’ , we get atx, + bty, =t
— a(tx,) + bitys) = ¢,
Hence , the Diophantine eq, ax + by = ¢ has a solution x = tx, , y = ty, .

Theorem: The linear Diophantine eq. ax+by = c¢ has a solution iff d|c, Where gcd (a,b) = d if
%o’ s Vo’ is any particular solution of this equation , Then all other solutions are given by
X=Xt ), Y =YL
Proof :

Write whole solution of the previous theorem same as it is: [ The linear Diophantine equation
ax+tby = ¢ admits a solution iff d|c , where d = gcd (a,b)]
Then next:
Now, It is given that X, , y, is the solution of given equation . suppose xi,y; is any other solution of this
equation , then since ax, + by, =c = ax, + by,
by, — by, = ax; — ax,
b(yo—y)=aXxi—Xo)

A(X—=X0)=b (Yo V1) ceevevvennnnn. (1)
there exist relatively prime integers ‘r’ and ‘s’ s.t
a=dr,b=ds, putin (1) dla, db

we get dr ( x;— X, ) = ds (Yo — Y1)

where ‘d’ is common factor , we get

I(X) — Xo) = 8(Yo — 1)

— 1|s(y, — y1) , with gcd (r,s) = 1 By using Euclid lemma ,

1Yo — Vi or in other words y, — y; = rt for some integers ‘t’ ,we now get
I‘(X] - Xo) = S(Yo - yl)

r(X;—X,) =srt =X — X, = st

this leads to the formula X| =X, T st,y| =y, -1t

b
X = Xo + (D, Y1 = Yot
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Example: Consider the linear Diophantine eq. 172x + 20y = 1000
gcd ( 172,20) = 4 So the solution of given Diophantine eq will be exist.

172 =8x20+12 — 172 - 8%x20 =12

20=1x12+ 8 — 20-1x12=18

12=1%x8 + 4 — 12-1x8 =4

8§=2%x4 + 0 — 8-2x4=0 ged (172,20)=4
4=12-1x%8

4=12-1% {20-1x (12)}
4=12-1X20+1x12

4=-1x2042%12

4=-1X2042x {172-8%20}
4=-1X20+2x172-16X20
4=0X172+(-17) x 20 x=2,y=-17

Which of the following Diophantine eqs can’t be solved.

L 6x +51y=20
II. 33x+14y = 115
II1. 14x+35y = 93

Solution: 6x+51y =22

51=8x6+3

6 =2x3+0

ged (6,51)=3

3 can’t divided by 22 so its solution does not exist.
other questions do yourself with same method.

Question: (a) 172x + 20y = 1000 , (b) 56x + 72y = 40
Solution: (a)
172=8%x20+12 — 172 - 8x20 =12

20=1x12+ 8— 20-1x12= 8

12=1x8 + 4— 12-1x8= 4

8=2x4 + 0— 8-2x4= 0 ged (172 ,20) =4, a=172, b=20, d=4
Also 4[1000 so its solution is possible
4=12 - 1x8
4=12 — 1x{20 - 12}
4=12-20+12
4=-20+2x12
4=2x12-20
4=2x {172 — 8(20)}-20
4=2x172 - 16%20 -20
4=2x172 +(—17) X 20 x=2,y=-17,a=172,b=20
1000 =250 x4 since gecd (12,16) =4

=250x{2x172 — 17x20}
=500x172 —4250%20

So that x, =500 , y, = -4250
Provide one solution to the Diophantine eq’s. So all the other possible solutions of Diophantine equation
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can be calculate by this formula X=X, + (g) t,y=Yo— (%) t

X=500 + () t,y=-4250 - ()t

x =500+ 5t, y =-4250 — 43t . Now we must have to choose ‘t’ is inequality
5t+500>0, -4250-43t>0

5t>-500, -4250>43t

t>-100......... (1), -98.83>t— t<-98.83......... )

Combine (1) and (2)

-100 <t<-98.83 —» t=-99

x =500+ 5t,y=-4250 — 43t

x =500+ 5(-99) , y = -4250 — 43(-99)

x =500—-495,y=-4250 + 4257 x=5,y=7

(b) 56x + 72y = 40 ( do yourself)

Question: Determine all solution in integers of the following Diophantine eq’s:
A. 24x +138y=18
B. 221x + 35y=11

Solution: 24x + 138y = 18
138 =5%24 +18 — 138 —5%24 =18
24=1x18+ 6 — 24-1x18= 6
18=3%x6 + 0— 18-3x6= 0 ged (24, 138)=6
6[18
24— 1x18=6
24— 1x [138-5(24)] =6
24 - 138 +5%24 =06
6x24 — 1x138=6
x=6,y=-1
6|18 so its solution is possible
18 =3%6
=3x{6x24 — 1x138}
=18%x24 —3x138 a=24,b=138,x,=18,y,=-3
Provide one solution to the Diophantine eq’s. So all the other possible solutions of Diophantine
equation can be calculate by this formula X=X, + (g) t,y=Yo— (%) t

x=18+(E)t, y=3-()t

x=18+23t,y=-3-4t Now we must to choose ‘t” inequality .
18+23t>0,-3-4t>0

23t>-18, -3 >4t

t>-0.7826 .......... (1),-0.75>t—> t<-075............ ()
Combine (1) and (2)

-0.7826 <t <-0.75 — so its other solution is not possible.

B. 221x + 35y = 11 ( do yourself)
C.23x - 49y=179
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Question : Find all solutions in integers of 15x+7y=210....... (1) also determine the number
of solutions in positive integers.
Solution :
If we put x=0, then, we get y=30 so x=0, y=30 is one solution of eq (1). Also (15,7)=1, and
1|210 so all the other solutions can be determine by
X= X, +(§ )t, y=yo—(§ )t Where x,=0, y, =30 then x=0+7t, y=30-15t
x=Tt........ (2)  y=30-15t...... (3) , where t ranges over the integers
To find the number of solutions in positive integers. Take x > 0, y > 0 then (2) and (3) becomes
7t>0 = t>0............. @)
30-15t>0- 30>15t—>  2>t...... 5)
Combine (4) and (5) 0<t<2
So t=1 - x=7,y=151is only one solution in positive integers.
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Question : Find the solution of 91x+ 221y=1053, are there solutions in positive integrs.
Solution :
As gcd(91,221)=13, So all divides by 13, the given equation is equivalent to 7x+17y=81....... )
By inspection, one solution is x=14, y= -1, also (7,17)=1, and 1| 81, so all the other solutions can be
determine by x=x,+(3)t,  y=y,- (4 )t Where x,=14, y, = -1 then
x=14+17t, y= -1-7t, Where t ranges over the integers.
To find the numbers of solution in positive integers. Take x >0,y >0
14+17t> 0> 17t>-14 > t>-14/17 - t>-0.82........ 2)
Now -1-7t>0—> -1>7t—> t<-1/7 ->t<-0.14........ 3)
-0.82<t<-0.14 combine (2) and (3)
So now integral value exists for t. Hence there are no solutions in positive integers.

Question:Find all solutions in positive integers of 11x+7y=200..... (1)
Solution:
As a=11,b=7 First we will calculate gcd of (11, 7)
1=l X 7+ 4 — 11-1x 7=4
7=1 X443 > 7-1x 4 =3
4=1 x3+1 — 4-1 % 3=1
3=1 x3+0

1=4-1 X 3=4-1 x [7-1 x 4]

1=4-1 X7+1x4 =2X%4 -1X7 =2% [ 11-1X7] -1x7

1=2x11-2X7-1x7 — 1=2 x11-3X7 x-ing by 200

200=400 x11 —600x7 where one solution is x,=400, y,=600
also (11,7)=1, and 1]200, so all the other solutions are given by

X= X, +(§ b Y=Ye (g )t use the values of x,, and y,

x=400+7t, y= - 600 -11t, where t ranges over the integers.

To find the number of solutions in positive integers x >0, y > 0, gives
-400/7 <t<-600/11— -57.14 < -54.54

And hence positive solutions occurs only for t=-55,-56,-57, therefore the only positive solutions are
(x=15,y=5), ( x=8, y=16) (x=1, y=27)

Question : Do there exist infinitly many positive integer solutions of 10x-7y= -17. Explain.
Solution :

Yes, by inspection 10(-1) -7.1= -17, so x= -1, y =1 is one solution of the equation. Hence all
solutions are given by x=-1-7t , y =1-10t, if t<-1/7,then, x>0 if t< 1/10, theny > 0, and therefore
any integer t <-1 yes a positive solutions.

Question : Find the smallest positive integer b, s.t the linear diophantine equation
1111x+704y=15000+b has a solution.
Solution :

Since (1111,704)=11, so the solutions exist iff 11 divides 15000+b, the smallest positive value
of b is thus 4.
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Remainder Theorem

axbxc

Remainder of [ i.e axbxc when divided by ‘n’] is equal to the remainder of expression.

n
a XbyXc, . .. .
——— [ i.e a;xb,xc, when divided by ‘n’]

Where ‘a,’ is remainder when ‘a’ is divided by ‘n’.
Where ‘b, is remainder when ‘b’ is divided by ‘n’.
Where ‘c,’ is remainder when ‘¢’ is divided by ‘n’.

Example :Find the remainder of 15x17x19 , when divided by 7.

Solution:
15x17x19 . 1x3x5 _ 15 1
allis will be equal to ><7>< =7=2;=I

Remainder of

So we obtain remainder ‘1°.

Example: Find the remainder of 19x20x21, when divided by 9.

Solution:
19%20%21 1x2x3 _ 6

9

Remainder of will be equal to

So we obtain remainder ‘6°.

Polynomial Theorem

This is very powerfull theorem to find the remainder according to polynomial theorem,

(x+a)"=x"+c¢"x""at ¢,"x"Za*+........ +ex%a (1)

Dividing by ‘x’

(x+a)" _ x"+c"x" latcx" " 2a 4.+ x0a0 5
— = e )

Remainder of expression (2) will be equal to remainder of ‘a;’ because rest of the term contains ‘x’

are completely divides by ‘x’.
. . 999
Example : Find the remainder '

Solution:
9% (8+1)%° . . )
E— According to polynomial theorem will be equal to
®» _1 : -
s 85 Remainder = 1

89
Example : Find the remainder 87 .

Solution:

889  (7+1)® . . .

- = According to polynomial theorem will be equal to
1% 1 .

% =c— Remainder = 1

. . 9100

Example : Find the remainder of —

Solution:

9100 (742)100 2100 2992 23332 8332 (+DB2 B2 _2
7 7 7 7 7 7 7 T 7 "7

Remainder =2
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23
Example : Find the remainder of 7?

Solution:
723 727 (7HW7 49117 @48+1)7 _ (6x8+1)7 ()7 7
8 8 8 8 8 8 ~ 8 8

— Remainder =7

Congruences

Congruences:
Let n be a positive integer. Two integers a and b are congruent modulo n. If nla-b. If this is so
then we can write a =b (mod n). Such a statement is called a congruence
For example, 19 and 12 are congruent modulo 7; that is, 19 = 12 (mod 7), because 7|19-12
Also, —8 and 10 are congruent modulo 6; that is, =8 = 10 (mod 6).

Example: 8 =2( mod 3) because 3| 8 — 2

Activity: Checking congruences. Which of the following congruences are true?

(a) 11 =26 (mod 5) (b) 9 =9 (mod 5)
(c) 28 = 0 (mod 7) (d) —4 =—18 (mod 7)
(e) —8 =5 (mod 13) (f) 38 = 0 (mod 13)

Writing a congruence as an equation

The congruence a = b (mod n) is equivalent to the statement that there is an integer k such that
a=b+nk.

Properties of congruences:
e a=a(modn)
e ifa=b (modn)then b =a (mod n)
e ifa=b (modn)andb=c (modn), then a=c (mod n)

uestion : Using congruence find the remainder of “ 5% “ is divided by “24”.
g g y

Solution:

5' =5 mod(24)

5* = 5" mod(24)

52 =1 mod(24)

57 =1 mod(24)

(5%** = (1)* mod(24)
5% = (1) mod(24)

“1 “1is remainder

Question : Using congruence find the remainder of “ 3%« divided by “8”.

Solution:

3 =3 mod(8)

3% =9 mod(8)
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3% =1 mod(8)

(3" =(1)"" mod(8)

3% = (1) mod(8)

3.3 = (3)(1) mod(8)

3% =3 mod(8)

So “’3’ is the remainder.

Question : Find the remainder when “ 1 I “is divided by “13”.

Solution:

11 =11 mod(13)

11 =-2 mod(13)

117 = (-2)*> mod(13)

11> =4 mod(13)

11* = 16 mod(13)
11*=3 mod(13)

11* =9 mod(13)

11'° = (-4)> mod(13)
11'= 16 mod(13)
11'°=3 mod(13)

11 =9 mod(13)

11 = -4 mod(13)

117 = (11)?x(11)*x(11)
11% = (-4)x(4) x (-2) mod(13)
11% = 6 mod(13)

So “ 6 “ is remainder .

Question : Find the remainder when “ 3°%”” is divided by “23”.

Solution:

3' =3 mod(23)

3% =9 mod(23)

3*=81 mod(23) 3*=12 mod(23)
3* =144 mod(23)

3* = 6 mod(23)

3'°=36 mod(23)

3'°=13 mod(23)

3'° =169 mod(23)

3% =8 mod(23)

3% = 64 mod(23)

3% =18 mod(23)

3% = -5 mod(23)

3% =25 mod(23)

3% =2 mod(23)

3%%=4 mod(23)

3287 _ 3256>< 316>< 38>< 34>< 32>< 31
= 4x13x6x12x9%3 mod(23)
= 6x6x12x9x3 mod(23)

= 13%x12x9%3 mod(23)

26
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= 18%9%3 mod(23)

= 1x3 mod(23)

=3 mod(23)

Hence “3” is the remainder.

Question : Find the remainder of “P \ohen divided by 341.

Solution:

341 =11x31

340 = 68x5

2° =32 mod(11)

2°=10 mod(11)
2°=-1mod(11)

(2°)% = (-1)* mod(11)

2 =1mod(11) .......... (1)
2° =32 mod(31)
2°=1mod(31)

(2= (1)* mod(31)
2**=1mod(31) .......... )
2= (1)(1) mod(11x31)
2 =1 mod(341)

Hence “1” is remainder.

Question : Find the remainder,when 17" is divided by 7.

Solution :
17= 3(mod7), so 17" =3"(mod7) aslo
3’=9=2 (mod7)
(3%)*=2* (mod7)
3%= 2 (mod?7)

(3*)’= 4 mod7)
3.3'=3.4 (mod7)

3'7=12 (mod7)

3=5 (mod7)
17'7=5 (mod7) so 5 is the remainder.

Question : Find the remainder,when 4% is divided by 23.

Solution:
4’= 64 = -5 (mod23)
(4°)’= (-5)* (mod23)
4°=2 (mod23)
(4°°= (2)° (mod23)
4¥=9 (mod23), thus the remainder is 9.

Question : Show that 2¥-1 is a multiple of 223.
Solution :
Since 2°= 33 (mod223)
(2*)’= (33)* (mod223)
2'%= .26 (mod223) ;  thus 2°°= (-26)* (mod223)
2%= 17 (mod223)

27
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27=2%22°=17.32 =] (mod223)

Question : Find the least positive residue of

(a) 3°" modulo 13, (b) 12! modulo 13,

(c) 5'% modulo 17, (d) 5°% modulo 17.

Solution :

(a): Since3’=1 (mod13), we have

(3%)!%%= (1)"%° (mod13) , thus

3°=3%8 32 = 1 9=9 (mod13)

(b) : 121=(2.3.4)(5.6)(7.8)(9.10)(11.12)=(-2)(4)(4)(-1)(2)= 12 (mod13)

(¢): 5’=8 (modl7)

5'= 64 = (-4) mod17)
5%= 16 (mod17)
5%= -1 (mod17)
5'%= 1 (mod17)

(d): 5°=1 (mod17) from c part
(5*)’=1 (mod17)
5'%= 1 (mod17)
5496 (516)31 = (1)31 (mod17)
Hence 5°%=5%°5%=1.5"=13 (mod17)

Question : Show that 2*-1 is divisible by 97.
Solution:

2%= 62 = -35 (mod97)

2'%= (-35)*= 61= -36 (mod97)

2= (-36)*= 35 (mod97)

2#=22219=135(-36) =-1260 = -96 = 1 (mod97)
Therefore 97 divides 2*%-1.

Question : Show that 47 divides 5+1.
Solution:
5%= 14 (mod47)
5%= 8 (mod47)
5'%= 17 (mod47)
5%=5'5%=17.8 =-5 (mod47)
So 47 divides 5**+5.
5245 =5 (57+1) 475(5+1)  and (5, 47)=1
We conclude that 47 divides 57+1.
Residue class
Given any integer a, the collection of all integers congruent to a modulo n is known as the
residue class, or congruence class, of a modulo n.

Multiplicative inverses modulo n
A multiplicative inverse of a modulo n is an integer v such that av = 1 (mod n).

Existence of multiplicative inverses modulo n
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« If the integers a and n are coprime, then there is a multiplicative inverse of a modulo n.
* If a and n are not coprime, then there is not a multiplicative inverse of a modulo n.

Example: Finding multiplicative inverses modulo n

For each of the following values of a and n, determine whether a multiplicative inverse of a
modulo n exists and, if it does, find one.

(aa=5n=13(b)a=30,n=73

Solution:

(a) To determine whether there is a multiplicative inverse, check whether 5 and 13 are coprime.
They must be coprime, as they are both prime numbers.The integers 5 and 13 are coprime, so there is a
multiplicative inverse of 5 modulo 13. Since n < 13, try the values 1, 2, 3, . . . one by one until you find
the multiplicative inverse modulo 13. You needn’t necessarily check the integer 1,
as clearly 5 x 1# 1 (mod 13).

5x1=5(mod 13) 5x2=10 (mod 13)

5x3=15=2(mod 13) 5x4=20=7(mod 13)
5x5=25=12 (mod 13) 5x6=30=4 (mod 13)
5x7=35=9 (mod 13) 5x8=40=1 (mod 13)

Stop, as you have found an integer v such that 5v = 1 (mod 13). So 8 is a multiplicative inverse of 5
modulo 13. You may have noticed a short cut that saves some calculations. You saw that
5x5=12=-1(mod 13), so

(=5) x5=-12=1 (mod 13). Since —5 = 8 (mod 13), it follows that a multiplicative inverse of 5

modulo 13 is 8.

(b) To determine whether there is a multiplicative inverse, check whether 30 and 73 are coprime.
The numbers are quite large so use Euclid’s algorithm to find the highest common factor.
Euclid’s algorithm gives

73=2x30+13

30=2x13+4

13=3x4+1
4=4x1+0.

As ged(30, 73)=1, so there is a multiplicative inverse of 30 modulo 73.

Rearrange all but the last equation and then apply backwards substitution to find integers v and w with
30v + 73w = 1. The integer v will be a multiplicative inverse of 30 modulo 73 since 30v =1 — 73w.
Rearranging the equations gives

13=73-2x30
4=30—-2x13
1=13-3x%x4.

Backwards substitution gives
1=13-3x{30—-2x13}
=7x13-3x30
=7x{73-2x30} -3 x30
=7x73—-17%30.(Check: 7x 73 —17 x30=511-510=1.)
Write the equation 7 X 73 — 17 x 30 = 1 as a congruence modulo 73 to give the multiplicative inverse.
Since (—17) x 30 =1 —7 x 73, we obtain
(—=17) x 30 =1 (mod 73).
So —17 is a multiplicative inverse of 30 modulo 73.
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find a multiplicative inverse that is a least residue modulo 73.
Since —17 = 56 (mod 73),
56 is also a multiplicative inverse of 30 modulo 73.

Linear congruences:
A linear congruence is a congruence of the form ax =b (mod n),
where a and b are known, and x is unknown.

Solving the linear congruence ax =b (mod n)
Let d be the highest common factor of a and n.
e Ifd =1, then the linear congruence has solutions. The solutions are given by x = vb (mod n),
where v is any multiplicative inverse of a modulo n.
e If'b is not divisible by d, then the linear congruence has no solutions.
e Ifb is divisible by d, then the linear congruence has solutions and the solutions are given by the

: . . b
solutions of the equivalent linear congruence %x == (mod %).

Example: Solving a linear congruence when a and n are coprime and n <13
Solve the linear congruence 11x =7 (mod 8).

Solution:
Simplify the linear congruence by replacing 11 with the least residue of 11 modulo 8.
Since 11 =3 (mod 8), an equivalent linear congruence is 3x = 7 (mod 8).
Check that this linear congruence has solutions.
As 3 and 8 are coprime, this linear congruence has solutions.

Try the values 1, 2, 3, . . . one by one until you find a solution.
Trying the values 1, 2, 3, . . . one by one, we find that
3 x1=3(mod 8) 3 x2=6(mod 8)

3x3=9=1(mod8) 3x4=12=4(mod 8)
3x5=15=7(mod 8).

So the solutions are given by

x =5 (mod 8).

Activity: Solving linear congruences when a and n are coprime and n <13
Solve the following linear congruences.
(a) 2x =5 (mod 7) (b) 7x = 8 (mod 10) (c¢) 15x =—-13 (mod 11)

Example: Solving a linear congruence when a and n are coprime and n > 13
Solve the linear congruence 7x = 13 (mod 24).

Solution:
Check that the linear congruence has solutions. As 7 and 24 are coprime, the linear congruence

has solutions. Since 24 is a large integer, use a multiplicative inverse of 7 modulo 24 to
find the solutions. The solutions are given by
X = 13v (mod 24),
where v is a multiplicative inverse of 7 modulo 24.
Use Euclid’s algorithm and backwards substitution to find v.
Euclid’s algorithm gives
24=3x7+3

7=2x3+1.
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Backwards substitution gives
1=7-2x3
=7-2x(24-3x7)
=7x7-=2x24.5S07x7=1 (mod 24),
and hence 7 is a multiplicative inverse of 7 modulo 24. So the
solutions are given by
X =13 x7=91=19 (mod 24).
Remember to check your answer. That is, check that if
x =19 (mod 24) then 7x = 13 (mod 24). To do this, it helps to use
the congruence 19 =—5 (mod 24).
(Check: 7 x19=7 x (=5)=-35= 13 (mod 24).)

Showing that some linear congruences have no solutions
Show that the following linear congruences have no solutions.
(a) 4x =5 (mod 10) (b) —12x = 8 (mod 42)

(c) 48x =70 (mod 111)

Example: Solving a linear congruence when a and n are not coprime. Solve the linear congruence
12x =16 (mod 20).
Solution:
Check that the linear congruence has solutions.
The highest common factor of 12 and 20 is 4. Since 16 is divisible
by 4, the linear congruence has solutions.
Divide each of the integers 12, 16 and 20 in the linear congruence
12x = 16 (mod 20) by 4 to obtain an equivalent linear congruence.
and is equivalent to
3x =4 (mod 5).
Since the numbers involved are small, try the values 1, 2, 3, . ..
one by one until you find a solution.
Trying the values 1, 2, 3, . . . one by one, we find that
3x1=3(mod5)3x2=6=1(mod>5)
3x3=9=4(mod>5).
So the solutions are given by
x =3 (mod 5).
Theorem: The linear congruence ax = b (mod n) has a solution if and only if d|b, where
d=gcd(a,n). If d|b, then it has d mutually incongruent solutions modulo n.
Proof.
We already have observed that the given congruence is equivalent to the linear Diophantine equation
ax-ny=b. It is known that the latter equation can be solved if and only if d|b; moreover, if it is solvable
and Xx,, y, is one specific solution, then any other solution has the form

X =x + (S) t y =y + (%)t. for some choice of t.

Among the various integers satisfying the first of these formulas, consider those that occur when t takes

on the succesive values t=0,1,2, ....... ,d-1:
4 n 4 2n N (d—1n
Xo, Xo d,xo g Xo

We claim that these integers are incongruent modulo n, and all other such intgers x are congruent to
some one of them. If it happend that
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n n
X + Etl = x + Etz (modn)

Where 0 < t, <t, <d-1, then we would have

n n

Etl = Etz (mod n)
Now gcd(n/d,n)=n/d, and therefore the factor n/d could be canceled to arrive at the congruence

t; = t, (modd)

Which is to say that d|t,-t;. But this is impossible in view of the inequality 0 <t, —t; <d.
It remains to argue that any other solution x. + (n/d)t is congruent modulo n to one of the d integes
listed above. The Division Algorithm permits us to write t as t = qd + r, where 0 <r <d-1. Hence

+ot=x + = (qd+
Xo d = Xo d‘rgq T)
=xo+nq+gr

= X +g r (mod n)
With x. + (n/d)r being one of our d selected solutions. This ends the proof.
The argument that we gave in above theorem brings out a point worth station explicity: if x. is any
solution of ax = b( mod n), then the d = gcd(a, n) incongruent solutions are given by

+ 2 2(s +(d-1)(>
Xo Xo d,xo (d) T L { )(d)

Corollary: If ged(a,n)=1,then the linear congruence ax = b(mod n) has a unique solution modulo n.

Given relatively prime intgers a and n, the congruence ax=b(mod n) has a unique solution. This
solution is sometimes called the ( multiplicative) inverse of a modulo n.

Example: Consider the linear congruence 18x =30(mod 42).
Solution:

Because gcd(18, 42) = 6 and 6 surely divides 30, above theorem guarantees the existence of
exactly six solution, which are incongruent modulo 42. By inspection one solution is found to be x = 4.
Our analysis tells us that six solutions are as follows:

Orx =4,11, 18, 25, 32, 39 (mod42)

Example : Solve the the linear congruence 9x =21 (mod 30).
Solution :

Because gcd(9,30)= 3 and 3|21, we know that there must be three incongruent solutions.One
way to find these solutions is to divide the given congruence through by 3, threby replacing it by the
equivalent congruence 3x = 7 (mod 10). The relative primeness of 3 and 10 implies that the latter
congruence admits a unique solution modulo 10. Although it is not the most efficient method, we could
test the integers 0,1,2, . ... .. , 9 in turn untill these solution is obtained. A better way is this: multiply
both sides of the congruence 3x = 7 (mod 10) by 7 to get

21x = 49 (mod 10)
Which reduces to x =9 (mod 10). ( This simplification is no accident, for the multiples 0.3,1.3,2. 3,
...., 9.3 form a complete set of residues modulo 10; hence, one of them is necessarily congruent to 1
modulo 10.) but the original congruence was given modulo 30, so that its incongruent solutions are
sought among the integers 0, 1, 2, . ..., 29. Taking t=0, 1, 2 in the formula
x=9+10¢t
We obtain 9, 19, 29, whence
x = 9 (mod 30) x =19 (mod 30) x = 29 (mod 30)
Are the required three solutions of 9x = 21 (mod 30).
2" Method
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A different approach to the problem is to use the method that is suggested in the proof of above
theorem. Because the congruence 9x = 21 (mod 30) is equivalent to the linear Diophantine equation
9x — 30y =21
We begin by expressing 3=gcd(9,30) as a linear combinationof 9 and 30. It is found, either by inspection
or by using the Euclidean Algorithm, that 3=9(-3) + 30 . 1, so that
21=7.3=9(-21)— 30(-7)
Thus x= - 21, y = -7 satisfy the Diophantine and, in consequence, all solutions of the congruence in
question are to be found from the formula

30
x = —21+(?>t= —21+10t

The integers x=-21 + 10t, where t = 0,1, 2, are incongruent modulo 30 ( but all are congruent modulo
10); thus, we end up with the incongruent solutions

x = —21 (mod 30) x = —11 (mod 30) x = —1 (mod 30)
Or, if one prefers positive numbers, x =9, 19, 29 ( mod 30).

Chinese Remainder Theorem

Letnq,n,, ... .. , 1, be positive integers such that ged(n;, n;) =1 for i # j. Then the system of
linear congruences

x = a; (mod ny)

X = a; (mod n,)
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x =a, (modr)

has a simultaneous solution, which is unique modulo the integer n; n,, ... ... My
Proof. We start by forming the product n = ny n,, ... ... ,n,.. Foreachk=1,2,....,1,let
n
N, = —=nq. . 1Ny ..M,
ny

In other words, N, is the product of all the integers n; with the factor n, omitted. By hypothesis, the n;
are relatively prime in pairs, so that gcd(N,, n;) = 1. According to the theory of single linear
congruence. It is therefore possible to solve the congruence N, x = 1 (mod n;); call the unique solution
X, . our aim is to prove that the integer

X =aNyxy + .....a.N.x,
is a simultaneous solution of a given system.
First observe that N; = 0 (mod n; ) for i # k, because n;|N; in this case. The result is

X =a;Nyx; + .....a.N.x, = q;N,x, (modny)

But the integer x;, was chosen to satisfy the congruence N,x = 1( mod n;), which forces

¥X=a,.1 = a, (modny)
This shows that a solution to the given system of congruence exists.
As for the uniqueness assertion, suppose that X’ is any other integer that satisfies these congruences.
Then

F=a,= x(modn,) k=1,2,....r
And so ny| ¥ — x' for each value of k. Because gcd(n;, n;) = 1,
Now we have nyn, ... ... n,| ¥ — x'; hence ¥ = x'(mod n). with this, the chinese remainder theorem is
proven.

Example: The problem posed by Sun-Tsu corresponds to the system of three congruences
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x = 2 (mod 3)

x =3 (mod 5)
x =2 (mod7)
In the notation of above theorem , we have n=3 .5 .7 =105 and
n n n

Now the linear congruences
35x=1(mod3) 21x=1(mod5) 15x =1 (mod?7)
are satisfied by x; = 2, x, = 1,x3 = 1, respectively. Thus a solution of the system is given by
x=2.35.2+3.21.1+2.15.1 =233
Modulo 105, we get the unique solution x = 233 = 23 (mod 105).
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