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Moment of Inertia 
Definition: Moment of inertia of a particle of mass  𝑚  about a line (called axis of 

rotation) is defined as 𝐼 =  𝑚 𝑟2,  
where,  𝑟  is the perpendicular distance of particle from line. 

Definition: Moment of inertia of a system of a number of particles with masses 𝑚𝑖 , 

about a line (called axis of rotation) is defined as 𝐼 =  ∑ 𝑚𝑖𝑟𝑖2 𝑖 ,  
where,  𝑟𝑖  is the perpendicular distance of  𝑖-th particle of mass 𝑚𝑖 from line. 

Definition: Moment of inertia of a continuous distribution of mass, such as the 

solid rigid body (shown in the figure), having mass 𝑀 and constant density  𝜌,  about a 

line is defined as 𝐼 = ∫ 𝑟2 d𝑚 𝑀 = 𝜌∫ 𝑟2 d𝑉 𝑀 ,  
where,  𝑟  is the perpendicular distance of point mass element 𝑑𝑚 of the body and 𝑑𝑉  is its elementary volume. 

Moments of inertia with respect to Cartesian coordinate axes are defined in the following table: 

 

Moment of inertia 

Moment of inertia of a 

particle with respect to 

3-dimensioal Cartesian 

coordinate system 

Moment of inertia of a set of  

particles with respect to 3-

dimensioal Cartesian 

coordinate system 

Moment of inertia of a 

continuous rigid body with 

respect to 3-dimensioal 

Cartesian coordinate system 

About  𝑥-axis 𝐼𝑥𝑥 = 𝐼11 

 𝑚(𝑦2 + 𝑧2) 
∑𝑚𝑖(𝑦𝑖2 + 𝑧𝑖2) 
𝑖  ∫(𝑦2 + 𝑧2)d𝑚 

𝑀  

About  𝑦-axis 𝐼𝑦𝑦 = 𝐼22 
 𝑚(𝑥2 + 𝑧2) 

∑𝑚𝑖(𝑥𝑖2 + 𝑧𝑖2) 
𝑖  ∫(𝑥2 + 𝑧2)d𝑚 

𝑀  

About  𝑧-axis 𝐼𝑧𝑧 = 𝐼33 

 𝑚(𝑥2 + 𝑦2) 
∑𝑚𝑖(𝑥𝑖2 + 𝑦𝑖2) 
𝑖  ∫(𝑥2 + 𝑦2)d𝑚 

𝑀  

Products of inertia with respect to Cartesian coordinate axes are defined in the following table: 

 

Product of inertia 

Product of inertia of a 

particle with respect to 

3-dimensioal Cartesian 

coordinate system 

Product of inertia of a set of 

particles with respect to 3-

dimensioal Cartesian 

coordinate system 

Product of inertia of a 

continuous rigid body 

with respect to 3-

dimensioal Cartesian 

coordinate system 

  𝐼𝑥𝑦 =  𝐼𝑦𝑥 =  𝐼12 =  𝐼21 

 − 𝑚𝑥𝑦 
−∑𝑚𝑖 

𝑖 𝑥𝑖𝑦𝑖  − ∫𝑥𝑦 d𝑚 
𝑀  

 𝐼𝑦𝑧 = 𝐼𝑧𝑦 =  𝐼23 =  𝐼32 
 − 𝑚𝑦𝑧 

−∑𝑚𝑖𝑦𝑖𝑧𝑖 
𝑖  − ∫𝑦𝑧 d𝑚 

𝑀  

 𝐼𝑥𝑧 = 𝐼𝑧𝑥 =  𝐼13 =  𝐼31 

 − 𝑚𝑥𝑧 
−∑𝑚𝑖𝑥𝑖𝑧𝑖 

𝑖  − ∫𝑥𝑧 d𝑚 
𝑀  

Definition: Radius of gyration 𝑘 of a rigid body of mass 𝑀 with respect to a line 𝑙 is defined as 𝑘 = √𝐼/𝑀, 
where, 𝐼 is the moment of inertia of the body with respect to 𝑙. 
Problem: Prove in matrix notation that [𝐋] = [ 𝐈 ][𝛚],  where, all the notations used have their usual meanings. 

Proof: The angular momentum of a rigid body, in the form of a set of particles, about an instantaneous axis through 

a fixed point, is given by                                            𝐋 = ∑𝐫𝑖 × (𝑚𝑖𝐯𝑖) 
𝑖 = ∑𝑚i(𝐫𝑖 × 𝐯𝑖) 

𝑖 = ∑𝑚𝑖(𝐫𝑖 × (𝛚 × 𝐫𝑖)) 
𝑖               ∵ 𝐯𝑖 = 𝛚 × 𝐫𝑖

= ∑𝑚𝑖(𝐫𝑖 × (𝛚 × 𝐫𝑖)) 
𝑖 = ∑𝑚𝑖[(𝐫𝑖 · 𝐫𝑖)𝛚 − (𝐫𝑖 · 𝛚)𝐫𝑖] 

𝑖 
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Let,                             𝐋 = 𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤,                 𝛚 = 𝜔1𝐢 + 𝜔2𝐣 + 𝜔3𝐤               and            𝐫𝑖 = 𝑥𝑖𝐢 + 𝑦𝑖𝐣 + 𝑧𝑖𝐤⇒  𝐫𝑖 · 𝐫𝑖 = 𝑥𝑖2 + 𝑦𝑖2 + 𝑧𝑖2    and    𝐫𝑖 · 𝛚 = 𝑥𝑖𝛚1 + 𝑦𝑖𝜔2 + 𝑧𝑖𝜔3⇒     𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤 = ∑𝑚𝑖[(𝑥𝑖2 + 𝑦𝑖2 + 𝑧𝑖2)(𝜔1𝐢 + 𝜔2𝐣 + 𝜔3𝐤) − (𝑥𝑖𝜔1 + 𝑦𝑖𝜔2 + 𝑧𝑖𝜔3)(𝑥𝑖𝐢 + 𝑦𝑖𝐣 + 𝑧𝑖𝐤)] 
𝑖 

 

Comparing corresponding components on both sides of above vector equation, we get 𝐿1 = ∑𝑚𝑖[(𝑥𝑖2 + 𝑦𝑖2 + 𝑧𝑖2)𝜔1 − (𝑥𝑖𝜔1 + 𝑦𝑖𝜔2 + 𝑧𝑖𝜔3)𝑥𝑖] 
𝑖       − − − − − − − −→    (1)

𝐿2 = ∑𝑚𝑖[(𝑥𝑖2 + 𝑦𝑖2 + 𝑧𝑖2)𝜔2 − (𝑥𝑖𝜔1 + 𝑦𝑖𝜔2 + 𝑧𝑖𝜔3)𝑦𝑖]       − − − − − − − −→    (2) 
𝑖 𝐿3 = ∑𝑚𝑖[(𝑥𝑖2 + 𝑦𝑖2 + 𝑧𝑖2)𝜔3 − (𝑥𝑖𝜔1 + 𝑦𝑖𝜔2 + 𝑧𝑖𝜔3)𝑧𝑖]       − − − − − − − −→    (3) 
𝑖 

 

From Eq. (1),we get,                       𝐿1 = ∑𝑚𝑖[𝑥𝑖2𝜔1 + (𝑦𝑖2 + 𝑧𝑖2)𝜔1 − 𝑥𝑖2𝜔1 − 𝑥𝑖𝑦𝑖𝜔2 − 𝑥𝑖𝑧𝑖𝜔3] 
𝑖                                                               = 𝜔1 ∑𝑚𝑖(𝑦𝑖2 + 𝑧𝑖2) 

𝑖 − 𝜔2 ∑𝑚𝑖𝑥𝑖𝑦𝑖 
𝑖 − 𝜔3 ∑𝑚𝑖𝑥𝑖𝑧𝑖 

𝑖                                                             = 𝐼11𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 − − − − − − − −−→    (4)
 

Similarly, from (2) and (3),we get                 𝐿2 = 𝐼12𝜔1 + 𝐼22𝜔2 + 𝐼23𝜔3 − − − − − − − −→    (5)and                                                                            𝐿3 = 𝐼13𝜔1 + 𝐼23𝜔2 + 𝐼33𝜔3 − − − − − − − −→    (6) 

Writing Eqs. (4), (5)and (6)in matrix form,we get,            (𝐿1𝐿2𝐿3) = (𝐼11 𝐼12 𝐼13𝐼21 𝐼22 𝐼23𝐼13 𝐼23 𝐼33)(𝜔1𝜔2𝜔3)   

  ⇒   [𝐋] = [ 𝐈 ][𝛚]                Hence proved. 

Problem: Prove that  𝑇 = 12 𝑀𝐯2 + 12 𝛚. 𝐋,  where all the notations used have their usual meanings. 

(or) prove that  𝑇 = 𝑇𝑡𝑟 + 𝑇𝑟𝑜𝑡 where,    𝑇𝑡𝑟 = 12 𝑀𝐯2 = total translational kinetic energy of the bodyand        𝑇𝑟𝑜𝑡 = 12 𝛚. 𝐋 = total rotational kinetic energy of the body.               

Proof: Consider a rigid body, in the form of a set of particles, which is in general 

state of motion (i.e., having both translation and rotation) with respect to a fixed 

(inertial) frame of reference 𝑂𝑥𝑦𝑧. 
Let, M  = total mass of the body 𝐫𝑖 =  position vector of 𝑖-th particle of mass 𝑚𝑖 with respect to origin “𝑂” 𝐫𝑖′ = position vector of 𝑖-th particle of mass 𝑚𝑖 with respect to centre of mass “𝐶” 𝐫  =  position vector of centre of mass “C ” with respect to origin “𝑂” 𝐯𝑖 = velocity of 𝑖-th particle of mass 𝑚𝑖 with respect to origin “𝑂” 𝐯𝑖′= velocity of 𝑖-th particle of mass 𝑚𝑖 with respect to centre of mass “𝐶” 𝐯 =  velocity of centre of mass “C ” with respect to origin “𝑂” 𝛚 = instantaneous angular velocity of body about instantaneous axis through centre of mass “C ” 

From figure,                                                                          𝐫𝑖 = 𝐫 + 𝐫𝑖′ 
Differentiating both sides with respect to time “𝑡”, we get �̇�𝑖 = �̇� + �̇�𝑖′ ⇒   𝐯𝑖 = 𝐯 + 𝐯𝑖′ = 𝐯 + 𝛚 ⨯ 𝐫𝑖′               ∵    𝐯𝑖′ = 𝛚 ⨯ 𝐫𝑖′ 
Kinetic energy of the 𝑖-th particle is                𝑇𝑖 = 12 𝑚𝑖𝐯𝑖2 

Kinetic energy of the whole body is                   𝑇 = ∑𝑇𝑖𝑖 = 12∑𝑚𝑖𝐯𝑖2𝑖 = 12∑𝑚𝑖𝑖 (𝐯𝑖 · 𝐯𝑖) = 12∑𝑚𝑖𝑖 {(𝐯 + 𝛚 ⨯ 𝐫𝑖′) · (𝐯 + 𝛚 ⨯ 𝐫𝑖′)}      ∵   𝐯𝑖 = 𝐯 + 𝛚 ⨯ 𝐫𝑖′  = 12∑𝑚𝑖𝑖 {𝐯 · 𝐯 + 𝐯 · (𝛚 ⨯ 𝐫𝑖′) + (𝛚 ⨯ 𝐫𝑖′) · 𝐯 + (𝛚 ⨯ 𝐫𝑖′) · (𝛚 ⨯ 𝐫𝑖′)} 
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                         𝑇 = 12∑𝑚𝑖𝑖 {𝐯2 + 2𝐯 · (𝛚 ⨯ 𝐫𝑖′) + 𝛚 · 𝐫𝑖′ ⨯ (𝛚 ⨯ 𝐫𝑖′)}
= 12(∑𝑚𝑖𝑖 ) 𝐯2 + ∑𝑚𝑖𝐯 · (𝛚 ⨯ 𝐫𝑖′)𝑖 + 12∑𝑚𝑖{𝛚 · 𝐫𝑖′ ⨯ (𝛚 ⨯ 𝐫𝑖′)}𝑖= 12𝑀𝐯2 + 𝐯 · (𝛚 ⨯ ∑𝑚𝑖𝐫𝑖′𝑖 ) + 12𝛚 · ∑𝑚𝑖𝐫𝑖′ ⨯ (𝛚 ⨯ 𝐫𝑖′)𝑖 ,     where, 𝑀 = ∑𝑚𝑖𝑖 = total mass of the body Also,   ∑𝑚𝑖𝐫𝑖′𝑖 = 𝟎,   as 𝐫𝑖′ is the position vector of 𝑖th particle of mass 𝑚𝑖 with respect to centre of mass “𝐶” 

⇒       𝑇 = 12𝑀𝐯2 + 12𝛚 · ∑𝑚𝑖𝐫𝑖′ ⨯ (𝛚 ⨯ 𝐫𝑖′)𝑖    − − − − − − − −(1) 

But, angular momentum 𝐋 of the body with respect to centre of mass “C ” is given by 𝐋 = ∑𝐫𝑖′ ⨯ (𝑚𝑖𝐯𝑖′) 
𝑖 = ∑𝐫𝑖′ ⨯ {𝑚𝑖(𝛚 ⨯ 𝐫𝑖′)} 

𝑖 = ∑𝑚𝑖𝐫𝑖′ ⨯ (𝛚 ⨯ 𝐫𝑖′)    − − − − − − − −(2)𝑖  

Using (2) in (1), we get, 𝑇 = 12𝑀𝐯2 + 12𝛚. 𝐋 

 𝑇 = 𝑇𝑡𝑟 + 𝑇𝑟𝑜𝑡 where,    𝑇𝑡𝑟 = 12𝑀𝐯2 = total translational kinetic energy of the body and        𝑇𝑟𝑜𝑡 = 12𝛚. 𝐋 = total rotational kinetic energy of the body 

Problem: Find moment of inertia of a rigid body about a given line 

passing through the origin and having direction cosines are (𝜆, 𝜇, 𝜈). 
Solution: Consider a rigid body, in the form of a set of particles. And let us take 

given line as 𝑧-axis, as shown in the figure. Let,    𝑀  = total mass of the body 𝐫𝑖 = 𝑥𝑖𝐢 + 𝑦𝑖𝐣 + 𝑧𝑖𝐤 = position vector of 𝑖-th particle of mass 𝑚𝑖 w.r.t. origin “𝑂” 𝑑𝑖  = perpendicular distance of 𝑖-th particle of mass 𝑚𝑖 from given line 𝑙 𝜃𝑖 = angle between position vector 𝐫𝑖 and given line 𝑙 𝐞 = unit vector in the direction of given line  𝑙 
Then,  𝐞 = 𝜆𝐢 + 𝜇𝐣 + 𝜈𝐤, where, (𝜆, 𝜇, 𝜈) are direction cosines of the given line 𝑙. 
The required moment of inertia 𝐼𝑙 is given by 

 𝐼𝑙 = ∑𝑚𝑖𝑑𝑖2𝑖 = ∑𝑚𝑖(|𝐫𝑖| sin 𝜃𝑖)2𝑖 = ∑𝑚𝑖(|𝐞 ⨯ 𝐫𝑖|)2𝑖 − −−→ (1)     ∵  sin 𝜃𝑖 = 𝑑𝑖|𝐫𝑖|   and   |𝐫𝑖| sin 𝜃𝑖 = |𝐞 ⨯ 𝐫𝑖| 
Now,                                 𝐞 ⨯ 𝐫𝑖 = | 𝐢 𝐣 𝐤𝜆 𝜇 𝜈𝑥𝑖 𝑦𝑖 𝑧𝑖| = (𝜇𝑧𝑖 − 𝜈𝑦𝑖)𝐢 + (𝜈𝑥𝑖 − 𝜆𝑧𝑖)𝐣 + (𝜆𝑦𝑖 − 𝜇𝑥𝑖)𝐤 ⇒ (|𝐞 ⨯ 𝐫𝑖|)2 = (𝜇𝑧𝑖 − 𝜈𝑦𝑖)2 + (𝜈𝑥𝑖 − 𝜆𝑧𝑖)2 + (𝜆𝑦𝑖 − 𝜇𝑥𝑖)2 − − − − − −→ (2) 

Using (2) in (1), we get                          𝐼𝑙 = ∑𝑚𝑖[(𝜇𝑧𝑖 − 𝜈𝑦𝑖)2 + (𝜈𝑥𝑖 − 𝜆𝑧𝑖)2 + (𝜆𝑦𝑖 − 𝜇𝑥𝑖)2]𝑖= ∑𝑚𝑖[(𝜇2𝑧𝑖2 + 𝜈2𝑦𝑖2 − 2𝜇𝜈𝑦𝑖𝑧𝑖) + (𝜈2𝑥𝑖2 + 𝜆2𝑧𝑖2 − 2𝜆𝜈𝑥𝑖𝑧𝑖) + (𝜆2𝑦𝑖2 + 𝜇2𝑥𝑖2 − 2𝜆𝜇𝑥𝑖𝑦𝑖)]𝑖= 𝜆2 ∑𝑚𝑖(𝑦𝑖2 + 𝑧𝑖2)𝑖 + 𝜇2 ∑𝑚𝑖(𝑥𝑖2 + 𝑧𝑖2)𝑖 + 𝜈2 ∑𝑚𝑖(𝑥𝑖2 + 𝑦𝑖2)𝑖 + 2𝜆𝜇 (−∑𝑚𝑖𝑥𝑖𝑦𝑖𝑖 )
+ 2𝜇𝜈 (−∑𝑚𝑖𝑦𝑖𝑖 𝑧𝑖) + 2𝜆𝜈 (−∑𝑚𝑖𝑥𝑖𝑧𝑖𝑖 ) ⇒     𝐼𝑙 = 𝜆2𝐼𝑥𝑥 + 𝜇2𝐼𝑦𝑦 + 𝜈2𝐼𝑧𝑧 + 2𝜆𝜇𝐼𝑥𝑦 + 2𝜇𝜈𝐼𝑦𝑧 + 2𝜆𝜈𝐼𝑥𝑧 

This is required moment of inertia. 
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Problem: Find the equation of “ellipsoid of inertia” or  “momental ellipsoid” of a rigid body. 
Solution: As we know that moment of inertia of a rigid body about a given line 𝑙 having direction cosines (𝜆, 𝜇, 𝜈) 

with respect to a coordinate system 𝑂𝑥𝑦𝑧, whose origin “𝑂” lies on the line 𝑙, is given by 𝐼𝑙 = 𝜆2𝐼𝑥𝑥 + 𝜇2𝐼𝑦𝑦 + 𝜈2𝐼𝑧𝑧 + 2𝜆𝜇𝐼𝑥𝑦 + 2𝜇𝜈𝐼𝑦𝑧 + 2𝜆𝜈𝐼𝑥𝑧 − − − −−→ (1) 

On the line 𝑙, choose a point 𝑃 such that |𝑂𝑃⃑⃑ ⃑⃑  ⃑| = 1/√𝐼𝑙 . If coordinates of 𝑃 are (𝑥, 𝑦, 𝑧), then 𝑥|𝑂𝑃⃑⃑⃑⃑  ⃑| = 𝜆,          𝑦|𝑂𝑃⃑⃑ ⃑⃑  ⃑| = 𝜇,         𝑧|𝑂𝑃⃑⃑ ⃑⃑  ⃑| = 𝜈 ⇒        𝜆 = 𝑥√𝐼𝑙  ,          𝜇 = 𝑦√𝐼𝑙  ,         𝜈 = 𝑧√𝐼𝑙 − − − −−→ (2) 

Eliminating  𝜆, 𝜇 and 𝜈 from (1) and (2), we get 𝐼𝑙 = 𝐼𝑙(𝐼𝑥𝑥𝑥2 + 𝐼𝑦𝑦𝑦2 + 𝐼𝑧𝑧𝑧2 + 2𝐼𝑥𝑦𝑥𝑦 + 2𝐼𝑦𝑧𝑦𝑧 + 2𝐼𝑥𝑧𝑥𝑧) 𝐼𝑥𝑥𝑥2 + 𝐼𝑦𝑦𝑦2 + 𝐼𝑧𝑧𝑧2 + 2𝐼𝑥𝑦𝑥𝑦 + 2𝐼𝑦𝑧𝑦𝑧 + 2𝐼𝑥𝑧𝑥𝑧 = 1 

Since, 𝐼𝑥𝑥, 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are all positive, therefore, above equation represents an ellipsoid called “ellipsoid of inertia” or  “momental ellipsoid” of the rigid body. 

 

Note:  

(𝑖) The momental ellipsoid of a rigid body contains information about moments and product of inertia of that 

body. 

(𝑖𝑖) The centre of momental ellipsoid lies at the origin of the coordinate system. 

(𝑖𝑖𝑖) If 𝑃 is any point on momental ellipsoid, then |𝑂𝑃⃑⃑ ⃑⃑  ⃑| = 1√𝐼𝑙  ⇒   𝐼𝑙 = 1|𝑂𝑃⃑⃑⃑⃑  ⃑|2 , 
showing that moment of inertia about line 𝑂𝑃⃡⃑⃑⃑  ⃑ is equal to the reciprocal of square of distance of point 𝑃 from 

origin 𝑂. 

Problem: State and prove perpendicular axis theorem for a discrete mass distribution.  
Statement: The moment of inertia of a plane rigid body in the form of discrete mass 

distribution (i.e., a set of particles) about a given axis perpendicular to the plane of the 

body is equal to the sum of moments of inertia about two mutually perpendicular axes 

lying in the plane of the body and meeting at a common point on the given axis. 

Proof: We choose Cartesian coordinate system 𝑂𝑥𝑦𝑧 such that 𝑥𝑦-plane lies in the plane 

of the body, while 𝑧-axis lies perpendicular to it, which is assumed to the given axis.  

Let, 𝐫𝑖 = 𝑥𝑖𝐢 + 𝑦𝑖𝐣 be the position vector of 𝑖-th particle of mass 𝑚𝑖 w.r.t. origin “𝑂”. 

Then moment of inertia of the body about 𝑧-axis is 

 𝐼𝑧𝑧 = ∑𝑚𝑖|𝐫𝑖|2𝑖 = ∑𝑚𝑖(𝑥𝑖2 + 𝑦𝑖2)𝑖 = ∑𝑚𝑖𝑥𝑖2𝑖 + ∑𝑚𝑖𝑦𝑖2𝑖 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 ⇒     𝐼𝑧𝑧 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦                  Hence proved. 

Problem: State and prove perpendicular axis theorem for a continuous mass distribution. 
Statement: The moment of inertia of a plane rigid body in the form of continuous mass distribution about a given 

axis perpendicular to the plane of the body is equal to the sum of moments of inertia of same body about two 

mutually perpendicular axes lying in the plane of body and meeting at a common point 

on the given axis. 

Proof: We choose Cartesian coordinate system 𝑂𝑥𝑦𝑧 such that 𝑥𝑦-plane lies in the plane 

of the body having mass 𝑀, while 𝑧-axis lies perpendicular to it, which is assumed to the 

given axis.  

Let, 𝐫 = 𝑥𝐢 + 𝑦𝐣 be the position vector of elementary particle of body of mass d𝑚 w.r.t. 

origin “𝑂”. 

Then moment of inertia of the body about 𝑧-axis is 𝐼𝑧𝑧 = ∫|𝐫|2d𝑚 
𝑀 = ∫(𝑥2 + 𝑦2)d𝑚 

𝑀 = ∫𝑥2d𝑚 
𝑀 + ∫𝑦2d𝑚 

𝑀 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 ⇒     𝐼𝑧𝑧 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦                  Hence proved. 

Problem: State and prove parallel axis theorem for the case of moment of inertia for a discrete mass 
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distribution.  
Statement: The moment of inertia of a rigid body in the form of discrete mass distribution (i.e., a set of particles) 

about a given axis is equal to the sum of moment of inertia of same body about a parallel axis (to the given axis) 

through the centre of mass of the body and the moment of inertia due to the total mass of the body placed at its 

centre of mass, about given axis. 

Proof: Consider a rigid body, in the form of a set of particles. Let 𝑙 be the given and 𝑙′ be an axis which is parallel to 𝑙 
and passing through centre of mass of the body. Let, M  = total mass of the body 𝐫𝑖 =  position vector of 𝑖-th particle of mass 𝑚𝑖 with respect to origin “𝑂” 𝐫𝑖′ = position vector of 𝑖-th particle of mass 𝑚𝑖 with respect to centre of mass “𝐶” 𝐫𝑐  =  position vector of centre of mass “𝐶 ” with respect to origin “𝑂” 𝜃𝑖 = angle between position vector 𝐫𝑖 and given line 𝑙 𝑑𝑖  = perpendicular distance of 𝑖-th particle of mass 𝑚𝑖 from given axis 𝑙 𝑑𝑖′= perpendicular distance of 𝑖-th particle of mass 𝑚𝑖 from parallel axis 𝑙′ 𝑑𝑐  = perpendicular distance of centre of mass 𝐶 from given axis 𝑙 
      = perpendicular distance between 𝑙 and 𝑙′ 𝐞 = unit vector in the direction of given line 𝑙 
From figure,       sin𝜃𝑖 = 𝑑𝑖|𝐫𝑖|   ⇒    𝑑𝑖 = |𝐫𝑖| sin𝜃𝑖 = |𝐞 ⨯ 𝐫𝑖| 
Similarly,  𝑑𝑖′ = |𝐞 ⨯ 𝐫𝑖′|   and   𝑑𝑐 = |𝐞 ⨯ 𝐫𝑐| 
Moment of inertia of the body about given axis 𝑙 is given by 𝐼𝑙 = ∑𝑚𝑖𝑑𝑖2𝑖 = ∑𝑚𝑖(|𝐞 ⨯ 𝐫𝑖|)2𝑖 = ∑𝑚𝑖(𝐞 ⨯ 𝐫𝑖) · (𝐞 ⨯ 𝐫𝑖)𝑖                                                             = ∑𝑚𝑖[𝐞 ⨯ (𝐫𝑐 + 𝐫𝑖′)] · [𝐞 ⨯ (𝐫𝑐 + 𝐫𝑖′)]𝑖           ∵ 𝐫𝑖 = 𝐫𝑐 + 𝐫𝑖′ (from figure)= ∑𝑚𝑖(𝐞 ⨯ 𝐫𝑐 + 𝐞 ⨯ 𝐫𝑖′) · (𝐞 ⨯ 𝐫𝑐 + 𝐞 ⨯ 𝐫𝑖′)𝑖= ∑𝑚𝑖[(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ 𝐫𝑐) + 2(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ 𝐫𝑖′) + (𝐞 ⨯ 𝐫𝑖′) · (𝐞 ⨯ 𝐫𝑖′)]𝑖= ∑𝑚𝑖[(|𝐞 ⨯ 𝐫𝑐|)𝟐 + 2(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ 𝐫𝑖′) + (|𝐞 ⨯ 𝐫𝑖′|)𝟐]𝑖= (∑𝑚𝑖𝑖 ) (|𝐞 ⨯ 𝐫𝑐|)𝟐 + 2(𝐞 ⨯ 𝐫𝑐) · ∑𝑚𝑖𝑖 (𝐞 ⨯ 𝐫𝑖′) + ∑𝑚𝑖(|𝐞 ⨯ 𝐫𝑖′|)𝟐𝑖= 𝑀𝑑𝑐𝟐 + 2(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ ∑𝑚𝑖𝑖 𝐫𝑖′) + ∑𝑚𝑖𝑑𝑖′𝟐𝑖 ,        where,    𝑀 = ∑𝑚𝑖𝑖 = total mass of the body  
 Also,   ∑𝑚𝑖𝐫𝑖′𝑖 = 𝟎,   as 𝐫𝑖′ is the position vector of 𝑖th particle of mass 𝑚𝑖 with respect to centre of mass “𝐶” and 𝐼𝑙′ = ∑𝑚𝑖𝑑𝑖′2𝑖 = moment of inertia of the body axis 𝑙′ ⇒     𝐼𝑙 = 𝐼𝑙′ + 𝑀𝑑𝑐2

        Hence proved. 

Problem: State and prove parallel axis theorem for the case of moment of inertia for a continuous mass 

distribution.  
Statement: The moment of inertia of a rigid body in the form of a continuous mass distribution about a given axis is 

equal to the sum of moment of inertia of same body about a parallel axis (to the given axis) through the centre of 

mass of the body and the moment of inertia due to the total mass of the body placed at its centre of mass, about 

given axis. 

Proof: Consider a rigid body, in the form of a continuous mass distribution. Let 𝑙 be the given and 𝑙′ be an axis which 

is parallel to 𝑙 and passing through centre of mass of the body.  

Let, M  = total mass of the body 𝐫 =  position vector of elementary mass dm with respect to origin “𝑂” 𝐫′ = position vector of elementary mass dm with respect to centre of mass “𝐶” 
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𝐫𝑐=  position vector of centre of mass “𝐶 ” with respect to origin “𝑂” 𝜃 = angle between position vector 𝐫 and given line 𝑙 𝑑 = perpendicular distance of elementary mass dm from given axis 𝑙 𝑑′ = perpendicular distance of elementary mass dm from parallel axis 𝑙′ 𝑑𝑐  = perpendicular distance of centre of mass 𝐶 from given axis 𝑙 
      = perpendicular distance between 𝑙 and 𝑙′ 𝐞 = unit vector in the direction of given line 𝑙 
From figure,                    sin 𝜃 = 𝑑/|𝐫|    ⇒    𝑑 = |𝐫| sin𝜃 = |𝐞 ⨯ 𝐫| 
Similarly, 𝑑′ = |𝐞 ⨯ 𝐫′|   and   𝑑𝑐 = |𝐞 ⨯ 𝐫𝑐| 
Moment of inertia of the body about given axis 𝑙 is given by 𝐼𝑙 = ∫𝑑2d𝑚 

𝑀 = ∫(|𝐞 ⨯ 𝐫|)2d𝑚 
𝑀 = ∫(𝐞 ⨯ 𝐫) · (𝐞 ⨯ 𝐫)d𝑚 

𝑀                                                           
= ∫[𝐞 ⨯ (𝐫𝑐 + 𝐫′)] · [𝐞 ⨯ (𝐫𝑐 + 𝐫′)]d𝑚 

𝑀           ∵ 𝐫 = 𝐫𝑐 + 𝐫′               
= ∫[(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ 𝐫𝑐) + 2(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ 𝐫′) + (𝐞 ⨯ 𝐫′) · (𝐞 ⨯ 𝐫′)]d𝑚 

𝑀= ∫[(|𝐞 ⨯ 𝐫𝑐|)2 + 2(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ 𝐫′) + (|𝐞 ⨯ 𝐫′|)2]d𝑚 
𝑀= (∫d𝑚 

𝑀 ) (|𝐞 ⨯ 𝐫𝑐|)2 + 2(𝐞 ⨯ 𝐫𝑐) · ∫(𝐞 ⨯ 𝐫′)d𝑚 
𝑀 + ∫(|𝐞 ⨯ 𝐫′|)2d𝑚 

𝑀= 𝑀𝑑𝑐2 + 2(𝐞 ⨯ 𝐫𝑐) · (𝐞 ⨯ ∫ 𝐫′d𝑚 
𝑀 ) + ∫𝑑′2d𝑚 

𝑀 ,      where,    𝑀 = ∫d𝑚 
𝑀 = total mass of the body 

Also, ∫ 𝐫′d𝑚 𝑀 = 𝟎, as 𝐫′ is the position vector of mass element dm with respect to centre of mass “C”, 

and  𝐼𝑙′ = ∫ 𝑑′2d𝑚 𝑀 = moment of inertia of the body axis 𝑙′  ⇒  𝐼𝑙 = 𝐼𝑙′ + 𝑀𝑑𝑐2
        Hence proved. 

Problem: Prove in matrix notation that [�̇�] = [𝛚 ⨯ 𝐋] + [ 𝐈 ][�̇�], where, all the notations used have their 

usual meanings. 
Proof: As we know that the angular momentum of a system of particles is given by 𝐋 = ∑𝐫𝑖 × (𝑚𝑖𝐯𝑖) 

𝑖 = ∑𝑚𝑖𝐫𝑖 × 𝐯𝑖 
𝑖  

Differentiating both sides with respect to time “𝑡”, we get �̇� = ∑𝑚𝑖�̇�𝑖 × 𝐯𝑖 
𝑖 + ∑𝑚𝑖𝐫𝑖 × �̇�𝑖 

𝑖 = ∑𝑚𝑖𝐯𝑖 × 𝐯𝑖 
𝑖 + ∑𝑚𝑖𝐫𝑖 × �̇�𝑖 

𝑖                                             
= ∑𝑚𝑖𝐫𝑖 × 

𝑖 
dd𝑡 (𝛚 × 𝐫𝑖)             ∵    𝐯𝑖 × 𝐯𝑖 = 𝟎    and   �̇�𝑖 = d𝐯𝑖d𝑡 = dd𝑡 (𝛚 × 𝐫𝑖)= ∑𝑚𝑖𝐫𝑖 × 

𝑖 [(𝛚 × �̇�𝑖) + (�̇� × 𝐫𝑖)] = ∑𝑚𝑖𝐫𝑖 × (𝛚 × �̇�𝑖) 
𝑖 + ∑𝑚𝑖𝐫𝑖 × 

𝑖 (�̇� × 𝐫𝑖) 

Writing in matrix form, we get [�̇�] = [∑𝑚𝑖𝐫𝑖 × (𝛚 × �̇�𝑖) 
𝑖 ] + [∑𝑚𝑖𝐫𝑖 × 

𝑖 (�̇� × 𝐫𝑖)] − − − −→ (1) 

As we know that        [𝐋] = [ 𝐈 ][𝛚]                 ⇒          [∑𝐫𝑖 × (𝑚𝑖𝐯𝑖) 
𝑖 ] = [ 𝐈 ][𝛚]                  ∵ 𝐋 = ∑𝐫𝑖 × (𝑚𝑖𝐯𝑖) 

𝑖  

⇒          [∑𝑚𝑖𝐫𝑖 × 𝐯𝑖 
𝑖 ] = [ 𝐈 ][𝛚] 

                                ⇒          [∑𝑚𝑖𝐫𝑖 × (𝛚 × 𝐫𝑖) 
𝑖 ]  = [ 𝐈 ][𝛚]                   ∵ 𝐯𝑖 = 𝛚 × 𝐫𝑖 
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Replace 𝛚 by �̇� on both sides, we get  [∑𝑚𝑖𝐫𝑖 × (�̇� × 𝐫𝑖) 
𝑖 ] = [ 𝐈 ][�̇�] − − − −→ (2) 

Now consider,  ∑𝑚𝑖𝐫𝑖 × (𝛚 × �̇�𝑖) 
𝑖 = ∑𝑚𝑖𝐫𝑖 × (𝛚 × 𝐯𝑖) 

𝑖 = ∑𝑚𝑖𝐫𝑖 × [𝛚 × (𝛚 × 𝐫𝑖)] 
𝑖 = ∑𝑚𝑖𝐫𝑖 × [(𝛚 · 𝐫𝑖)𝛚 − (𝛚 · 𝛚)𝐫𝑖] 

𝑖 = ∑𝑚𝑖[(𝛚 · 𝐫𝑖)(𝐫𝑖 × 𝛚) − (𝛚 · 𝛚)(𝐫𝑖 × 𝐫𝑖)] 
𝑖 = ∑𝑚𝑖(𝛚 · 𝐫𝑖)(𝐫𝑖 × 𝛚) 

𝑖 − − − −→ (3)    ∵ 𝐫𝑖 × 𝐫𝑖 = 𝟎 

Further consider that    𝛚 × (𝐫𝑖 × 𝐯𝑖) = 𝛚 × [𝐫𝑖 × (𝛚 × 𝐫𝑖)] = 𝛚 × [(𝐫𝑖 · 𝐫𝑖)𝛚 − (𝐫𝑖 · 𝛚)𝐫𝑖] = (𝐫𝑖 · 𝐫𝑖)(𝛚 × 𝛚) − (𝐫𝑖 · 𝛚)(𝛚 × 𝐫𝑖)          = −(𝐫𝑖 · 𝛚)(𝛚 × 𝐫𝑖) = (𝛚 · 𝐫𝑖)(𝐫𝑖 × 𝛚) − − − − − −−→ (4)               ∵ 𝛚 × 𝛚 = 𝟎 

Using (4) in (3), we get ∑𝑚𝑖𝐫𝑖 × (𝛚 × �̇�𝑖) 
𝑖 = ∑𝑚𝑖 

𝑖 𝛚 × (𝐫𝑖 × 𝐯𝑖) = 𝛚 × ∑𝐫𝑖 × (𝑚𝑖𝐯𝑖) 
𝑖 = 𝛚 × 𝐋             ∵ 𝐋 = ∑𝐫𝑖 × (𝑚𝑖𝐯𝑖) 

𝑖  

Writing above equation in matrix form,we get,       [∑𝑚𝑖𝐫𝑖 × (𝛚 × �̇�𝑖) 
𝑖 ] = [𝛚 × 𝐋] − − − − − −→ (5) 

Using (2) and (5) in (1), we get [�̇�] = [𝛚 ⨯ 𝐋] + [ 𝐈 ][�̇�]              𝐇𝐞𝐧𝐜𝐞 𝐩𝐫𝐨𝐯𝐞𝐝. 

Problem: Show that inertia matrix [ 𝐈 ] is a Cartesian tensor of rank 2. 
Proof: As we know that the angular momentum of a system of particles is given by                          𝐋 = ∑𝐫𝛼 × (𝑚𝛼𝐯𝛼) 

𝛼 = ∑𝑚𝛼(𝐫𝛼 × 𝐯𝛼) 
𝛼  = ∑𝑚𝛼(𝐫𝛼 × (𝛚 × 𝐫𝛼)) 

𝛼                   ∵ 𝐯𝛼 = 𝛚 × 𝐫𝛼= ∑𝑚𝛼[(𝐫𝛼 · 𝐫𝛼)𝛚 − (𝐫𝛼 · 𝛚)𝐫𝛼] 
𝛼 = ∑𝑚𝛼[𝐫𝛼2𝛚 − (𝛚 · 𝐫𝛼)𝐫𝛼] 

𝛼 − − − − − − − −→ (1) 

Let,        𝐋 = (𝐿1,  𝐿2,  𝐿3),          𝛚 = (𝜔1,  𝜔2,  𝜔3)          and          𝐫𝛼 = (𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3) Then,                   𝛚 · 𝐫𝛼 = 𝜔1𝑥𝛼,1 + 𝜔2𝑥𝛼,2 + 𝜔3𝑥𝛼,3 = ∑ 𝜔𝑗𝑥𝛼,𝑗3
𝑗=1  

So (1) can be written as:         (𝐿1,  𝐿2,  𝐿3) = ∑  
𝛼 𝑚𝛼 [𝐫𝛼2(𝜔1,  𝜔2,  𝜔3) − (∑ 𝜔𝑗𝑥𝑗,𝛼3

𝑗=1 )(𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3)] 

                 ⇒   𝐿𝑖 = ∑  
𝛼 𝑚𝛼 [𝐫𝛼2𝜔𝑖 − (∑ 𝜔𝑗𝑥𝛼,𝑗3

𝑗=1 )𝑥𝛼,𝑖] ,              𝑖 = 1, 2, 3                           
= ∑  

𝛼 𝑚𝛼 [𝐫𝛼2 ∑ 𝜔𝑗𝛿𝑖𝑗3
𝑗=1 − (∑ 𝜔𝑗𝑥𝛼,𝑗3

𝑗=1 )𝑥𝛼,𝑖]             ∵    𝜔𝑖 = ∑ 𝜔𝑗𝛿𝑖𝑗3
𝑗=1                          

= ∑  
𝛼 𝑚𝛼 ∑[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑗𝑥𝛼,𝑖]𝜔𝑗3

𝑗=1 = ∑ 𝜔𝑗3
𝑗=1 ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 

𝛼 = ∑ 𝜔𝑗3
𝑗=1 𝐼𝑖𝑗 − − − −−→ (2) 

where,                  𝐼𝑖𝑗 = ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 
𝛼 = 𝑖𝑗′th component of inertia tensor 

Since, both the angular velocity 𝛚 = (𝜔𝑗) and the angular momentum 𝐋 = (𝐿𝑖) are known to be vectors          

(i.e., Cartesian tensors of rank 1), it follows from equation (2) and quotient theorem that the inertia tensor [ 𝐈 ] = (𝐼𝑖𝑗) is a Cartesian tensor of rank 2. 

Problem: Express angular momentum in tensor notation. 
Solution: As we know that the angular momentum of a system of particles is given by 
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                         𝐋 = ∑𝐫𝛼 × (𝑚𝛼𝐯𝛼) 
𝛼 = ∑𝑚𝛼(𝐫𝛼 × 𝐯𝛼) 

𝛼 = ∑𝑚𝛼(𝐫𝛼 × (𝛚 × 𝐫𝛼)) 
𝛼                   ∵ 𝐯𝛼 = 𝛚 × 𝐫𝛼 

𝐋 = ∑𝑚𝛼[(𝐫𝛼 · 𝐫𝛼)𝛚 − (𝐫𝛼 · 𝛚)𝐫𝛼] 
𝛼 = ∑𝑚𝛼[𝐫𝛼2𝛚 − (𝛚 · 𝐫𝛼)𝐫𝛼] 

𝛼 − − − − − −−→ (1) 

Let,        𝐋 = (𝐿1,  𝐿2,  𝐿3),          𝛚 = (𝜔1,  𝜔2,  𝜔3)          and          𝐫𝛼 = (𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3) Then,                   𝛚 · 𝐫𝛼 = 𝜔1𝑥𝛼,1 + 𝜔2𝑥𝛼,2 + 𝜔3𝑥𝛼,3 = ∑ 𝜔𝑗𝑥𝛼,𝑗3
𝑗=1  

So, (1) can be written as (𝐿1,  𝐿2,  𝐿3) = ∑  
𝛼 𝑚𝛼 [𝐫𝛼2(𝜔1,  𝜔2,  𝜔3) − (∑ 𝜔𝑗𝑥𝑗,𝛼3

𝑗=1 )(𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3)]  
                 ⇒   𝐿𝑖 = ∑  

𝛼 𝑚𝛼 [𝐫𝛼2𝜔𝑖 − (∑ 𝜔𝑗𝑥𝛼,𝑗3
𝑗=1 )𝑥𝛼,𝑖] ,              𝑖 = 1, 2, 3                    

= ∑  
𝛼 𝑚𝛼 [𝐫𝛼2 ∑ 𝜔𝑗𝛿𝑖𝑗3

𝑗=1 − (∑ 𝜔𝑗𝑥𝛼,𝑗3
𝑗=1 )𝑥𝛼,𝑖]             ∵    𝜔𝑖 = ∑ 𝜔𝑗𝛿𝑖𝑗3

𝑗=1                          
= ∑  

𝛼 𝑚𝛼 ∑[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑗𝑥𝛼,𝑖]𝜔𝑗3
𝑗=1 = ∑ 𝜔𝑗3

𝑗=1 ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 
𝛼 = ∑ 𝜔𝑗3

𝑗=1 𝐼𝑖𝑗 − − − −−→ (2) 

where,                  𝐼𝑖𝑗 = ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 
𝛼 = 𝑖𝑗th component of inertia tensor 

Equation (2) is required tensor form of angular momentum.  

Problem: Express rotational kinetic energy in tensor notation. 
Solution: As we know that the rotational kinetic energy of a system is given by 𝑇𝑟𝑜𝑡 = 12𝛚 · 𝐋 

Let,        𝛚 = (𝜔1,  𝜔2,  𝜔3),             𝐋 = (𝐿1,  𝐿2,  𝐿3)            ⇒     𝑇𝑟𝑜𝑡 = 12 (𝜔1𝐿1 + 𝜔2𝐿2 + 𝜔3𝐿3) = 12 ∑ 𝜔𝑖𝐿𝑖3
𝑖=1   

                     𝑇𝑟𝑜𝑡 = 12 ∑ 𝜔𝑖3
𝑖=1 (∑ 𝜔𝑗3

𝑗=1 ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 
𝛼 )                 ∵ 𝐿𝑖 = ∑ 𝜔𝑗3

𝑗=1 ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 
𝛼 = 12 ∑ 𝜔𝑖3

𝑖=1 ∑ 𝜔𝑗3
𝑗=1 (∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 

𝛼 ) = 12 ∑ 𝜔𝑖𝜔𝑗3
𝑖,𝑗=1 𝐼𝑖𝑗 − − − −−→ (1) where,                  𝐼𝑖𝑗 = ∑ 𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 𝛼 = 𝑖𝑗th component of inertia tensor 

Equation (1) is required tensor form of rotational kinetic energy. 

Problem: Express parallel axis theorem in tensor notation for a 

discrete mass distribution. 
Solution: Consider a rigid body in the form of discrete mass distribution (i.e., 

a set of particles). Let, C  be the centre of mass of the body. We consider two 

parallel coordinate systems 𝑂𝑥𝑦𝑧 and 𝐶𝑥′𝑦′𝑧′, as shown in the figure. 

Let,    𝑀 = total mass of the body 𝐫𝛼 =  position vector of 𝛼-th particle of mass 𝑚𝛼 with respect to origin “𝑂” 𝐫𝛼′  = position vector of 𝛼-th particle of mass 𝑚𝛼 with respect to centre of 

mass “𝐶” 𝐫𝑐  =  position vector of centre of mass “C ” with respect to origin “𝑂” 

From figure,                                    𝐫𝛼 = 𝐫𝑐 + 𝐫𝛼′ − − − − − − − −→ (1) 



Mechanics Made Easy   Moment of Inertia 

Prepared by: Dr. Amir Mahmood Page 9 

 

Let,    𝐫𝛼 = (𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3),     𝐫𝑐 = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3)   and    𝐫𝛼′ = (𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ ) 

Equation (1) becomes 

                         (𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3) = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3) + (𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ ) 

                         ⇒   𝑥𝛼,𝑖 = 𝑥𝑐,𝑖 + 𝑥𝛼,𝑖′ ,         𝑖 = 1, 2, 3     − − − − − − − −→ (2) 

As we know that                       𝐼𝑖𝑗 = ∑𝑚𝛼[𝐫𝛼2𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 
𝛼 = ∑𝑚𝛼[(𝐫𝛼 · 𝐫𝛼)𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗] 

𝛼                                                                        
= ∑𝑚𝛼[((𝐫𝑐 + 𝐫𝛼′ ) · (𝐫𝑐 + 𝐫𝛼′ ))𝛿𝑖𝑗 − (𝑥𝑐,𝑖 + 𝑥𝛼,𝑖′ )(𝑥𝑐,𝑗 + 𝑥𝛼,𝑗′ )]  

𝛼               (by using (1) and (2))
= ∑𝑚𝛼[(𝐫𝑐 · 𝐫𝑐 + 2 𝐫𝑐 · 𝐫𝛼′ + 𝐫𝛼′ · 𝐫𝛼′ )𝛿𝑖𝑗 − 𝑥𝑐,𝑖𝑥𝑐,𝑗 − 𝑥𝑐,𝑖𝑥𝛼,𝑗′ − 𝑥𝑐,𝑗𝑥𝛼,𝑖′ − 𝑥𝛼,𝑖′ 𝑥𝛼,𝑗′ ] 

𝛼 = ∑𝑚𝛼[(𝐫𝑐2 + 2 𝐫𝑐 · 𝐫𝛼′ + 𝐫𝛼′2)𝛿𝑖𝑗 − 𝑥𝑐,𝑖𝑥𝑐,𝑗 − 𝑥𝑐,𝑖𝑥𝛼,𝑗′ − 𝑥𝑐,𝑗𝑥𝛼,𝑖′ − 𝑥𝛼,𝑖′ 𝑥𝛼,𝑗′ ] 
𝛼                              

= ∑𝑚𝛼[𝐫𝛼′2𝛿𝑖𝑗 − 𝑥𝛼,𝑖′ 𝑥𝛼,𝑗′ ] 
𝛼 + 2 𝐫𝑐 · (∑𝑚𝛼𝐫𝛼′ 

𝛼 )𝛿𝑖𝑗 + (∑𝑚𝛼 
𝛼 )𝐫𝑐2𝛿𝑖𝑗 − (∑𝑚𝛼 

𝛼 )𝑥𝑐,𝑖𝑥𝑐,𝑗
− (∑𝑚𝛼 

𝛼 𝑥𝛼,𝑗′ )𝑥𝑐,𝑖 − (∑𝑚𝛼 
𝛼 𝑥𝛼,𝑖′ )𝑥𝑐,𝑗 − − − − − − − − − − − −−→ (3) 

Now ,        ∑𝑚𝛼[𝐫𝛼′2𝛿𝑖𝑗 − 𝑥𝛼,𝑖′ 𝑥𝛼,𝑗′ ] 
𝛼 = 𝐼𝑖𝑗′ = 𝑖𝑗th component of inertia tensor with respect to 𝐶𝑥′𝑦′𝑧′ system 

Also,   ∑𝑚𝛼𝐫𝛼′ 
𝛼 = 𝟎,   (∵  𝐫𝛼′  is the position vector of 𝛼    ̠    th particle of mass 𝑚𝛼 with respect to centre of mass “𝐶”)

⇒ ∑𝑚𝛼(𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ ) 
𝛼 = (0, 0, 0)   ⇒    ∑𝑚𝛼𝑥𝛼,𝑖′ 

𝛼 = 0,    𝑖 = 1, 2, 3    ∵  𝐫𝛼′ = (𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ ) 

And,         ∑𝑚𝛼 
𝛼 = 𝑀 = total mass of the body 

So equation (3) becomes                                      𝐼𝑖𝑗 = 𝐼𝑖𝑗′ + 𝑀𝐫𝑐2𝛿𝑖𝑗 − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗 

This is required tensor form of parallel axis theorem for discrete mass distribution. 

Problem: Express parallel axis theorem in tensor notation for a continuous mass distribution. 
Solution: Consider a rigid body in the form of continuous mass distribution. Let, C  be the centre of mass of the body. 

We consider two parallel coordinate systems 𝑂𝑥𝑦𝑧 and 𝐶𝑥′𝑦′𝑧′, as shown in the figure. 

Let,  𝑀  = total mass of the body 𝐫 = position vector of elementary mass d𝑚 with respect to origin “𝑂” 𝐫′ = position vector of elementary mass d𝑚 with respect to centre of mass “𝐶” 𝐫𝑐  = position vector of centre of mass “C ” with respect to origin “𝑂” 

From figure,                                    𝐫 = 𝐫𝑐 + 𝐫′ − − − − − − − −→ (1) 

Let,    𝐫 = (𝑥1,  𝑥2,  𝑥3),     𝐫𝑐 = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3)   and    𝐫′ = (𝑥1′ ,  𝑥2′ ,  𝑥3′ ) So, equation (1) becomes        (𝑥1,  𝑥2,  𝑥3) = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3) + (𝑥1′ ,  𝑥2′ ,  𝑥3′ ) 

                         ⇒   𝑥𝑖 = 𝑥𝑐,𝑖 + 𝑥𝑖′,         𝑖 = 1, 2, 3     − − − − − − − −→ (2)      𝐼𝑖𝑗 = ∫[𝐫𝟐𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗]d𝑚 
𝑀 = ∫[(𝐫 · 𝐫)𝛿𝑖𝑗 − 𝑥𝛼,𝑖𝑥𝛼,𝑗]d𝑚 

𝑀                                                                  
= ∫[((𝐫𝑐 + 𝐫′) · (𝐫𝑐 + 𝐫′))𝛿𝑖𝑗 − (𝑥𝑐,𝑖 + 𝑥𝑖′)(𝑥𝑐,𝑗 + 𝑥𝑗′)]d𝑚 

𝑀               (by using (1) and (2))
= ∫[(𝐫𝑐 · 𝐫𝑐 + 2 𝐫𝑐 · 𝐫′ + 𝐫′ · 𝐫′)𝛿𝑖𝑗 − 𝑥𝑐,𝑖𝑥𝑐,𝑗 − 𝑥𝑐,𝑖𝑥𝑗′ − 𝑥𝑐,𝑗𝑥𝑖′ − 𝑥𝑖′𝑥𝑗′]d𝑚 

𝑀  
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                        𝐼𝑖𝑗 = ∫[(𝐫𝑐2 + 2 𝐫𝑐 · 𝐫′ + 𝐫′2)𝛿𝑖𝑗 − 𝑥𝑐,𝑖𝑥𝑐,𝑗 − 𝑥𝑐,𝑖𝑥𝑗′ − 𝑥𝑐,𝑗𝑥𝑖′ − 𝑥𝑖′𝑥𝑗′]d𝑚 
𝑀= ∫[𝐫′2𝛿𝑖𝑗 − 𝑥𝑖′𝑥𝑗′]d𝑚 
𝑀 + 2𝐫𝑐 · (∫ 𝐫′d𝑚 

𝑀 )𝛿𝑖𝑗 + (∫d𝑚 
𝑀 )𝐫𝑐2𝛿𝑖𝑗 − (∫d𝑚 

𝑀 )𝑥𝑐,𝑖𝑥𝑐,𝑗 − (∫𝑥𝑗′d𝑚 
𝑀 )𝑥𝑐,𝑖

− (∫𝑥𝑖′d𝑚 
𝑀 )𝑥𝑐,𝑗   − − − − − − − − − − − −−→ (3) 

Now ,        ∫[𝐫′2𝛿𝑖𝑗 − 𝑥𝑖′𝑥𝑗′]d𝑚 
𝑀 = 𝐼𝑖𝑗′ = 𝑖𝑗th component of inertia tensor with respect to 𝐶𝑥′𝑦′𝑧′ system 

Also,   ∫ 𝐫′d𝑚 
𝑀 = 𝟎,      (∵      𝐫′ is the position vector of mass element d𝑚 with respect to centre of mass “𝐶”)   

⇒   ∫(𝑥1′ ,  𝑥2′ ,  𝑥3′ )d𝑚 
𝑀 = (0, 0, 0)     ⇒      ∫ 𝑥𝑖′d𝑚 

𝑀 = 0,    𝑖 = 1, 2, 3             ∵   𝐫′ = (𝑥1′ ,  𝑥2′ ,  𝑥3′ )     
And,         ∫ d𝑚 

𝑀 = 𝑀 = total mass of the body 

So equation (3) becomes                                      𝐼𝑖𝑗 = 𝐼𝑖𝑗′ + 𝑀𝐫𝑐2𝛿𝑖𝑗 − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗 

This is required tensor form of parallel axis theorem for continuous mass distribution. 

Problem: State and prove parallel axis theorem for the case of products of inertia for a discrete mass 

distribution.  
Statement: Consider a rigid body, in the form of discrete mass distribution (i.e., a set of particles). Let, C  be the 

centre of mass of the body. If 𝑂𝑥𝑦𝑧 and 𝐶𝑥′𝑦′𝑧′ be two parallel coordinate systems as shown in figure, then we have 𝐼𝑖𝑗 = 𝐼𝑖𝑗′ − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗,      𝑖 ≠ 𝑗,     𝑖, 𝑗 ∈ {1, 2, 3} 𝐼𝑖𝑗 = product of inertia with respect to 𝑂𝑥𝑦𝑧˗system  𝐼𝑖𝑗′ = product of inertia with respect to 𝐶𝑥′𝑦′𝑧′˗system  (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3) =   position vector of centre of mass “𝐶 ” with respect to origin “𝑂”  𝑀  =  total mass of the body  

Proof: Consider a rigid body, in the form of a set of particles.  Let,    𝐫𝛼 = position vector of 𝛼˗th particle of mass 𝑚𝛼  with respect to origin “𝑂”  𝐫𝛼′  = position vector of 𝛼-th particle of mass 𝑚𝛼 with respect to centre of mass “𝐶” 𝐫𝑐  =  position vector of centre of mass “C ” with respect to origin “𝑂” 
From figure,                                    𝐫𝛼 = 𝐫𝑐 + 𝐫𝛼′ − − − − − − − −→ (1) 

Let,    𝐫𝛼 = (𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3),     𝐫𝑐 = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3)   and    𝐫𝛼′ = (𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ ) So, equation (1) becomes      (𝑥𝛼,1,  𝑥𝛼,2,  𝑥𝛼,3) = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3) + (𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ )  

                         ⇒   𝑥𝛼,𝑖 = 𝑥𝑐,𝑖 + 𝑥𝛼,𝑖′ ,         𝑖 = 1, 2, 3     − − − − − − − −→ (2) Now consider for 𝑖 ≠ 𝑗,    𝐼𝑖𝑗 = −∑𝑚𝛼 
𝛼 𝑥𝛼,𝑖𝑥𝛼,𝑗 = −∑𝑚𝛼 

𝛼 (𝑥𝑐,𝑖 + 𝑥𝛼,𝑖′ )(𝑥𝑐,𝑗 + 𝑥𝛼,𝑗′ )
= −(∑𝑚𝛼 

𝛼 )𝑥𝑐,𝑖𝑥𝑐,𝑗 − (∑𝑚𝛼 
𝛼 𝑥𝛼,𝑗′ )𝑥𝑐,𝑖 − (∑𝑚𝛼 

𝛼 𝑥𝛼,𝑖′ )𝑥𝑐,𝑗 − ∑𝑚𝛼 
𝑖 𝑥𝛼,𝑖′ 𝑥𝛼,𝑗′ − − − −→ (3) 

where,            ∑𝑚𝛼 
𝛼 = 𝑀 = total mass of the body,  

Also,          − ∑𝑚𝛼 
𝑖 𝑥𝛼,𝑖′ 𝑥𝛼,𝑗′ = 𝐼𝑖𝑗′ = product of inertia with respect to 𝐶𝑥′𝑦′𝑧′˗system 

∑𝑚𝛼𝐫𝛼′ 
𝛼 = 𝟎   ⇒    ∑𝑚𝛼(𝑥𝛼,1′ ,  𝑥𝛼,2′ ,  𝑥𝛼,3′ ) 

𝛼 = (0, 0, 0)     ⇒      ∑𝑚𝛼𝑥𝛼,𝑖′ 
𝛼 = 0,    𝑖 = 1, 2, 3 ⇒         𝐼𝑖𝑗 = 𝐼𝑖𝑗′ − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗,      𝑖 ≠ 𝑗,     𝑖, 𝑗 ∈ {1, 2, 3}             Hence proved. 
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Problem: State and prove parallel axis theorem for the case of products of inertia for a continuous mass 

distribution.  
Statement: Consider a rigid body, in the form of a continuous mass distribution. Let, C  be the centre of mass of the 

body. If 𝑂𝑥𝑦𝑧 and 𝐶𝑥′𝑦′𝑧′ be two parallel coordinate systems as shown in the figure, then we have 
                                              𝐼𝑖𝑗 = 𝐼𝑖𝑗′ − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗,      𝑖 ≠ 𝑗,     𝑖, 𝑗 ∈ {1, 2, 3} 𝐼𝑖𝑗 = product of inertia with respect to 𝑂𝑥𝑦𝑧˗system  𝐼𝑖𝑗′ = product of inertia with respect to 𝐶𝑥′𝑦′𝑧′˗system  (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3) =   position vector of centre of mass “𝐶 ” with respect to origin “𝑂”  𝑀  =  total mass of the body  

Proof: Consider a rigid body, in the form of a set of particles.  𝐫 = position vector of elementary mass d𝑚 with respect to origin “𝑂” 𝐫′ = position vector of elementary mass d𝑚 with respect to centre of mass “𝐶” 𝐫𝑐  = position vector of centre of mass “C ” with respect to origin “𝑂” 
From figure,                                    𝐫 = 𝐫𝑐 + 𝐫′ − − − − − − − −→ (1) 

Let,    𝐫 = (𝑥1,  𝑥2,  𝑥3),     𝐫𝑐 = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3)   and    𝐫′ = (𝑥1′ ,  𝑥2′ ,  𝑥3′ ) So, equation (1) becomes        (𝑥1,  𝑥2,  𝑥3) = (𝑥𝑐,1,  𝑥𝑐,2,  𝑥𝑐,3) + (𝑥1′ ,  𝑥2′ ,  𝑥3′ ) 

                         ⇒   𝑥𝑖 = 𝑥𝑐,𝑖 + 𝑥𝑖′,         𝑖 = 1, 2, 3     − − − − − − − −→ (2) Now consider for 𝑖 ≠ 𝑗,       𝐼𝑖𝑗 = − ∫𝑥𝑖𝑥𝑗d𝑚 
𝑀 = − ∫(𝑥𝑐,𝑖 + 𝑥𝑖′)(𝑥𝑐,𝑗 + 𝑥𝑗′)d𝑚 

𝑀= −(∫d𝑚 
𝑀 )𝑥𝑐,𝑖𝑥𝑐,𝑗 − (∫𝑥𝑗′d𝑚 

𝑀 )𝑥𝑐,𝑖 − (∫𝑥𝑖′d𝑚 
𝑀 )𝑥𝑐,𝑗 − ∫𝑥𝑖′𝑥𝑗′d𝑚 

𝑀  

where,            ∫ d𝑚 
𝑀 = 𝑀 = total mass of the body,  

Also,          − ∫𝑥𝑖′𝑥𝑗′d𝑚 
𝑀 = 𝐼𝑖𝑗′ = product of inertia with respect to 𝐶𝑥′𝑦′𝑧′˗system 

And   ∫ 𝐫′d𝑚 
𝑀 = 𝟎 ⇒ ∫(𝑥1′ ,  𝑥2′ ,  𝑥3′ )d𝑚 

𝑀 = (∫𝑥1′d𝑚 
𝑀 , ∫ 𝑥2′d𝑚 

𝑀 , ∫ 𝑥2′d𝑚 
𝑀 ) = (0, 0, 0) ⇒ ∫𝑥𝑖′d𝑚 

𝑀 = 0,    𝑖 = 1, 2, 3 

So equation (3) gives                                     𝐼𝑖𝑗 = 𝐼𝑖𝑗′ − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗,      𝑖 ≠ 𝑗,     𝑖, 𝑗 ∈ {1, 2, 3}         Hence proved. 
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𝐿1 = 𝜆𝜔1,       𝐿2 = 𝜆𝜔2,        𝐿3 = 𝜆𝜔3  − − − − − −−→ (1) 

           (𝐿1𝐿2𝐿3) =  (𝐼11 𝐼12 𝐼13𝐼12 𝐼22 𝐼23𝐼13 𝐼23 𝐼33)(𝜔1𝜔2𝜔3) − − − − − −−→ (2) 

𝐼11𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 𝜆𝜔1𝐼12𝜔1 + 𝐼22𝜔2 + 𝐼23𝜔3 = 𝜆𝜔2𝐼13𝜔1 + 𝐼23𝜔2 + 𝐼33𝜔3 = 𝜆𝜔3 

(𝐼11 − 𝜆)𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 0𝐼12𝜔1 + (𝐼22 − 𝜆)𝜔2 + 𝐼23𝜔3 = 0𝐼13𝜔1 + 𝐼23𝜔2 + (𝐼33 − 𝜆)𝜔3 = 0} − − − − − −−→ (3) 

Definition: A set of three mutually perpendicular axes having origin 𝑂 which are fixed in the rigid body and 

rotating with it and which are such that the product of inertia with respect to them are zero are called “principal 

axes of inertia” or simply “principal axes” of body at point 𝑂. 

Definition: An axis is called “principal axis of inertia” or simply “principal axis” of a rigid body if directions of 

angular momentum 𝐋 and angular velocity 𝛚 are same, when rigid body is rotating about this axis.  

[ 𝐈 ] = (𝐼11 0 00 𝐼22 00 0 𝐼33) 

 ⇒    𝐋𝑥 = 𝐼11𝛚𝑥 

Theorem: Above two definitions of principal axes are 

equivalent.  
Proof: Suppose that for a rigid body we have three 

mutually concurrent and mutually perpendicular axes for 

which first definition holds. Choosing these axes as 

Cartesian coordinate axes, the inertia matrix with respect 

to this coordinate system is given by 

If rigid body rotates about  𝑥 − axis, then its angular 

velocity has the form  𝛚𝑥 = (𝜔𝑥100 ) 

As we know that  [𝐋𝑥] = [ 𝐈 ][𝛚𝑥]  ⇒   (𝐿𝑥1𝐿𝑥2𝐿𝑥3) = (𝐼11 0 00 𝐼22 00 0 𝐼33)(𝜔𝑥100 ) = (𝐼11𝜔𝑥100 ) =
𝐼11 (𝜔𝑥100 )    
This shows that angular momentum is parallel to angular 

velocity. Similarly, we can show that when body rotates 

about 𝑦 or 𝑧 axis then angular momentum is parallel to 

angular velocity. Hence second definition also holds for 

given axes. 

⇒     𝐋𝑥 = λ1𝛚𝑥,        where λ is constant ⇒     𝐿𝑥1𝐢 + 𝐿𝑥2𝐣 + 𝐿𝑥3𝐤 = λ1(𝜔𝑥1𝐢 + 0𝐣 + 0𝐤) ⇒     (𝐿𝑥1𝐿𝑥2𝐿𝑥3) = (λ1𝜔𝑥100 ) − − − −→ (1) 

   (𝐿𝑥1𝐿𝑥2𝐿𝑥3) = (𝐼11 𝐼12 𝐼13𝐼12 𝐼22 𝐼23𝐼13 𝐼23 𝐼33)(𝜔𝑥100 ) = (𝐼11𝜔𝑥1𝐼12𝜔𝑥1𝐼13𝜔𝑥1) → (2) 

(λ1𝜔𝑥100 ) = (𝐼11𝜔𝑥1𝐼12𝜔𝑥1𝐼13𝜔𝑥1) ⇒        𝐼12 = 𝐼13 = 0           ∵    𝜔𝑥1 ≠ 0 

Conversely, suppose that for a rigid body we have 

three mutually concurrent and mutually 

perpendicular axes for which second definition holds. 

Choosing these axes as Cartesian coordinate axes, and 

assuming that body rotates about  𝑥 − axis, we have, 

by supposition, angular momentum and angular 

velocity are parallel 

As we know that     [𝐋𝑥] = [ 𝐈 ][𝛚𝑥] 
From (1) and (2), we have 

Similarly, assuming the rotation of body about 𝑦 − 

axis (𝐋𝑦 = λ2𝛚𝑦), we get,  𝐼12 = 𝐼23 = 0. ⇒ All product of inertia are zero. Hence first definition 

also holds for given axes.  (Note: λ𝑖 = 𝐼𝑖𝑖,   𝑖 = 1,2,3) 

Definition: The moment of inertia with respect to a principal axis is called “principal moment of inertia”. 

Theorem: Prove that for a rigid body a set of three mutually perpendicular principal axes exists at given 

point. 
Proof: As we know from the definition of principal axis that if a rigid body rotates bout principal axes, passing 

through a point 𝑂, then the angular momentum 𝐋 and the angular velocity 𝛚 of the body are in same direction. So 

we can write,            𝐋 = 𝜆𝛚,               where,   𝜆 is  constant Let,                               𝐋 = 𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤,                            𝛚 = 𝜔1𝐢 + 𝜔2𝐣 + 𝜔3𝐤            Then,                                                                𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤 = 𝜆(𝜔1𝐢 + 𝜔2𝐣 + 𝜔3𝐤)            
Comparing corresponding components on both sides of above vector equation, we get 

As we know that,                                                            [𝐋] = [ 𝐈 ][𝛚] 
From (1) and (2), we get, 

This system can be written as, 

This is homogeneous system of three equations in three unknowns 𝜔1, 𝜔2 and 𝜔3. This system will have non 
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|𝐼11 − 𝜆 𝐼12 𝐼13𝐼12 𝐼22 − 𝜆 𝐼23𝐼13 𝐼23 𝐼33 − 𝜆| = 0 

𝐼𝑦𝑦 = 𝐼22 = 𝐼𝐷𝐸 + 𝑀|𝑂𝐷|2 = 16𝑀𝑎2 + 𝑀(𝑥˗coordinate of centre of mass 𝐶)2 = 16𝑀𝑎2 + 𝑀 (0 + √3𝑎 + √3𝑎3 )2
= 16𝑀𝑎2 + 𝑀 (2√3𝑎3 )2 = 16𝑀𝑎2 + 43𝑀𝑎2 = 𝑀𝑎2 + 8𝑀𝑎26 = 96𝑀𝑎2 = 32𝑀𝑎2 

trivial solution if an only if 

 

This is cubic equation in 𝐼 which is called characteristic equation of inertia matrix [ 𝐈 ]. It has three roots, say,  𝜆1, 𝜆2 and 𝜆3, which are, in fact, principal moments of inertia. By substituting 𝜆 = 𝜆1in system (3), we can obtain the 

ratios  𝜔1: 𝜔2: 𝜔3, which give  direction of principal axes  relative to which moment of inertia is  𝜆1. Similarly, we 

can find direction of other two principal axes corresponding to moments of inertia 𝜆2 and 𝜆3. We can always find 

three mutually perpendicular principal axes because [ 𝐈 ]  is symmetric. This shows that there exists three mutually 

perpendicular principal axes passing through given point 𝑂. 

Problem: A triangular plate is made of uniform material and has sides of lengths 𝑎, 2𝑎 and √3𝑎. 

Determine the (direction of) principal axes and corresponding principal moments of inertia at 30o 

corner (or vertex).  
Solution: Let 𝑀 and 𝜎, respectively, be the mass and surface (areal) mass density of triangular plate 𝑂𝐴𝐵 lying in 𝑥𝑦-plane, as shown in the figure, with |𝑂𝐴| = √3𝑎, |𝐴𝐵| = 𝑎 and |𝑂𝐵| = 2𝑎. 

Clearly,      |𝑂𝐵|2 = (2𝑎)2 = (√3𝑎)2 + 𝑎2 = |𝑂𝐴|2 + |𝐴𝐵|2. 

This shows that 𝑂𝐴𝐵 is right angled triangle with right angle at  𝐴. 

Also, tan(𝑚 ∠𝐴𝑂𝐵) = |𝐴𝐵||𝑂𝐴| = 𝑎√3𝑎  ⇒   𝑚 ∠𝐴𝑂𝐵 = tan−1 ( 1√3) = 30o. 
Thus, we have to find principal axes and corresponding principal 

moments of inertia at vertex 𝑂. The moment of inertia of triangular 

plate about side 𝑂𝐴 (𝑥-axis)is given by 

                               𝐼𝑥𝑥 = 𝐼11 = 𝐼𝑂𝐴 = 16 𝑀|𝐴𝐵|2 = 16 𝑀𝑎2  

The moment of inertia of triangular plate about side  𝐴𝐵 is given by 

         𝐼𝐴𝐵 = 16 𝑀|𝑂𝐴|2 = 16 𝑀(√3𝑎)2 = 12 𝑀𝑎2  

Let 𝐶 be the centre of mass of the plate and take 𝐷 on 𝑂𝐴 and 𝐸on 𝑂𝐵 such that 𝐷𝐸 is passing through 𝐶 and parallel to 𝐴𝐵. 

Then moment of inertia of plate about 𝐷𝐸 is given by (using parallel axis theorem)        𝐼𝐷𝐸 = 𝐼𝐴𝐵 − 𝑀|𝐴𝐷|2 = 12 𝑀𝑎2 − 𝑀|𝐴𝐷|2 − − − − − −→ (1)  

From figure,        |𝐴𝐷| = |𝑂𝐴| − |𝑂𝐷| = √3𝑎 −(𝑥-coordinate of centre of mass C) = √3𝑎 − 13 (𝑥𝑂 + 𝑥𝐴 + 𝑥𝐵)  = √3𝑎 − 13 (0 + √3𝑎 + √3𝑎) = √3𝑎 − 2√3𝑎3 = 3√3𝑎−2√3𝑎3 = √3𝑎3 = 𝑎√3 − −→ (2)  

Using (2) in (1), we get,              𝐼𝐷𝐸 = 12 𝑀𝑎2 − 𝑀 ( 𝑎√3)2 = 12 𝑀𝑎2 − 13 𝑀𝑎2 = 3𝑀𝑎2−2𝑀𝑎26 = 16 𝑀𝑎2 

Then moment of inertia of plate about 𝑦-axis is given by (using parallel axis theorem), as follows, 

Then moment of inertia of plate about 𝑧-axis is given by (using perpendicular axis theorem), as follows, 𝐼𝑧𝑧 = 𝐼33 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 = 16 𝑀𝑎2 + 32 𝑀𝑎2 = 𝑀𝑎2+9𝑀𝑎26 = 106 𝑀𝑎2 = 53𝑀𝑎2  𝐼𝑥𝑦 = 𝐼12 = −∫𝑥𝑦 d𝑚 = −𝜎∫𝑥𝑦 d𝑥d𝑦 = −𝜎 ∫ (∫ 𝑥𝑦 d𝑦𝑥√3𝑦=0 )d𝑥√3𝑎𝑥=0 = −𝜎∫ (𝑥 (𝑦22 )|𝑦=0
𝑥√3 )d𝑥√3𝑎𝑥=0      ∵ d𝑚 = 𝜎d𝑥d𝑦         = − 𝜎6 ∫ 𝑥3d𝑥√3𝑎𝑥=0 = − 16 ( 2𝑀√3𝑎2) (𝑥44 )|𝑥=0√3𝑎 = − 16 ( 2𝑀√3𝑎2) (9𝑎44 ) = − √34 𝑀𝑎2          ∵  𝜎 = 𝑀12|𝑂𝐴||𝐴𝐵| = 𝑀12(√3𝑎)(𝑎) = 2𝑀√3𝑎2 

As 𝑧 = 0 in 𝑥𝑦-plane, therefore,     𝐼𝑥𝑧 = 𝐼13 = −∫𝑥𝑧 d𝑚 = 0  and  𝐼𝑦𝑧 = 𝐼23 = −∫𝑦𝑧 d𝑚 = 0  

The inertia matrix at point 𝑂, with respect to coordinate system 𝑂𝑥𝑦𝑧, is given by 
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det([𝐈𝑂] − 𝜆[𝐼3]) = 0   ⇒    |2𝛼 − 𝜆 −3√3𝛼 0−3√3𝛼 18𝛼 − 𝜆 00 0 20𝛼 − 𝜆| = 0 

⇒     {−18𝛼𝑥1 − 3√3𝛼𝑥2 = 0−3√3𝛼𝑥1 − 2𝛼𝑥2 = 0      ⇒      {6𝑥1 + √3𝑥2 = 0  − − − − − −(3)3√3𝑥1 + 2𝑥2 = 0  − − − − − (4) 

([𝐈𝑂] − 𝜆2[𝐼3])𝑌 = 𝟎      ⇒        (−(8 + √91)𝛼 −3√3𝛼 0−3√3𝛼 (8 − √91)𝛼 00 0 (10 − √91)𝛼)(𝑦1𝑦2𝑦3) = (000) 

⇒     { −(8 + √91)𝛼𝑦1 − 3√3𝛼𝑦2 = 0−3√3𝛼𝑦1 + (8 − √91)𝛼𝑦2 = 0                       (10 − √91)𝛼𝑦3 = 0        ⇒      {(8 + √91)𝑦1 + 3√3𝑦2 = 0  − − − − − −(5)3√3𝑦1 − (8 − √91)𝑦2 = 0 − − − − − −(6)    𝑦3 = 0  

{(8 + √91)𝑦1 + 3√3𝑦2 = 0                                    𝑦3 = 0  

[𝐈𝑂] = (𝐼11 𝐼12 𝐼13𝐼12 𝐼22 𝐼23𝐼13 𝐼23 𝐼33) = ( 
 16𝑀𝑎2 − √34 𝑀𝑎2 0− √34 𝑀𝑎2 32 𝑀𝑎2 00 0 53 𝑀𝑎2) 

 = ( 2𝛼 −3√3𝛼 0−3√3𝛼 18𝛼 00 0 20𝛼) ,      where     𝛼 = 112 𝑀𝑎2  

To find the eigenvalues, we have the characteristic equation det([𝐈𝑂] − 𝜆[𝐼3]) = 0, where [𝐼3] is unit matrix of 

order 3. 

On expanding by third row, we get,       (20𝛼 − 𝜆) [(2𝛼 − 𝜆)(18𝛼 − 𝜆) − (−3√3𝛼)2] = 0   ⇒    (20𝛼 − 𝜆)[36𝛼2 − 2𝛼𝜆 − 18𝛼𝜆 + 𝜆2 − 27𝛼2] = 0  ⇒ (20𝛼 − 𝜆)[𝜆2 − 20𝛼𝜆 + 9𝛼2] = 0  

 Either      20𝛼 − 𝜆 = 0 ⇒   𝜆 = 20𝛼 
or,      𝜆2 − 20𝛼𝜆 + 9𝛼2 = 0 ⇒   𝜆 = 20𝛼±√(20𝛼)2−4(1)(9𝛼2)2(1)  ⇒   𝜆 = 20𝛼±√400𝛼2−36𝛼22 = 20𝛼±√364𝛼22 = 20𝛼±2√91𝛼2   = (10 ± √91)𝛼  

Thus,          𝜆1 = 20𝛼,          𝜆2 = (10 + √91)𝛼,        and        𝜆3 = (10 − √91)𝛼   

These eigenvalues gives principal moments of inertia at point 𝑂. To find the direction of corresponding principal 

axes, we find eigenvectors corresponding to each eigenvalue. 

For 𝝀𝟏 = 𝟐𝟎𝜶: Let 𝑋 = (𝑥1𝑥2𝑥3) be the required eigenvector corresponding to eigenvalue 𝜆1 = 20𝛼, then 

([𝐈𝑂] − 𝜆1[𝐼3])𝑋 = 𝟎 ⇒ (2𝛼 − 20𝛼 −3√3𝛼 0−3√3𝛼 18𝛼 − 20𝛼 00 0 20𝛼 − 20𝛼)(𝑥1𝑥2𝑥3) = (000) ⇒ ( −18𝛼 −3√3𝛼 0−3√3𝛼 −2𝛼 00 0 0)(𝑥1𝑥2𝑥3) = (000)  

From Eq. (3), we have 𝑥1 = − √36 𝑥2 and putting it in (4), we get, 3√3(√36 𝑥2) − 2𝑥2 = 0 ⇒ 32 𝑥2 − 2𝑥2 = 0 ⇒ 𝑥2 = 0. 

Put 𝑥2 = 0 in (3),  we get,  𝑥1 = 0  Thus, 𝑋 = (𝑥1𝑥2𝑥3) = (00𝑟) ,    where,   𝑟 ∈ ℝ , 𝑟 ≠ 0        ⇒         For   𝑟 = 1, we get,    𝑋 = (001) = 0𝐢 + 0𝐣 + 𝐤 = 𝐤  

For  𝝀𝟐 = (𝟏𝟎 + √𝟗𝟏)𝜶: Let 𝑌 = (𝑦1𝑦2𝑦3) be the required eigenvector corresponding to eigenvalue 𝜆2 = (10 +√91)𝛼, then 

From Eq. (5), we have  
𝑦1𝑦2 = − 3√38 + √91  and from Eq. (6), we have   

𝑦1𝑦2 = 8 − √913√3 = 8 − √913√3 · 8 + √918 + √91 = −273√3(8 + √91) = − 3√38 + √91 

Thus, Eq. (5) and Eq. (6) are mutually identical, therefore, last system of equations can be written as 

Let,  𝑦2 = 𝑠,    where,   𝑠 ∈ ℝ , 𝑠 ≠ 0        ⇒        𝑦1 = −3√3 8 + √91 𝑠 
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([𝐈𝑂] − 𝜆2[𝐼3])𝑍 = 𝟎      ⇒        (−(8 − √91)𝛼 −3√3𝛼 0−3√3𝛼 (8 + √91)𝛼 00 0 (10 + √91)𝛼)(𝑧1𝑧2𝑧3) = (000) 

⇒     { −(8 − √91)𝛼𝑧1 − 3√3𝛼𝑧2 = 0−3√3𝛼𝑧1 + (8 + √91)𝛼𝑧2 = 0                       (10 + √91)𝛼𝑧3 = 0        ⇒      {(8 − √91)𝑧1 + 3√3𝑧2 = 0  − − − − − −(7)3√3𝑧1 − (8 + √91)𝑧2 = 0 − − − − − −(8)    𝑧3 = 0  

{(8 − √91)𝑧1 + 3√3𝑧2 = 0                                    𝑧3 = 0  

𝐼𝑂𝑖𝑗 = 𝐼𝐶𝑖𝑗 + 𝑀𝐫𝑐2𝛿𝑖𝑗 − 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗  ⇒  𝐼𝐶𝑖𝑗 = 𝐼𝑂𝑖𝑗 − 𝑀𝐫𝑐2𝛿𝑖𝑗 + 𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗 

Therefore, 𝑌 = (𝑦1𝑦2𝑦3) = ( −3√3 8 + √91 𝑠𝑠0 )  ⇒  For   𝑠 = −(8 + √91),    we get,    𝑌 = ( 3√3−(8 + √91)0 ) = 3√3𝐢 − (8 + √91)𝐣 
For   𝝀𝟑 = (𝟏𝟎 − √𝟗𝟏)𝜶: Let 𝑍 = (𝑧1𝑧2𝑧3) be the required eigenvector corresponding to eigenvalue           𝜆3 = (10 − √91)𝛼, then 

From Eq. (7), we have  
𝑧1𝑧2 = − 3√38 − √91  and from Eq. (8), we have   

𝑧1𝑧2 = 8 + √913√3 = 8 + √913√3 · 8 − √918 − √91 = −273√3(8 − √91) = − 3√38 − √91 

Thus, Eq. (7) and Eq. (8) are mutually identical, therefore, last system of equations can be written as 

Let,  𝑧2 = 𝑡,    where,   𝑡 ∈ ℝ , 𝑡 ≠ 0        ⇒        𝑧1 = −3√3 8 − √91 𝑡 

Therefore, 𝑍 = (𝑧1𝑧2𝑧3) = ( −3√3 8 − √91 𝑡𝑡0 ) ⇒   For   𝑡 = −(8 − √91),   we get,     𝑍 = ( 3√3−(8 − √91)0 ) = 3√3𝐢 − (8 − √91)𝐣 
Principal moment of inertia Principal axis Normalized principal axis 𝜆1 = 20𝛼 𝑋 = 𝐤 �̂� = 𝐤 𝜆2 = (10 + √91)𝛼 𝑌 = 3√3𝐢 − (8 + √91)𝐣 �̂� = 1√182 + 16√91 [3√3𝐢 − (8 + √91)𝐣] 𝜆3 = (10 − √91)𝛼 𝑍 = 3√3𝐢 − (8 − √91)𝐣 �̂� = 1√182 + 16√91 [3√3𝐢 − (8 − √91)𝐣] 

Problem: Determine the (direction of) principal axes and corresponding principal moments of inertia of a 

uniform solid hemisphere at a point on its rim. 
Solution: Let 𝑀, 𝑎 and 𝜌, respectively, be the mass, radius of the base and volume mass density of a uniform solid 

hemisphere. Let 𝐴, 𝑂 and 𝐶, respectively, be point on the rim, centre of the base and centre of mass of the 

hemisphere. Choose three coordinate axes  𝐴𝑥𝑦𝑧,  𝑂𝑥′𝑦′𝑧′  and  𝐶𝑥′′𝑦′′𝑧′′ as shown  in the figure.  

As we know that, the moments and product of inertia with 

respect to coordinate system 𝑂𝑥′𝑦′𝑧′ are given by                𝐼𝑂11 = 𝐼𝑂22 = 𝐼𝑂33 = 25 𝑀𝑎2  and   𝐼𝑂12 = 𝐼𝑂23 = 𝐼𝑂13 = 0. 

Therefore, the inertia matrix with respect to coordinate 

system 𝑂𝑥′𝑦′𝑧′ is given by  

[𝐈𝑂] = (𝐼𝑂𝑖𝑗) = (𝐼𝑂11 𝐼𝑂12 𝐼𝑂13𝐼𝑂12 𝐼𝑂22 𝐼𝑂23𝐼𝑂13 𝐼𝑂23 𝐼𝑂33) = ( 
 25 𝑀𝑎2 0 00 25 𝑀𝑎2 00 0 25 𝑀𝑎2) 

 
  

Next, we apply parallel axis theorem in tensor notation to find inertia tensor [𝐈𝐶] with respect to coordinate 

system 𝐶𝑥′′𝑦′′𝑧′′, as follows 
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⇒  (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) =
( 
  

25𝑀𝑎2 0 00 25𝑀𝑎2 00 0 25𝑀𝑎2) 
  − 𝑀

( 
  

964𝑎2 0 00 964𝑎2 00 0 964𝑎2) 
  + 𝑀(0 0 00 0 00 0 964𝑎2)   

𝐼𝐴𝑖𝑗 = 𝐼𝐶𝑖𝑗 + 𝑀𝐫𝑐′2𝛿𝑖𝑗 − 𝑀𝑥𝑐,𝑖′ 𝑥𝑐,𝑗′  

⇒    (𝐼𝐴11 𝐼𝐴12 𝐼𝐴13𝐼𝐴12 𝐼𝐴22 𝐼𝐴23𝐼𝐴13 𝐼𝐴23 𝐼𝐴33) =
( 
  

83320𝑀𝑎2 0 00 83320𝑀𝑎2 00 0 25𝑀𝑎2) 
  + 𝑀

( 
  

7364𝑎2 0 00 7364𝑎2 00 0 7364𝑎2) 
  − 𝑀 ( 

 0 0 00 𝑎2 38𝑎20 38𝑎2 964𝑎2) 
 

 

[𝐈𝐴] = (𝐼𝐴11 𝐼𝐴12 𝐼𝐴13𝐼𝐴12 𝐼𝐴22 𝐼𝐴23𝐼𝐴13 𝐼𝐴23 𝐼𝐴33) =
( 
  

83320𝑀𝑎2 + 7364𝑀𝑎2 0 00 83320𝑀𝑎2 + 7364𝑀𝑎2 − 𝑀𝑎2 −38𝑀𝑎2
0 −38𝑎2 25𝑀𝑎2 + 7364𝑀𝑎2 − 964𝑀𝑎2) 

   

[𝐈𝐴] =
( 
  

75𝑀𝑎2 0 00 25𝑀𝑎2 −38𝑀𝑎20 −38𝑀𝑎2 75𝑀𝑎2 ) 
  = (56𝛼 0 00 16𝛼 −15𝛼0 −15𝛼 56𝛼 ) ,      where,   𝛼 = 140𝑀𝑎2 

det([𝐈𝐴] − 𝜆[𝐼3]) = 0   ⇒    |56𝛼 − 𝜆 0 00 16𝛼 − 𝜆 −15𝛼0 −15𝛼 56𝛼 − 𝜆| = 0 

⇒  (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) = (𝐼𝑂11 𝐼𝑂12 𝐼𝑂13𝐼𝑂12 𝐼𝑂22 𝐼𝑂23𝐼𝑂13 𝐼𝑂23 𝐼𝑂33) − 𝑀(𝐫𝑐2 0 00 𝐫𝑐2 00 0 𝐫𝑐2) + 𝑀 (𝑥𝑐,1𝑥𝑐,1 𝑥𝑐,1𝑥𝑐,2 𝑥𝑐,1𝑥𝑐,3𝑥𝑐,1𝑥𝑐,2 𝑥𝑐,2𝑥𝑐,2 𝑥𝑐,2𝑥𝑐,3𝑥𝑐,1𝑥𝑐,3 𝑥𝑐,2𝑥𝑐,3 𝑥𝑐,3𝑥𝑐,3), 

where, 𝐫𝑐 = (𝑥𝑐,1, 𝑥𝑐,2, 𝑥𝑐,3) = (0, 0, 38 𝑎) is the position vector of centre of mass 𝐶 with respect to coordinate 

system 𝑂𝑥′𝑦′𝑧′.     

⇒   [𝐈𝐶] = (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) = ( 
 25 𝑀𝑎2 − 964 𝑀𝑎2 0 00 25 𝑀𝑎2 − 964 𝑀𝑎2 00 0 25 𝑀𝑎2 − 964 𝑀𝑎2 + 964 𝑀𝑎2) 

 = ( 
 83320 𝑀𝑎2 0 00 83320 𝑀𝑎2 00 0 25 𝑀𝑎2) 

 
.  

Now, we apply parallel axis theorem in tensor notation to find inertia tensor [𝐈𝐴] with respect to coordinate system 𝐴𝑥𝑦𝑧, as follows 

⇒  (𝐼𝐴11 𝐼𝐴12 𝐼𝐴13𝐼𝐴12 𝐼𝐴22 𝐼𝐴23𝐼𝐴13 𝐼𝐴23 𝐼𝐴33) = (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) + 𝑀(𝐫𝑐′2 0 00 𝐫𝑐′2 00 0 𝐫𝑐′2) − 𝑀 (𝑥𝑐,1′ 𝑥𝑐,1′ 𝑥𝑐,1′ 𝑥𝑐,2′ 𝑥𝑐,1′ 𝑥𝑐,3′𝑥𝑐,1′ 𝑥𝑐,2′ 𝑥𝑐,2′ 𝑥𝑐,2′ 𝑥𝑐,2′ 𝑥𝑐,3′𝑥𝑐,1′ 𝑥𝑐,3′ 𝑥𝑐,2′ 𝑥𝑐,3′ 𝑥𝑐,3′ 𝑥𝑐,3′ ), 

where, 𝐫𝑐′ = (𝑥𝑐,1′ , 𝑥𝑐,1′ , 𝑥𝑐,1′ ) = (0, 𝑎, 38 𝑎) is the position vector of centre of mass 𝐶 with respect to coordinate system 𝐴𝑥𝑦𝑧.  

To find the eigenvalues, we solve characteristic equation det([𝐼𝐴] − 𝜆[𝐼3]) = 0, where [𝐼3] is unit matrix of order 3. 

On expanding by first row, we get,       (56𝛼 − 𝜆)[(16𝛼 − 𝜆)(56𝛼 − 𝜆) − (−15𝛼)2] = 0   ⇒    (56𝛼 − 𝜆)[896𝛼2 − 16𝛼𝜆 − 56𝛼𝜆 + 𝜆2 − 225𝛼2] = 0  ⇒ (56𝛼 − 𝜆)[𝜆2 − 72𝛼𝜆 + 671𝛼2] = 0  

 

 Either      56𝛼 − 𝜆 = 0 ⇒   𝜆 = 56𝛼 
or,      𝜆2 − 72𝛼𝜆 + 671𝛼2 = 0 ⇒   𝜆 = 72𝛼±√(72𝛼)2−4(1)(671𝛼2)2(1)  ⇒   𝜆 = 72𝛼±√5184𝛼2−2684𝛼22 = 72𝛼±√2500𝛼22 = 72𝛼±50𝛼2   ⇒  𝜆 = 72𝛼+50𝛼2  , 72𝛼−50𝛼2 = 122𝛼2  , 22𝛼2 = 61𝛼 , 11𝛼  
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⇒     {− 40𝛼𝑥2 − 15𝛼𝑥3 = 0                 −15𝛼𝑥2 = 0      ⇒      {8𝑥2 + 3𝑥3 = 0 − − − − − −(1)              𝑥2 = 0 − − − − − −(2) 

([𝐈𝐴] − 𝜆2[𝐼3])𝑌 = 𝟎   ⇒    (56𝛼 − 61𝛼 0 00 16𝛼 − 61𝛼 −15𝛼0 −15𝛼 56𝛼 − 61𝛼)(𝑦1𝑦2𝑦3) = (000)   ⇒   (−5𝛼 0 00 −45𝛼 −15𝛼0 −15𝛼 −5𝛼 )(𝑦1𝑦2𝑦3) = (000) 

⇒     {                     −5𝛼𝑦1 = 0−45𝛼𝑦2 − 15𝛼𝑦3 = 0    −15𝛼𝑦2 − 5𝛼𝑦3 = 0        ⇒         {             𝑦1 = 0  3𝑦2 + 𝑦3 = 03𝑦2 + 𝑦3 = 0        ⇒         {            𝑦1 = 0 3𝑦2 + 𝑦3 = 0 

⇒     {                  −45𝛼𝑧1 = 0     5𝛼𝑧2 − 15𝛼𝑧3 = 0−15𝛼𝑧2 + 45𝛼𝑧3 = 0        ⇒         {            𝑧1 = 0𝑧2 − 3𝑧3 = 0𝑧2 − 3𝑧3 = 0        ⇒         {            𝑧1 = 0𝑧2 − 3𝑧3 = 0 

Thus,          𝜆1 = 56𝛼,          𝜆2 = 61𝛼,        and        𝜆3 = 11𝛼. 

These eigenvalues gives principal moments of inertia at point 𝐴. To find the direction of corresponding principal 

axes, we find eigenvectors corresponding to each eigenvalue. 

For 𝝀𝟏 = 𝟓𝟔𝜶: Let 𝑋 = (𝑥1𝑥2𝑥3) be the required eigenvector corresponding to eigenvalue 𝜆1 = 56𝛼, then 

([𝐈𝐴] − 𝜆1[𝐼3])𝑋 = 𝟎  ⇒   (56𝛼 − 56𝛼 0 00 16𝛼 − 56𝛼 −15𝛼0 −15𝛼 56𝛼 − 56𝛼)(𝑥1𝑥2𝑥3) = (000)   ⇒   (0 0 00 −40𝛼 −15𝛼0 −15𝛼 0 )(𝑥1𝑥2𝑥3) =
(000)  

Thus we have,  𝑥2 = 𝑥3 = 0  and  𝑥1 = 𝑟,    where,   𝑟 ∈ ℝ , 𝑟 ≠ 0 

Thus,   𝑋 = (𝑥1𝑥2𝑥3) = (𝑟00) ,           ⇒     For   𝑟 = 1, we get,      𝑋 = (100) = 𝐢 + 0𝐣 + 0𝐤 = 𝐢 
For  𝝀𝟐 = 𝟔𝟏𝜶: Let 𝑌 = (𝑦1𝑦2𝑦3) be the required eigenvector corresponding to eigenvalue 𝜆2 = 61𝛼, then 

Let,  𝑦2 = 𝑠,    where,   𝑠 ∈ ℝ , 𝑠 ≠ 0        ⇒        𝑦3 = −3𝑠 

Thus,    𝑌 = (𝑦1𝑦2𝑦3) = ( 0𝑠−3𝑠)       ⇒          For   𝑠 = 1, we get,        𝑌 = ( 01−3) = 0𝐢 + 𝐣 − 3𝐤 = 𝐣 − 3𝐤 

For   𝝀𝟑 = 𝟏𝟏𝜶: Let 𝑍 = (𝑧1𝑧2𝑧3) be the required eigenvector corresponding to eigenvalue 𝜆3 = 11𝛼, then 

([𝐈𝐴] − 𝜆3[𝐼3])𝑍 = 𝟎  ⇒   (56𝛼 − 11𝛼 0 00 16𝛼 − 11𝛼 −15𝛼0 −15𝛼 56𝛼 − 11𝛼)(𝑧1𝑧2𝑧3) = (000)    ⇒     (45𝛼 0 00 5𝛼 −15𝛼0 −15𝛼 45𝛼 )(𝑧1𝑧2𝑧3) = (000)  

Let,  𝑧3 = 𝑡,    where,   𝑡 ∈ ℝ , 𝑡 ≠ 0        ⇒        𝑧2 = 3𝑡 

Thus,             𝑍 = (𝑧1𝑧2𝑧3) = ( 03𝑡𝑡 )        ⇒          For   𝑡 = 1,   we get,        𝑍 = (031) = 0𝐢 + 3𝐣 + 𝐤 = 3𝐣 + 𝐤 

Principal moment of inertia Principal axis Normalized principal axis 𝜆1 = 56𝛼 𝑋 = 𝐢 �̂� = 𝐢 𝜆2 = 61𝛼 𝑌 = 𝐣 − 3𝐤 �̂� = (1/√10)(𝐣 − 3𝐤) 𝜆3 = 11𝛼 𝑍 = 3𝐣 + 𝐤 �̂� = (1/√10)(3𝐣 + 𝐤) 

Definition: Two distributions of matter are said to be “equimomental” if they have the same moment of inertia 

about any line in spase. 

Theorem: Two systems 𝑆1 and 𝑆2 are equimomental if and only if the following three conditions are 

satisfied, 

(𝑖) they have same mass, 

(𝑖𝑖) they have same centre of mass, and 

(𝑖𝑖𝑖) they have same principal axes and principal moments of inertia at centre of mass. 
Proof: Suppose that two systems 𝑆1 and 𝑆2 are equimomental. We will show that conditions (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) are 

satisfied. 
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𝐼𝑙 + 𝑀1𝑑2 = 𝐼𝑙 + 𝑀2𝑑2    ⇒    𝑀1 = 𝑀2 = 𝑀 (say) 

𝐼𝑙2 = 𝐼𝑙1 + 𝑀|𝐶1𝐶2|2 − − − − − −→ (3) 𝐼𝑙2 = 𝐼𝑙1 − 𝑀|𝐶1𝐶2|2 − − − − − −→ (4) 

𝐼𝑙′ = 𝐼1𝜆2 + 𝐼2𝜇2 + 𝐼3𝜈2, 
𝐼𝑙 = 𝐼𝑙′ + 𝑀𝑑2 = 𝐼1𝜆2 + 𝐼2𝜇2 + 𝐼3𝜈2 + 𝑀𝑑2, 

(𝒊) Let 𝑀1 and 𝑀2, respectively, be the masses of the systems 𝑆1 and 𝑆2 and 𝐶1 and 𝐶2, respectively, be their centres 

of mass. Since the systems are supposed to be equimomental, therefore their moments of inertia about any line 

should be same. In particular, their moments of inertia about line 𝑙 through 𝐶1 and 𝐶2  should also be same, say,  𝐼𝑙. 
Let 𝑙′ be any line parallel to 𝑙 and 𝑑 be the perpendicular distance 
between 𝑙 and 𝑙′. Further suppose that 𝐼𝑙′ be the common moment 

of inertia of both systems about line 𝑙′. 
By parallel axis theorem, we have, 

                 𝐼𝑙′ = 𝐼𝑙 + 𝑀1𝑑2       (for system 𝑆1)  − − − −−→ (1)  𝐼𝑙′ = 𝐼𝑙 + 𝑀2𝑑2       (for system 𝑆2)  − − − −−→ (2)  

From equations (1) and (2), we have,   ⇒    masses of both systems are same  ⇒    condition (𝑖) is satisfied. 

(𝒊𝒊) Now, let  𝑙1 and 𝑙2, respectively, be the lines through 𝐶1 and 𝐶2 and 

perpendicular to line 𝑙. Let common moment of inertia of each system about line 𝑙1 be 𝐼𝑙1 and about line 𝑙2 be 𝐼𝑙2 .  

By parallel axis theorem, moment of inertia of system 𝑆1 about 𝑙2 is 

Again, by parallel axis theorem, moment of inertia of system 𝑆2 about 𝑙2 is  

From equations (3) and (4), we get 𝐼𝑙1 + 𝑀|𝐶1𝐶2|2 = 𝐼𝑙1 − 𝑀|𝐶1𝐶2|2  ⇒  |𝐶1𝐶2| = 0  ⇒   𝐶1 ≡ 𝐶2 ≡ 𝐶 (say) ⇒  centres of mass of both systems are same  ⇒  condition (𝑖𝑖) is satisfied. 

(𝒊𝒊𝒊) Since both system have same centre of mass 𝐶 and same mass 𝑀, 

Therefore, they both have same momental ellipsoid at 𝐶. Hence, they have same principal axes and principal 

moments of inertia at centre of mass 𝐶.   ⇒    condition (𝑖𝑖𝑖) is satisfied. 

Conversely, suppose that for two systems 𝑆1 and 𝑆2, conditions (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) are satisfied. We will show that 

both systems are equimomental.  

Let 𝐶 and 𝑀, respectively, be the common centre of mass and common 

mass of both systems. Further let that 𝐼1, 𝐼2 and 𝐼3 be the common principal 

moments of inertia about common principal axes at centre of mass 𝐶. In 

figure, common principal axes at 𝐶 are shown by Cartesian coordinate 

system 𝐶𝑥𝑦𝑧. 

Let 𝑙 be an arbitrary line in space. Draw a line 𝑙′ through 𝐶 parallel to 𝑙. 
Then the moment of inertia of each system about 𝑙′ is given by 

where, 𝜆, 𝜇 and 𝜈 are direction cosines of line 𝑙′.  Now, by using parallel axis theorem, the moment of inertia of each 

system about line 𝑙 is given by 

where, 𝑑 is the perpendicular distance between lines 𝑙 and 𝑙′. Since the moment of inertia of both system about an 

arbitrary line 𝑙 in space is same. This shows that both systems 𝑆1 and 𝑆2 are equimomental. 

Problem: Show that a hoop of mass 𝑚 and radius 𝑎/√2 is equimomental with a circular plate of mass 𝑚 

radius 𝑎. 

Proof: The moment of inertia of a circular hoop (or ring) of mass 𝑚 and radius 𝑎/√2 about an axis through its 

centre and perpendicular to its plane is                           𝐼1 = 𝑚( 𝑎√2)2 = 12 𝑚𝑎2.  
The moment of inertia of a circular plate (or disc) of mass 𝑚 and radius 𝑎 about an axis through its centre and 

perpendicular to its plane is                                                𝐼2 = 12 𝑚𝑎2. 
Since, both moments of inertia are same. Therefore both systems are equimomental. 

Problem: Find the equimomental system of particles for a uniform rod 𝐴𝐵 of mass 𝑀 and length 2𝑎. 
Solution: Let 𝑂 be the centre of mass of the rod  𝐴𝐵 having mass 𝑀. If we replace 

the rod by three particles, as shown in the figure, such that two particles, each 

having mass 𝑚, are placed at end points 𝐴 and 𝐵 of the rod and third particle of 

mass 𝑀 − 2𝑚 is placed at its centre of mass 𝑂, then it is clear that,  

(𝑖) mass of both systems is equal to 𝑀, 
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(𝑖𝑖) centre of mass of both systems is same (i.e., point 𝑂), 

(𝑖𝑖𝑖) symmetry axes (and hence, principal axes) of both systems are also same at centre of mass 𝑂. 

Moment of inertia of the rod about an axis  𝐶𝐷 through 𝑂 and perpendicular to the rod is given by 𝐼1 = 112𝑀(2𝑎)2 = 13 𝑀𝑎2  

Moment of inertia of the system of particles about axis 𝐶𝐷 is given by 𝐼2 = 𝑚𝑎2 + 0 + 𝑚𝑎2 = 2𝑚𝑎2  

The two systems will equimomental if  𝐼1 = 𝐼2     ⇒     13𝑀𝑎2 = 2𝑚𝑎2     ⇒     𝑚 = 16 𝑀  

Hence, equimomental system of particles is given by first particle of mass 𝑀 at 𝐴, second particle of mass 𝑀 − 2𝑚 

at 𝑂 and third particle of mass 𝑀 at 𝐵. 
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