Rational number:

A number which can be written in the form of $\frac{p}{q}$, where $p, q \in Z$ $\Lambda \neq 0$ is called a rational number

e.g.
$$\frac{3}{4}$$
, $\frac{22}{7}$, $\frac{2}{6}$.

Irrational number:

A real number which cannot be written in the form of $\frac{p}{q}$, where $p, q \in Z \Lambda \neq 0$ is called an irrational number.

e.g.
$$\sqrt{2}$$
 , $\sqrt{5}$

Real number:

The field of all rational and irrational numbers is called the real numbers, or simply the "reals," and denoted $\mathbb R$.

Terminating decimal:

A decimal which has only a finite number of digits in its decimal part, is called terminating decimal. e.g. 202.04, 0.25, 0.5 example of terminating decimal.

Recurring decimal:

A decimal in which one or more digits repeats indefinitely is called recurring decimal or periodic decimal.

e.g. 0.33333 , 21.134134

Exercise 2.1

Question.1. Identify which of the following are rational and irrational numbers

(i). $\sqrt{3}$

Solution.

Is an irrational number.

(ii). $\frac{1}{6}$

Solution.

Is a rational number.

(iii). π

Solution.

Is an irrational number.

(iv). $\frac{15}{7}$

Solution.

Is a rational number.

(v). 7.25

Solution.

Is a rational number.

(vi). $\sqrt{29}$

Solution.

Is an irrational number.

Question.2. Convert the following fractions into decimal fraction.

(i) $\frac{17}{25}$

Solution.

0.68

(ii) $\frac{19}{4}$

Solution.

4.75

(iii) $\frac{57}{8}$

Solution.

7.125

 $(iv)\frac{205}{18}$

Solution.

11.3889

 $({\bf v})\frac{5}{8}$

Solution.

0.625

(vi) $\frac{25}{38}$

Solution.

0.65789

Question.3. Which of the following statements are true and which are false?

(i). $\frac{2}{3}$ is an irrational number.

Solution.

False.

(ii). π is an irrational number.

Solution.

True.

(iii). $\frac{1}{9}$ is a terminating fraction.

Solution.

False.

(iv). $\frac{3}{4}$ is terminating fraction.

Solution.

True.

(v). $\frac{4}{5}$ is a recurring fraction...

Solution.

False.

Question.4. Represent the following numbers on the number line

(i) $\frac{2}{3}$

Solution.

(ii). $-\frac{4}{5}$

(iii). $1\frac{3}{4}$

Solution.

(iv). $-2\frac{5}{8}$

Solution.

(v). $\sqrt{5}$

Solution.

Question.5. Give a rational number between $\frac{3}{4}$ and $\frac{5}{9}$.

Solution.

The mean of the numbers is between given numbers. Therefore

required number =
$$\frac{\frac{3}{4} + \frac{5}{9}}{2}$$

= $\frac{\frac{27 + 20}{36}}{\frac{2}{47}}$
= $\frac{\frac{47}{36}}{2}$
= $\frac{47}{36 \times 2}$
= $\frac{47}{72}$

Question.6. Express the following recurring decimals as the rational number $\frac{p}{z}$, where p, q

are integers and $q \neq 0$.

(i). $0.\overline{5}$

Solution.

Let

$$x = 0.\overline{5}$$

That is

$$x = 0.5555 ... \rightarrow (i)$$

Only one digit 5 is being repeated, multiply by 10 on both sides of (i), we have

$$10x = (0.5555...) \times 10$$

$$10x = 5.5555... \rightarrow (ii)$$

Subtracting (i) from (ii), we have

$$10x - x = 5.5555 \dots -0.5555 \dots$$

 $9x = 5$

$$x = \frac{3}{9}$$

$$0. \overline{5} = \frac{5}{9}$$

Answer.

(ii). $0.\overline{13}$ Solution.

Let

$$x = 0.\overline{13}$$

That is

$$x = 0.13131313... \rightarrow (i)$$

Only two digits 13 is being repeated, multiply by 100 on both sides of (i), we have $100x = (0.13131313...) \times 100$

$$100x = (0.13131313...) \times 100$$

$$100x = 13.13131313... \rightarrow (ii)$$

Subtracting (i) from (ii), we have

$$100x - x$$

= 13.13131313.... -0.13131313...

$$99x = 13$$

$$x = \frac{13}{99}$$

$$0. \overline{13} = \frac{13}{99}$$

Answer.

(iii). $0.\overline{67}$

Solution.

Let

$$x = 0.\overline{67}$$

That is

$$x = 0.67676767... \rightarrow (i)$$

Only two digits 67 is being repeated, multiply by 100 on both sides of (i), we have

$$100x = (0.67676767...) \times 100$$

 $100x = 67.67676767... \rightarrow (ii)$

Subtracting (i) from (ii), we have

$$100x - x$$
= 67.67676767.... -0.67676767

$$99x = 67$$

$$x = \frac{67}{99}$$

$$0.\overline{67} = \frac{67}{99}$$

Answer.

Properties of Real Numbers: Binary Operations:

A binary operation in a set A is a rule usually denoted by * that assigns to any pair of elements of A to another element of A. e.g. two important binary operations are addition and multiplication in a set of real numbers. (\forall stands for all.)

Addition Laws: Closure Law of Addition:

 $\forall a, b \in \Re \ then \ a + b \in \Re$

Associative Law of Addition:

 $\forall a, b, c \in \Re then a + (b + c) = (a + b) + c.$

Additive Identity:

 $\forall a \in \Re$, $\exists 0 \in \Re$ such that a + 0 = 0 + a = a. \exists Stands for there exist and 0 is called the iditive identity.

Additive Inverse:

$$\forall a \in \Re, \exists -a \in \Re \text{ such that } a + (-a)$$

= $-a + a = 0$.

-a and a are called the idetive inverse of each other.

Commutative Law for Addition:

 $\forall a, b \in \Re \ then \ a + b = b + a.$

Multiplication Laws:

Closure Law of Multiplication:

 $\forall a, b \in \Re \text{ then } ab$ $\in \Re \qquad \forall \text{ stands for all.}$

Associative Law of Multiplication:

 $\forall a, b, c \in \Re \ then \ a(bc) = (ab)c.$

Multiplicative Identity:

 $\forall a \in \Re$, $\exists 1 \in \Re$ such that a.1 = 1.a = a.

 \exists Stands for there exist and 1 is called the iditive identity.

Multiplicative Inverse:

 $\forall a \in \Re, \exists a' = \frac{1}{a} \in \Re \text{ such that } a.\frac{1}{a} = \frac{1}{a}.a$ = 1. a and $\frac{1}{a}$ are called the idetive inverse of each

other.

Commutative Law for Multiplication:

 $\forall a, b \in \Re \ then \ ab = ba.$

Properties of Equality:

Reflexive property:

 $\forall a \in \Re \ then \ a = a$

Symmetric Property:

 $\forall a, b \in \Re \text{ and if } a = b \text{ then } b = a.$

Transitive Property:

 $\forall a, b, c \in \Re$, if a = b and b = c then a = c.

Additive Property:

 $\forall a, b, c \in \Re, a = b \text{ then } a + c = b + c.$

Multiplicative Property:

 $\forall a, b, c \in \Re, a = b \text{ then } ac = bc.$

Cancellation Property w.r.t. addition:

 $\forall a, b, c \in \Re, a + c = b + c \text{ then } a = b.$

Cancellation Property w.r.t. Multiplication:

 $\forall a, b, c \in \Re$, ac = bc then a = b.

Distributive property of multiplication over addition.

$$a(b+c) = ab + ac$$

Distributive property of multiplication over Subtraction.

$$a(b-c) = ab - ac$$

Properties of Inequalities (Order properties):

Trichotomy Property:

 $\forall a, b \in \Re$

either a = b or a > b or a < b.

Transitive Property:

 $\forall a, b \in \Re$

(i). if a > b and b > c then a > c.

(ii). if a < b and b < c then a < c.

Additive Property:

 $\forall a, b \in \Re$

(i). *if* a > b *then* a + c > b + c.

(ii). if a < b and then a + c < b + c.

Multiplicative Properties:

 $\forall a, b, c \in \Re$

If c > 0

(i). if a > b then ac > bc.

(ii). if a < b and then ac < bc.

If c < 0

(iii). if a > b then ac < bc.

(iv). if a < b and then ac > bc.

Exercise 2.2

Question.1. Identify the property used in the following.

(i).
$$a + b = b + a$$

Solution.

Commutative property w.r.t Addition.

(ii). (ab)c = a(bc)

Solution.

Associative property w.r.t Multiplication.

(iii). $7 \times 1 = 7$

Solution.

Multiplicative identity.

(iv). x > y or x = y or x < y

Solution.

Trichotromy Property.

(v). ab = ba

Solution.

Commutative property w.r.t Multiplication.

(vi).
$$a + b = b + c => a = b$$

Solution.

Cancellation Law w.r.t Addition.

(vii).
$$5 + (-5) = 0$$

Solution.

Additive Inverse.

(viii). $7 \times \frac{1}{7}$

Solution.

Multiplicative Inverse.

(ix). a > b = ac > bc (c > 0)

Solution.

Multplicative propert.

Question.2. Fill in the following blanks by stating the properties of real numbers used.

$$3x + 3(y - x)$$

Solution.

Given

$$3x + 3(y - x) = 3x + 3y - 3x$$

Distributive property w.r.t muliplication over subtraction.

$$= 3x - 3x$$

+ 3y commutative property w.r.t addition.

$$= 0 + 3y$$
 additive inverse property.

= 3*y* additive identity.

Answer.

Question.3. Give the name of property used in the following.

(i).
$$\sqrt{24} + 0 = \sqrt{24}$$

Solution.

Additive identity.

(ii).
$$-\frac{2}{3}\left(5+\frac{7}{2}\right) = \left(-\frac{2}{3}\right)(5) + \left(-\frac{2}{3}\right)\left(\frac{7}{2}\right)$$

Solution.

Distributive property of multiplication over addition.

(iii).
$$\pi + (-\pi) = 0$$

Solution.

Additive Inverse.

(iv). $\sqrt{3}$. $\sqrt{3}$ is a real number.

Solution.

Closure law for multiplication.

(v).
$$\left(-\frac{5}{8}\right)\left(-\frac{8}{5}\right) = 1$$

Solution.

Multiplicative Inverse.

Radicals and Radicands:

If n is a positive integer greater than 1 and a is a real number , then any real number x such that $x^n=a$ is called the nth root of a , and in symbols is written as

$$x = \sqrt[n]{a}$$
 or $x = (a)^{\frac{1}{n}}$

And $\sqrt[n]{a}$ is called radical, the symbol $\sqrt{}$ is called the radical sign , n is called the index of the radical and the real number a under the radical sign is called the radicand or base.

Radical and Exponent Form:

 $x = \sqrt[n]{a}$ is called redical form and a= $x^{\frac{1}{n}}$ is called exponent form.

Some Properties of Radicals:

(i).
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

(ii).
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

(iii).
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$

(iv).
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

(v).
$$\sqrt[n]{a^n} = a$$

Exercise # 2.3

Question.1. Write each radical expression in exponential notation and each exponential expression in radical notation. Do not simplify.

(i).
$$\sqrt[3]{-64} = (-64)^{\frac{1}{3}}$$

Solution.

$$\sqrt[3]{-64} = (-64)^{\frac{1}{3}}$$

(ii). $2^{\frac{3}{5}}$

Solution.

$$2^{\frac{3}{5}} = \sqrt[5]{2^3}$$

(iii). $-7^{\frac{1}{3}}$

Solution.

$$-7^{\frac{1}{3}} = -\sqrt[3]{7}$$

(iv). $y^{-\frac{2}{3}}$

Solution.

$$y^{-\frac{2}{3}} = \sqrt[3]{y^{-2}}$$

Question.2. Tell whether the following statements are true or false?

(i).
$$5^{\frac{1}{5}} = \sqrt{5}$$

Solution.

False because $5^{\frac{1}{5}} = \sqrt[5]{5}$ is true.

(ii).
$$2^{\frac{2}{3}} = \sqrt[3]{4}$$

Solution.

True because $2^{\frac{2}{3}} = \sqrt[3]{2^2} = \sqrt[3]{4}$ *is true.*

(iii).
$$\sqrt{49} = \sqrt{7}$$

Solution.

False because $\sqrt{49} = \sqrt{7^2} = 7$ is true. (iv). $\sqrt[3]{x^{27}} = x^3$

Solution.

False because $\sqrt[3]{x^{27}} = x^{\frac{27}{3}} = x^9$ is true.

Question.3. Simplify the following radical expressions.

(i).
$$\sqrt[3]{-125}$$

Solution.

$$\sqrt[3]{-125} = \sqrt[3]{-5^3}$$

$$= (-5)^{3 \times \frac{1}{3}}$$

$$= -5$$

(ii). $\sqrt[4]{32}$

Solution.

$$\sqrt[4]{32} = \sqrt[4]{2^4 \times 2}$$
$$= (2^4 \times 2)^{\frac{1}{4}}$$

$$= (2^4)^{\frac{1}{4}} \times 2^{\frac{1}{4}}$$
$$= 2 \times \sqrt[4]{2}$$
$$= 2\sqrt[4]{2}$$

Answer.

(iii).
$$\sqrt[5]{\frac{3}{32}}$$

Solution.

$$\sqrt[5]{\frac{3}{32}} = \left(\frac{3}{32}\right)^{\frac{1}{5}}$$

$$= \left(\frac{3}{2^{5}}\right)^{\frac{1}{5}}$$

$$= \frac{3^{\frac{1}{5}}}{2^{5 \times \frac{1}{5}}}$$

$$= \frac{\sqrt[5]{3}}{2}$$

Answer.

(iv).
$$\sqrt[3]{\frac{-8}{27}}$$

Solution.

$$\sqrt[3]{\frac{-8}{27}} = \left(\frac{-2^3}{3^3}\right)^{\frac{1}{3}}$$

$$= \frac{-2^{3 \times \frac{1}{3}}}{3^{3 \times \frac{1}{3}}}$$

$$= \frac{-2}{3}$$
Answer.

Base and Exponents:

In the exponential form

 a^n (read as a to the nth power) we call "a" as the base and ''n'' as the exponent or power.

Laws of Exponents:

If $a, b \in$

R and m, n are positive integers, then

(i).
$$a^m . a^n = a^{m+n}$$

(ii).
$$(a^m)^n = a^{mn}$$

(iii).
$$(ab)^n = a^n b^n$$

(iv).
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

(v).
$$\frac{a^m}{a^n} = a^{m-n}$$

(vi).
$$a^0 = 1$$
 , where $a \neq 0$

(vii).
$$a^{-n} = \frac{1}{a^n}$$
 , where $a \neq 0$

Exercise # 2.4

Question.1. Use laws of exponents to simplify

(i).
$$\frac{(243)^{-\frac{2}{3}}(32)^{-\frac{1}{5}}}{\sqrt{(196)^{-1}}}$$

Solution.

$$\frac{(243)^{-\frac{2}{3}}(32)^{-\frac{1}{5}}}{\sqrt{(196)^{-1}}} = \frac{(3^{5})^{-\frac{2}{3}}(2^{5})^{-\frac{1}{5}}}{(14^{2})^{-1 \times \frac{1}{2}}}$$

$$= \frac{3^{-\frac{10}{3}}2^{-1}}{14^{-1}}$$

$$= \frac{3^{-\frac{10}{3}}2^{-1}}{(2 \times 7)^{-1}}$$

$$= \frac{3^{-\frac{10}{3}}2^{-1}}{2^{-1} \times 7^{-1}}$$

$$= \frac{3^{-\frac{10}{3}}2^{-1}}{2^{-1} \times 7^{-1}}$$

$$= \frac{7}{3^{\frac{9+1}{3}}}$$

$$= \frac{7}{9^{\frac{1}{3}}}$$

$$= \frac{7}{3^{\frac{9}{3}} \times 3^{\frac{1}{3}}}$$

Answer.

(ii).
$$(2x^5y^{-4})(-8x^{-3}y^2)$$

Solution.

$$(2x^{5}y^{-4})(-8x^{-3}y^{2}) = (2)(-8)x^{5}.y^{-4}.x^{-3}y^{2}$$

$$= -16x^{5-3}.y^{-4+2}$$

$$= -16x^{2}.y^{-2}$$

$$= -\frac{16x^{2}}{v^{2}}$$

Answer.

(iii).
$$\left(\frac{x^{-2}y^{-1}z^{-4}}{x^4y^{-3}z^0}\right)^{-3}$$

Solution.

$$\left(\frac{x^{-2}y^{-1}z^{-4}}{x^4y^{-3}z^0}\right)^{-3} = \left(\frac{y^{-1+3}}{x^{4+2}z^{0+4}}\right)^{-3}$$
$$= \left(\frac{y^2}{x^6z^4}\right)^{-3}$$
$$= \left(\frac{x^6z^4}{v^2}\right)^3$$

$$= \frac{x^{6\times3}z^{4\times3}}{y^{2\times3}}$$
$$= \frac{x^{18}z^{12}}{y^6}$$

Answer.

(iv).
$$\frac{(81)^n \cdot 3^5 - (3)^{4n-1}(243)}{(9)^{2n} \cdot 3^3}$$

Solution.

$$\frac{(81)^{n} \cdot 3^{5} - (3)^{4n-1}(243)}{(9)^{2n} \cdot 3^{3}} = \frac{(3^{4})^{n} \cdot 3^{5} - (3)^{4n-1}(3)^{5}}{(3^{2})^{2n} \cdot 3^{3}} = \frac{(3)^{4n} \cdot 3^{5} - (3)^{4n-1}(3)^{5}}{(3)^{4n} \cdot 3^{3}} = \frac{3^{4n+5} - 3^{4n-1+5}}{3^{4n+3}} = \frac{3^{4n+5} - 3^{4n+4}}{3^{4n+3}} = \frac{3^{4n+4}(3^{1} - 1)}{3^{4n+3}} = 3^{4n+4-4n-3}(2) = 3^{1}(2) = 6$$

Answer

Question.2. Show that

$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1$$

Solution.

$$L.H.S = \left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times \left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times \left(\frac{x^{c}}{x^{a}}\right)^{c+a}$$

$$L.H.S = (x^{a-b})^{a+b} \times (x^{b-c})^{b+c} \times (x^{c-a})^{c+a}$$

$$L.H.S = x^{(a-b)(a+b)} \times x^{(b-c)(b+c)} \times x^{(c-a)(c+a)}$$

$$L.H.S = x^{a^{2}-b^{2}} \times x^{b^{2}-c^{2}} \times x^{c^{2}-a^{2}}$$

$$L.H.S = x^{a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}}$$

$$L.H.S = x^{0} = 1$$

Hence Proved.

Question.3. Simplify

(i).
$$\frac{2^{\frac{1}{3}}(27)^{\frac{1}{3}}(60)^{\frac{1}{2}}}{(180)^{\frac{1}{2}}(4)^{-\frac{1}{3}}9^{\frac{1}{4}}}$$

$$\frac{2^{\frac{1}{3}}(27)^{\frac{1}{3}}(60)^{\frac{1}{2}}}{(180)^{\frac{1}{2}}(4)^{-\frac{1}{3}}9^{\frac{1}{4}}} = \frac{2^{\frac{1}{3}}(3^3)^{\frac{1}{3}}(2^2.3.5)^{\frac{1}{2}}}{(2^2.3^2.5)^{\frac{1}{2}}(2^2)^{-\frac{1}{3}}(3^2)^{\frac{1}{4}}}$$

$$= \frac{2^{\frac{1}{3}}3^1.2^{2\times\frac{1}{2}}.3^{\frac{1}{2}}.5^{\frac{1}{2}}}{2^{2\times\frac{1}{2}}.3^{2\times\frac{1}{2}}.5^{\frac{1}{2}}.2^{-\frac{2}{3}}3^{2\times\frac{1}{4}}}$$

$$= \frac{2^{\frac{1}{3}}3^1.2^1.3^{\frac{1}{2}}.5^{\frac{1}{2}}}{2^1.3^1.5^{\frac{1}{2}}.2^{-\frac{2}{3}}3^{\frac{1}{2}}}$$

$$= \frac{2^{\frac{1}{3}}}{2^{-\frac{2}{3}}}$$

$$= 2^{\frac{1}{3} + \frac{2}{3}}$$

$$= 2^{\frac{3}{3}}$$

$$= 2^{\frac{3}{3}}$$

$$= 2$$

Answer.

(ii).
$$\sqrt{\frac{(216)^{\frac{2}{3}}(25)^{\frac{1}{2}}}{(0.04)^{-\frac{1}{2}}}}$$

Solution.

$$\sqrt{\frac{(216)^{\frac{2}{3}}(25)^{\frac{1}{2}}}{(0.04)^{-\frac{1}{2}}}} = \sqrt{\frac{(6^{3})^{\frac{2}{3}}(5^{2})^{\frac{1}{2}}}{\left(\frac{4}{100}\right)^{-\frac{1}{2}}}}$$

$$= \sqrt{\frac{6^{2} \cdot 5^{1}}{\left(\frac{1}{25}\right)^{-\frac{1}{2}}}}$$

$$= \sqrt{\frac{6^{2} \cdot 5^{1}}{(25)^{\frac{1}{2}}}}$$

$$= \sqrt{\frac{6^{2} \cdot 5}{(5^{2})^{\frac{1}{2}}}}$$

$$= \sqrt{\frac{6^{2} \cdot 5}{5}}$$

$$= \sqrt{36}$$

$$= 6$$

(iii). $5^{2^3} \div (5^2)^3$

Solution.

$$5^{2^{3}} \div (5^{2})^{3} = \frac{5^{8}}{5^{6}}$$
$$= 5^{8-6}$$
$$= 5^{2}$$
$$= 25$$

Answer.

Answer.

(iv). $(x^3)^2 \div x^{3^2}$

Solution.

$$(x^3)^2 \div x^{3^2} = \frac{x^6}{x^8}$$

$$= \frac{1}{x^{8-6}}$$

$$= \frac{1}{x^2}$$
Answer.

Complex Numbers:

The numbers of the form x + iy, where $x, y \in \Re$, are called **complex numbers**, here x is called **real part** and y is called **imaginary part** of the complex number.

Remarks:

1. Every real number is a complex number with 0 as its imaginary part.

Conjugate Complex Numbers:

if Z = a + ib be a complex number then $\bar{Z} = a - ib$ is the conjugate of the complex number Z = a + ib.

Remarks:

1. A real number is self-Conjugate.

Equality of Two Complex Numbers:

Two complex numbers a+bi and c+di are said to be equal if a=c and b=d. That is

$$a + ib = c + id \implies a = b \text{ and } c = d.$$

Exercise # 2.5

Question.1. Evaluate

(i). i^7

Solution.

$$i^7 = i^6 \cdot i$$

= $(i^2)^3 \cdot i$
= $(-1)^3 \cdot i$
= $(-1) \cdot i$
= $-i$

Answer.

(ii). i^{50}

Solution.

$$i^{50} = (i^2)^{25}$$
$$= (-1)^{25}$$
$$= -1$$

Answer.

 $(iii). i^{12}$

Solution.

$$i^{12} = (i^2)^6$$

= $(-1)^6$
= 1

Answer.

(iv). $(-i)^8$

Solution.

$$(-i)^8 = i^8$$
= $(i^2)^4$
= $(-1)^4$

Answer.

(v). $(-i)^5$

Solution.

$$(-i)^{5} = -i^{5}$$

$$= -i^{4} \cdot i$$

$$= -(i^{2})^{2} \cdot i$$

$$= -(-1)^{2} \cdot i$$

$$= -(1) \cdot i$$

$$= -i$$

Answer.

(vi). i^{27}

Solution.

$$i^{27} = i^{26} \cdot i$$

= $(i^2)^{13} \cdot i$
= $(-1)^{13} \cdot i$
= $(-1) \cdot i$
= -1

Answer.

Question.2. Write the conjugate of the following numbers.

(i). 2 + 3i

Solution.

Suppose
$$Z = 2 + 3i$$

 $\overline{Z} = \overline{2 + 3i} = 2 - 3i$

Answer.

(ii). 3 - 5i

Solution.

Suppose
$$Z = 3 - 5i$$

 $\bar{Z} = 3 - 5i = 3 + 5i$

Answer.

(iii). -i

Solution.

Suppose
$$Z = -\mathbf{i}$$

 $\bar{Z} = \overline{-\mathbf{i}} = +\mathbf{i}$

Answer.

(iv). -3 + 4i

Solution.

Suppose
$$Z = -3 + 4i$$

 $\bar{Z} = \overline{-3 + 4i} = -3 - 4i$

Answer.

(v). -4 - i

Solution.

Suppose
$$Z = -4 - i$$

 $\bar{Z} = \overline{-4 - i} = -4 + i$

Answer.

Question.3. Write the real and imaginary part of the following numbers.

(i). 1 + i

Solution.

Suppose Z = 1 + i

$$Re(Z) = 1$$
 , $Im(Z) = 1$

Answer.

(ii). -1 + 2i

Solution.

Suppose
$$Z = -1 + 2i$$

 $Re(Z) = -1$, $Im(Z) = 2$

Answer.

(iii).
$$-3i + 2$$

Solution.

Suppose
$$Z = -3i + 2 = 2 - 3i$$

 $Re(Z) = 2$, $Im(Z) = -3$

Answer.

(iv).
$$-2 - 2i$$

Solution.

Suppose
$$Z = -2i - 2 = -2 - 2i$$

 $Re(Z) = -2$, $Im(Z) = -2$

Answer.

(v). -3i

Solution.

Suppose
$$Z = -3i = 0 - 3i$$

 $Re(Z) = 0$, $Im(Z) = -3$

Answer.

(vi). 2 + 0i

Solution.

Suppose
$$Z = 2 + 0i$$

 $Re(Z) = 2$, $Im(Z) = 0$

Answer.

Question.4. Find the value of x and y if

$$x + iy + 1 = 4 - 3i$$

Solution.

Given that

$$x + 1 + iy = 4 - 3i$$

Separating real and imaginary parts

$$x + 1 = 4$$
 , $y = -3$
 $x = 4 - 1$, $y = -3$
 $x = 3$, $y = -3$

Answer.

Operations on Complex Numbers:

The symbols *a,b,c,d,k*, where used, represent real numbers

Addition of Two Complex Numbers:

$$(a+ib) + (c+id) = (a+b) + i(c+d).$$

Scalar Multiplication:

$$k(a+ib) = ka + ikb.$$

Subtraction of Two Complex Numbers:

$$(a+ib) - (c+id) = (a-b) + i(c-d).$$

Multiplication of Two Complex Numbers:

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc).$$

Division of two Complex Numbers:

$$\frac{(a+ib)}{(c+id)} = \frac{ac-bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$
Exercise # 2.6

Question.1. Identify the following statements as true or false.

(i).
$$\sqrt{-3} \times \sqrt{-3} = 3$$

Solution.

False because
$$\sqrt{-3} \times \sqrt{-3} = \sqrt{3}i \times \sqrt{3}i$$

= $(\sqrt{3})^2 i^2 = -3$

(ii).
$$i^{73} = -i$$

Solution.

False because
$$i^{73} = i^{72}$$
. $i = (i^2)^{36}$. $i = (-1)^{36}$. $i = i$

(iii).
$$i^{10} = -1$$

Solution.

True because $i^{10} = (i^2)^5 = (-1)^5 = -1$ (iv). Complex conjugate of $(-6i + i^2)$ is (-1 + 6i)

Solution.

True because $\overline{-6\iota + \iota^2} = \overline{-6\iota - 1} = -1 + 6\iota$ (v). Difference of a complex number z = a + bi and its conjugate is a real number.

Solution.

False because
$$Z - \overline{Z} = (a + bi) - (a - bi)$$

= $a + bi - a + bi = 2bi$
(vi). If $(a - 1) - (b + 3)i = 5 + 8i$ then $a = 6$ and $b = -11$.

Solution.

True because Comparing real and imaginary parts in given equation

$$a-1=5$$
 , $-(b+3)=8$
 $a=5+1$, $b+3=-8$
 $a=6$, $b=-8-3$
 $a=6$, $b=-11$

(vii) Product of a complex number and its conjugate is always a non-negative real number. **Solution.**

True because for a complex numer Z

Is a real number.

Question.2. Express each complex number in the standard form a + bi where 'a' and 'b' are real numbers.

(i).
$$(2+3i)+(7-2i)$$

Solution.

$$(2+3i) + (7-2i) = 2+3i+7-2i$$

= $9+i$

Answer.

(ii).
$$2(5+4i)-3(7+4i)$$

Solution.

$$2(5+4i) - 3(7+4i) = 10 + 8i - 21 - 12i$$
$$= -11 - 3i$$

Answer.

(iii).
$$-1(-3+5i) - (4+9i)$$

Solution.

$$-1(-3+5i) - (4+9i) = 3-5i-4-9i$$

= -1-14i

Answer.

(iv).
$$2i^2 + 6i^3 + 3i^{16} - 6i^{19} + 4i^{25}$$
 Solution.

$$2i^{2} + 6i^{3} + 3i^{16} - 6i^{19} + 4i^{25}$$

$$= 2(-1) + 6i^{2}i + 3i^{16} - 6i^{18}i + 4i^{24}i$$

$$= 2(-1) + 6(-1)i + 3(i^{2})^{8} - 6(i^{2})^{9}i + 4(i^{2})^{12}i$$

$$= -2 - 6i + 3(-1)^{8} - 6(-1)^{9}i + 4(-1)^{12}i$$

$$= -2 - 6i + 3(1) - 6(-1)i + 4(1)i$$

$$= -2 - 6i + 3 + 6i + 4i$$

$$= 1 + 4i$$

Question.3. Simplify and write your answer in the form a + bi.

(i).
$$(-7+3i)(-3+2i)$$

Solution.

$$(-7+3i)(-3+2i) = 21 - 14i - 9i + 6i2$$

= 21 - 14i - 9i - 6
= 15 - 23i

Answer.

(ii).
$$(2-\sqrt{-4})(3-\sqrt{-4})$$

Solution.

$$(2 - \sqrt{-4})(3 - \sqrt{-4}) = (2 - 2i)(3 - 2i)$$

$$= 2(3 - 2i) - 2i(3 - 2i)$$

$$= 6 - 4i - 6i + 4i^{2}$$

$$= 6 - 10i - 4$$

$$= 2 - 10i$$

Answer.

(iii).
$$\left(\sqrt{5}-3i\right)^2$$

Solution.

$$(\sqrt{5} - 3i)^{2} = (\sqrt{5})^{2} + (3i)^{2} - 2(\sqrt{5})(3i)$$

$$= 5 + 9i^{2} - 6\sqrt{5}i$$

$$= 5 - 9 - 6\sqrt{5}i$$

$$= -4 - 6\sqrt{5}i$$

Answer.

(iv).
$$(2-3i)(\overline{3-2i})$$

$$(2-3i)(\overline{3-2i}) = (2-3i)(3+2i)$$

= 2(3+2i) - 3i(3+2i)

$$= 6 + 4i - 9i - 6i^{2}$$

$$= 6 - 5i + 6$$

$$= 12 - 5i$$

Answer

Question.4. Simplify and write your answer in the form of a + bi.

(i).
$$-\frac{2}{1+i}$$

Solution.

$$-\frac{2}{1+i} = \frac{-2}{1+i} \times \frac{1-i}{1-i}$$

$$= \frac{-2+2i}{1^2-i^2}$$

$$= \frac{-2+2i}{1+1}$$

$$= \frac{-2+2i}{2}$$

$$= -\frac{2}{2} + \frac{2i}{2}$$

$$= -\frac{1+i}{2}$$

Answer.

(ii).
$$\frac{2+3i}{4-i}$$

Solution.

$$\frac{2+3i}{4-i} = \frac{2+3i}{4-i} \times \frac{4+i}{4+i}$$

$$= \frac{2(4+i)+3i(4+i)}{4^2-i^2}$$

$$= \frac{8+2i+12i+3i^2}{16+1}$$

$$= \frac{8+14i-3}{17}$$

$$= \frac{4+14i}{17}$$

$$= \frac{4}{17} + \frac{14}{17}i$$

Answer.

(iii).
$$\frac{9-7i}{3+i}$$

Solution.

$$\frac{9-7i}{3+i} = \frac{9-7i}{3+i} \times \frac{3-i}{3-i}$$

$$= \frac{9(3-i)-7i(3-i)}{3^2-i^2}$$

$$= \frac{27-9i-21i+7i^2}{9+1}$$

$$= \frac{27-30i-7}{10}$$

$$= \frac{20-30i}{10}$$

$$= \frac{20}{10} - \frac{30}{10}i$$

$$= 2-3i$$

Answer.

(iv).
$$\frac{2-6i}{3+i} - \frac{4+i}{3+i}$$

Solution.

$$\frac{2-6i}{3+i} - \frac{4+i}{3+i} = \frac{2-6i}{3+i} \times \frac{3-i}{3-i} - \frac{4+i}{3+i} \times \frac{3-i}{3-i} \\
= \frac{2(3-i)-6i(3-i)}{3^2-i^2} - \frac{4(3-i)+i(3-i)}{3^2-i^2} \\
= \frac{6-2i-18i+6i^2}{9+1} \\
-\frac{12-4i+3i-i^2}{9+1} \\
= \frac{6-20i-6}{10} - \frac{12-i+1}{10} \\
= \frac{-20i-13+i}{10} \\
= \frac{-20i-13+i}{10} \\
= \frac{-13-19i}{10} \\
= -\frac{13}{10} - \frac{19}{10}i$$

Answer.

(v).
$$\left(\frac{1+i}{1-i}\right)^2$$

Solution.

$$\left(\frac{1+i}{1-i}\right)^2 = \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^2$$

$$= \left(\frac{1(1+i)+i(1+i)}{1^2-i^2}\right)^2$$

$$= \left(\frac{1+i+i+i^2}{1+1}\right)^2$$

$$= \left(\frac{1+2i-1}{2}\right)^2$$

$$= \left(\frac{2i}{2}\right)^2$$

$$= i^2$$

$$= -1$$

Answer.

(vi).
$$\frac{1}{(2+3i)(1-i)}$$

$$\frac{1}{(2+3i)(1-i)} = \frac{1}{2(1-i)+3i(1-i)}$$

$$= \frac{1}{2-2i+3i-3i^2}$$

$$= \frac{1}{2+i+3}$$

$$= \frac{1}{5+i}$$

$$= \frac{1}{5+i} \times \frac{5-i}{5-i}$$

$$= \frac{5-i}{5^2 - (i)^2}$$

$$= \frac{5-i}{25+1}$$

$$= \frac{5-i}{26}$$

$$= \frac{5}{26} - \frac{i}{26}$$

Answer.

Question.5.

Calculate (a) \overline{Z} (b) $Z + \overline{Z}$ (c) Z -

 \overline{Z} (d) $Z\overline{Z}$ for each of the following

(i). Z = -i

Solution.

(a). $\overline{Z} = \overline{-i} = i$

(b). $Z + \overline{Z} = -i + i = 0$

(c). $Z - \overline{Z} = (-i) - (i) = -i - i = -2i$

(d). $Z\overline{Z} = (-i)(i) = -i^2 = 1$

(ii). Z = 2 + i

Solution.

(a).
$$\overline{Z} = \overline{2+\iota} = 2-i$$

(b).
$$Z + \overline{Z} = 2 + i + 2 - i = 4$$

(c).
$$Z - \overline{Z} = (2 + i) - (2 - i) = 2 + i - 2 + i - 2i$$

i = 2i

(d). $Z\overline{Z} = (2+i)(2-i) = 2^2 - i^2 = 4+1 =$

(iii). $Z = \frac{1+i}{1-i}$

Solution.

$$Z = \frac{1+i}{1-i}$$

$$Z = \frac{1+i}{1-i} \times \frac{1+i}{1+i}$$

$$Z = \frac{1+i+i+i^2}{1+1}$$

$$Z = \frac{1+2i-1}{2}$$

$$Z = \frac{2i}{2}$$

$$Z = i$$

(a).
$$\overline{Z} = \overline{\iota} = -i$$

(b),
$$Z + \overline{Z} = i - i = 0$$

(c).
$$Z - \overline{Z} = (i) - (-i) = i + i = 2i$$

(d).
$$Z\overline{Z} = (i)(-i) = -i^2 = 1$$

(iv).
$$Z = \frac{4-3i}{2+4i}$$

Solution.

$$Z = \frac{4 - 3i}{2 + 4i}$$

$$Z = \frac{4 - 3i}{2 + 4i} \times \frac{2 - 4i}{2 - 4i}$$

$$Z = \frac{8 - 16i - 6i + 12i^{2}}{2^{2} - (4i)^{2}}$$

$$Z = \frac{8 - 22i - 12}{4 - 16i^{2}}$$

$$Z = \frac{-4 - 22i}{4 + 16}$$

$$Z = \frac{-4 - 22i}{20}$$

$$Z = -\frac{1}{5} - \frac{11}{10}i$$

$$Z = -\frac{1}{5} - \frac{11}{10}i$$
(a). $\overline{Z} = -\frac{1}{5} - \frac{11}{10}i + -\frac{1}{5} + \frac{11}{10}i$

$$Z + \overline{Z} = -\frac{1}{5} - \frac{1}{5} = \frac{-1 - 1}{5} = -\frac{2}{5} = -\frac{2}{5}$$
(c). $Z - \overline{Z} = \left(-\frac{1}{5} - \frac{11}{10}i\right) - \left(-\frac{1}{5} + \frac{11}{10}i\right)$

$$Z - \overline{Z} = -\frac{1}{10}i + \frac{1}{5} - \frac{11}{10}i$$

$$Z - \overline{Z} = -\frac{11}{10}i - \frac{11}{10}i$$

$$Z - \overline{Z} = -\frac{11}{10}i - \frac{11}{10}i$$

$$Z - \overline{Z} = -\frac{22}{10}i$$

$$Z - \overline{Z} = -\frac{11}{5}i$$

(d).
$$Z\overline{Z} = \left(-\frac{1}{5} - \frac{11}{10}i\right) \left(-\frac{1}{5} + \frac{11}{10}i\right)$$

$$Z\overline{Z} = \left(-\frac{1}{5}\right)^2 - \left(\frac{11}{10}i\right)^2$$

$$Z\overline{Z} = \frac{1}{25} - \frac{121}{100}i^2$$

$$Z\overline{Z} = \frac{1}{25} + \frac{121}{100}$$

$$Z\overline{Z} = \frac{4 + 121}{100}$$

$$Z\overline{Z} = \frac{125}{100}$$

$$Z\overline{Z} = \frac{5}{4}$$

Answer.

Question.6. If z = 2 + 3i, w = 5 - 100

4i, show that

(i). $\overline{z+w} = \overline{z} + \overline{w}$

$$L.H.S = \overline{z+w}$$

$$L.H.S = \overline{2+3\iota+5-4\iota}$$

$$L.H.S = \overline{8-\iota}$$

L.H.S =
$$8 + i - - - (1)$$

R.H.S = $\overline{z} + \overline{w}$
R.H.S = $\overline{2 + 3i} + \overline{5 - 4i}$
R.H.S = $2 - 3i + 5 + 4i$
R.H.S = $8 + i - - - (2)$

From (1) and (2), we have

$$L.H.S = R.H.S$$

Hence Proved.

(ii).
$$\overline{z-w} = \overline{z} - \overline{w}$$

Solution.

$$L.H.S = \overline{z - w}$$

$$L.H.S = \overline{(2 + 3i) - (5 - 4i)}$$

$$L.H.S = \overline{2 + 3i - 5 + 4i}$$

$$L.H.S = \overline{-3 + 7i}$$

$$L.H.S = \overline{z} - \overline{w}$$

$$R.H.S = \overline{z} - \overline{w}$$

$$R.H.S = (2 + 3i) - (\overline{5 - 4i})$$

$$R.H.S = 2 - 3i - 5 - 4i$$

$$R.H.S = -3 - 7i - - (2)$$

From (1) and (2), we have

$$L.H.S = R.H.S$$

Hence Proved.

(iii).
$$\overline{zw} = \overline{z} \overline{w}$$

Solution.

$$L.H.S = \overline{zw}$$

$$L.H.S = \overline{(2+3\iota)(5-4\iota)}$$

$$L.H.S = \overline{10-8\iota+15\iota-12\iota^2}$$

$$L.H.S = \overline{10+7\iota+12}$$

$$L.H.S = \overline{22+7\iota}$$

$$L.H.S = \overline{22+7\iota}$$

$$L.H.S = \overline{z}\overline{w}$$

$$R.H.S = \overline{(2+3\iota)(5-4\iota)}$$

$$R.H.S = (2-3i)(5+4i)$$

$$R.H.S = 10+8i-15i-12i^2$$

$$R.H.S = 10-7i+12$$

$$R.H.S = 22-7i--(2)$$

From (1) and (2), we have

$$L.H.S = R.H.S$$

Hence Proved.

(iv).
$$\overline{\left(\frac{z}{w}\right)} = \frac{\bar{z}}{\bar{w}}$$

Solution.

$$L.H.S = \overline{\left(\frac{z}{w}\right)}$$

$$L.H.S = \overline{\left(\frac{2+3\iota}{5-4\iota}\right)}$$

$$L.H.S = \overline{\left(\frac{2+3\iota}{5-4\iota} \times \frac{5+4\iota}{5+4\iota}\right)}$$

$$L.H.S = \overline{\left(\frac{10 + 8\iota + 15\iota + 12\iota^{2}}{5^{2} - (4\iota)^{2}}\right)}$$

$$L.H.S = \overline{\left(\frac{10 + 23\iota - 12}{25 - 16\iota^{2}}\right)}$$

$$L.H.S = \overline{\left(\frac{-2 + 23\iota}{25 + 16}\right)}$$

$$L.H.S = \overline{\left(\frac{-2 + 23\iota}{41}\right)}$$

$$L.H.S = \overline{\left(-\frac{2}{41} + \frac{23}{41}\iota\right)}$$

$$L.H.S = -\frac{2}{41} - \frac{23}{41}i - - - (1)$$

$$R.H.S = \frac{\overline{z}}{\overline{w}}$$

$$R.H.S = \frac{\overline{z}}{5 + 4\iota}$$

$$R.H.S = \frac{2 - 3\iota}{5 + 4\iota} \times \frac{5 - 4\iota}{5 - 4\iota}$$

$$R.H.S = \frac{10 - 8\iota - 15\iota + 12\iota^{2}}{5^{2} - (4\iota)^{2}}$$

$$R.H.S = \frac{10 - 23\iota - 12}{25 - 16\iota^{2}}$$

$$R.H.S = \frac{-2 - 23\iota}{25 + 16}$$

$$R.H.S = \frac{-2 - 23\iota}{41}$$

$$R.H.S = -\frac{2}{41} - \frac{23}{41}\iota - - - (2)$$

From (1) and (2), we have

$$L.H.S = R.H.S$$

Hence Proved.

(v). $\frac{1}{2}(z+\bar{z})$ is a real part of z.

Solution.

$$\frac{1}{2}(z+\bar{z}) = \frac{1}{2}(2+3i+\overline{2+3i})$$
$$= \frac{1}{2}(2+3i+2-3i)$$
$$= \frac{1}{2}(4)$$

= 2 which is real part of z.

Hence Proved.

(vi). $\frac{1}{2i}(z-\bar{z})$ is a imaginary part of z. Solution.

$$\frac{1}{2i}(z - \overline{z}) = \frac{1}{2i} \left((2+3i) + (\overline{2+3i}) \right)$$
$$= \frac{1}{2i} \left((2+3i) - (2-3i) \right)$$
$$= \frac{1}{2i} \left(2+3i - 2+3i \right)$$

$$=\frac{1}{2i}\left(6i\right)$$

= 3 which is imaginary part of z. Hence Proved.

Question.7. Solve the following equations for real x and y.

(i).
$$(2-3i)(x+iy)=4+i$$

Solution. Given that

$$(2-3i)(x+iy) = 4+i$$

$$2(x+iy) - 3i(x+iy) = 4+i$$

$$2x + 2iy - 3ix - 3i^{2}y = 4+i$$

$$2x + 2iy - 3ix + 3y = 4+i$$

$$2x + 3y + (2y - 3x)i = 4+i$$

Comparing real and imaginary parts, we have

$$2x + 3y = 4 - - - (i)$$
, $2y - 3x$
= 1 - - - (ii)

$$3 \times (i) + 2 \times (ii)$$
, we have
 $3(2x + 3y) + 2(2y - 3x) = 3(4) + 2(1)$
 $6x + 9y + 4y - 6x = 12 + 2$
 $13y = 14$
 $y = \frac{14}{3}$

Using value of y in equation (i), we have

$$2x + 3\left(\frac{14}{13}\right) = 4$$

$$2x + \frac{42}{13} = 4$$

$$2x = 4 - \frac{42}{13}$$

$$2x = \frac{4 \times 13 - 42}{13}$$

$$2x = \frac{52 - 42}{13}$$

$$2x = \frac{10}{13}$$

$$x = \frac{10}{13 \times 2}$$

$$x = \frac{5}{13}$$

Hence required $x = \frac{5}{13}$ and $y = \frac{14}{13}$.

(ii).
$$(3-2i)(x+iy) = 2(x-2yi) + 2i - 1$$

Solution. Given that

$$(3-2i)(x+iy) = 2(x-2yi) + 2i - 1$$

$$3(x+iy) - 2i(x+iy) = 2x - 4yi + 2i - 1$$

$$3x + 3iy - 2ix - 2i^2y = 2x - 1 + 2i - 4yi$$

$$3x + 3iy - 2ix + 2y = 2x - 1 + (2-4y)i$$

$$3x + 2y + (3y - 2x)i = 2x - 1 + (2-4y)i$$

Comparing real and imaginary parts, we have

$$3x + 2y = 2x - 1$$
, $(3y - 2x) = 2 - 4y$
 $3x - 2x + 2y = -1$, $-2x + 3y + 4y = 2$

$$x + 2y = -1 - - - (i), -2x + 7y$$

= 2 - - - (ii)

$$2 \times (i) + (ii)$$
, we have $2(x+2y) + (-2x+7y) = 2(-1) + 2$

$$2x + 4y - 2x + 7y = -2 + 2$$

$$11y = 0$$

$$y = 0$$

Using value of y in equation (i), we have

$$x + 2(0) = -1$$
$$x = -1$$

Hence required x = -1 and y = 0. (iii). $(3 + 4i)^2 - 2(x - iy) = x + yi$

Solution. Given that

$$(3+4i)^{2} - 2(x-iy) = x + yi$$

$$(3)^{2} + (4i)^{2} + 2(3)(4i) - 2x + 2iy = x + yi$$

$$9 + 16i^{2} + 12i - 2x + 2iy = x + yi$$

$$9 - 16 + 12i - 2x + 2iy = x + yi$$

$$-7 - 2x + (12 + 2y)i = x + yi$$

Comparing real and imaginary parts, we have

$$-7-2x = x$$
, $12 + 2y = y$
 $x + 2x = -7 = , 2y - y = 12$
 $3x = -7$, $y = 12$
 $x = -\frac{7}{3}$, $y = 12$

Hence required $x = -\frac{7}{3}$ and y = 12.

Available at MathCit.org