Solution.

Ø

no-element subsets

Conclusion. Above four examples show that, "every set has two improper subsets and remaining are proper subsets".

Example . Improper subsets = \emptyset , $\{x, y, z\}$

Proper subsets =
$$\{x\}, \{y\}, \{z\}, \{x, y\}, \{y, z\}, \{x, z\}$$

Note that to find the number of subsets of a set having n elements, the formula is 2^n . For example, in

Example - 1. Number of subsets = $2^3 = 8$

Example - 2. Number of subsets = $2^2 = 4$

Example - 3. Number of subsets = $2^1 = 2$

Example - 4. Number of subsets = $2^0 = 1$

POWER SET. The set of all the subsets of a set is called its power set. It is written as P(S). e.g.

Power set of A = (x, y, z) above is

$$P(A) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x,y\}, \{y,z\}, \{x,z\}, \{x,y,z\}\}$$

EXERCISE 2.1

1. Write the following sets in set-builder notation:

Solution.

(i)
$$\{1, 2, 3, ..., 1000\}$$
 = $\{x \mid x \in \mathbb{N} \land x \le 1000\}$

(ii)
$$\{0, 1, 2, ..., 100\}$$
 = $\{x \mid x \in W \land x \le 100\}$

(iii)
$$\{0, \pm 1, \pm 2, ..., \pm 1000\} = \{x \mid x \in \mathbb{Z} \land -1000 \le x \le 1000\}$$

(iv)
$$\{0, -1, -2, \dots, -500\}$$
 = $\{x \mid x \in \mathbb{Z} \land -500 \le x \le 0\}$

(v) {100, 101, 102, ..., 400} = {
$$x \mid x \in \mathbb{Z} \land 100 \le x \le 400$$
}
= { $x \mid x \in \mathbb{N} \land 100 \le x \le 400$ }

(vi)
$$\{-100, -101, -102, \dots, -500\} = \{x \mid x \in \mathbb{Z} \land -500 \le x \le -100\}$$

(vii) {Peshawar, Lahore, Karachi, Quetta}

= $\{x \mid x \text{ is a capital of a province of Pakistan}\}$

(viii) {January, June, July}

= $\{x \mid x \text{ is a month of the Calender year beginning with letterJ}\}$

(ix) The set of all odd natural numbers

 $= \{x \mid x \text{ is an odd natural number}\}\$

- (x) The set of all rational numbers. $= \{x \mid x \in Q\}$
- (xi) The set of all real numbers between 1 and 2 = $\{x \mid x \in \mathbb{R} \land 1 < x < 2\}$
- (xii) The set of all integers between -100 and 1000

$$= \{x \mid x \in Z \land -100 < x < 1000\}$$

2. Write each of the following sets in descriptive and tabular form: Solution.

(i) $\{x \mid x \in \mathbb{N} \land x \leq 10\}$

*	Descriptive Form ↓	Tabular Form ↓
(ii)	The set of first ten natural numbers $\{x \mid x \in \mathbb{N} \land 4 < x < 12\}$	{ 1, 2, 3, , 10 }
(iii)	The set of natural numbers between 4 and 12 $\{x \mid x \in \mathbb{Z} \land -5 < x < 5\}$	{ 5, 6, 7, , 11 }
(iv)	The set of integers between -5 and 5 $\{x \mid x \in \mathbb{E} \land 2 < x \le 4\}$	{-4, -3, -2, , 4}
(v)	The set of even integers between 2 and 5 $\{x \mid x \in P \land x < 12\}$	{4}
(vi)	The set of prime numbers less than 12 $\{x \mid x \in 0 \land 3 < x < 12\}$	{ 2, 3, 5, 7, 11}
(vii)	The set of odd integers between 3 and 12 $\{x \mid x \in \mathbb{E} \land 4 \le x \le 10\}$	{5, 7, 9, 11}
(viii)	The set of even integers between 2 and 12 $\{x \mid x \in \mathbb{E} \land 4 < x < 6\}$	{4, 6, 8, 10}
(ix)	The set of even integers between 4 and 6 $\{x \mid x \in 0 \land 5 \le x \le 7\}$	{ }
(x)	The set of odd integers from 5 upto 7 $\{x \mid x \in O \land 5 \lt x \lt 7\}$	(5, 7)
(xi)	The set of odd integers greater or equal 5 and les $\{x \mid x \in \mathbb{N} \land x + 4 = 0\}$	s than 7 { } .

41 The set of natural numbers x satisfying x + 4 = 0Tabular form: as x + 4 = 0 \Rightarrow x = -4 which $\in \mathbb{N} \Rightarrow \{$ $\{x\mid x\in \mathbb{Q}\wedge x^2=2\}$ (xii) The set of rational numbers x satisfying $x^2 = 2$ Tabular form: $asx^2 = 2$ \Rightarrow $x = \sqrt{2}$ which $\notin Q \Rightarrow$ (xiii) $\{x \mid x \in \mathbb{R} \land x = x\}$ The set of real numbers x satisfying x = xTabular form : x = x is satisfied by all reals. not possible (xiv) $\{x \mid x \in \mathbb{Q} \land x = -x\}$ The set of rational numbers x satisfying x = -xTabular form: $x = -x \implies x + x = 0 \implies 2x = 0 \implies x = 0 \implies \{0\}$ (xv) $\{x \mid x \in \mathbb{R} \land x \neq x\}$ The set of real numbers x satisfying $x \neq x$ Tabular form: $x \neq x$ as there is no real number which is not equal to itself (xvi) $\{x \mid x \in \mathbb{R} \land x \notin \mathbb{Q}\}$ The set of real numbers which are not rational. not possible Tabular form : set of reals is the union of rational & irrational numbers, so irrational ⇒ 0′ Which of the following sets are finite and which of these are infinite? 3. Solution. The set of students of your class. (i) [Finite] The set of all schools in Pakistan. (ii) [Finite] (iii) The set of natural numbers between 3 and 10. [Finite] The set of rational numbers between 3 and 10. (iv) [Infinite] (v) The set of real numbers between 0 and 1. [Infinite] The set of rationals between 0 and 1. (vi) [Infinite] The act of whole between 0 and 1. (vii) [Finite] The set of all leaves of trees in Pakistan. (viii) [Finite] (ix) P(N) [Infinite] **(x)** P (a, b, c)

[Finite]

	_
A	•
4	. 7

(iv) $\{a\} \in \{\{a\}\}$

[True]

 $(v) \quad a \in \{\{a\}\}$

[False]

(vi) $\emptyset \in \{ \{a\} \}$

[False]

8. What is the number of elements of the power set of each of the following sets?

(i) { · }

- (ii) $\{0,1\}$
- (iii) {1, 2, 3, 4, 5, 6, 7}

- (iv) $\{0,1,2,3,4,5,6,7\}$
- (v) $\{a, \{b, c\}\}$
- (vi) $\{\{a,b\},(b,c\},\{d,e\}\}$

Solution.

Note that formula to find the number of elements in power set is 2^n .

Number of elements in the

(i) Power set of {

- is $2^0 = 1$
- (ii) Power set of { 0, 1 }
- is $2^2 = 4$
- (iii) Power set of { 1, 2, 3, 4, 5, 6, 7 }
- is $2^7 = 128$
- (iv) Power set of { 0,1, 2, 3, 4, 5, 6, 7 } is
- is $2^8 = 256$
- (v) Power set of $\{a, \{b, c\}\}$
- is $2^2 = 4$
- (v) Power set of $\{\{a,b\}, (b,c), \{d,e\}\}$ is $2^3 = 8$
- 9. Write down the power set of each of the following sets:
 - (i) {9, 11}
- (ii) $\{+,-,\times,\div\}$
- (iii) { Ø}
- (iv) $\{a, \{b, c\}\}$

Solution.

- (i) Power set of $\{9,11\}$ is: $\{\emptyset, \{9\}, \{11\}, \{9,11\}\}$
- (ii) Power set of $\{+,-,\times,\div\}$ is $\{\emptyset,\{+\},\{-\},\{\times\},\{+\},\{+,-\},\{+,\times\},\{+,+,\div\},\{-,\times\},\{-,\times\},\{-,\times\},\{+,-,\times\},\{+,-,\star\},\{+,\times,+\},\{-,\times,+\},\{+,-,\times,+\}\}\}$
- (iii) Power set of $\{\emptyset\}$ is: $\{\emptyset, \{\emptyset\}\}$
- (iv) Power set of $\{a, \{b, c\}\}\$ is: $\{\emptyset, \{a\}, \{\{b, c\}\}, \{a, \{b, c\}\}\}\$
- 10. Which of the pairs of sets are equivalent? Which of them are also equal?

Solution.

(i) $\{a, b, c\}, \{1, 2, 3\}$

are equivalent sets

(since, each has three elements)

(ii) The set of first 10 whole numbers; $\{0, 1, 2, ..., 9\}$

are equal sets

(since, each has same ten elements)

(iii) The set of angles of a quadrilateral *ABCD*; set of the sides of the same quadrilateral.

are equivalent sets (since, each has four elements)

(iv) Set of the sides of a hexagon ABCDEF;

set of the angles of the same hexagon.

are equivalent sets (since, each has six elements)

(v) {1,2,3,4,...}; {2,4,6,8,...}
are equivalent sets (since, 1-1 correspondence can be established)

(vi) {1, 2, 3, 4, ...};
$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\right\}$$

are equivalent sets (since, 1-1 correspondence can be established)

(vii) {5, 10, 15, 20, ..., 55555}; {5, 10, 15, 20, ...}
are not equivalent sets
(since, first set has finite and second infinite number of elements).

§ 2.2 OPERATIONS ON SETS

UNIVERSAL SET. The set of all objects under consideration is called the universal Set. It is usually denoted by U. Any universal set can be restricted to a lower set according to the situation. e.g..

U = set of all natural numbers

$$U = \{1, 2, 3, ..., 100\}$$

 $U = \{a, b, c, ..., x, y, z\}$, etc.

OPERATIONS ON SETS.

Union of Two Sets. The union of sets A and B, denoted by $A \cup B$, is a set whose elements are the elements of A or the elements of B. In set builder form,

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$
 OR
 $A \cup B = \{x \mid x \in A \lor x \in B\}.$

For example, if
$$A = \{1, 2, 3, 4\}$$
 and $B = \{3, 4, 5, 6\}$, then $A \cup B = \{1, 2, 3, 4, 5, 6\}$.