Mechanics Made Easy Moment of Inertia

Moment of Inertia

Definition: Moment of inertia of a particle of mass m about a line (called axis of
rotation) is defined as

I = mr?

where, r -is-the perpendicular distance of particle from line.
Definition: Moment of inertia of a system of a number of particles with masses m;,
about a line (called axis of rotation) is defined as

I = Z i miriz, ¥
where, 7; is the perpendicular distance of i-th particle of mass m; from line.
Definition: Moment of inertia of a continuous distribution of mass, such as the
solid rigid body (shown in the figure), having mass M and constant density p, abouta
line is defined as |

I=[,r*dm=p[ r*dV,

where, r is the perpendicular distance of point mass element dm of the body and dV' is its elementary volume.
Moments of inertia with respect to Cartesian coordinate axes are defined in the following table:

Moment of inertia of a | Moment of inertia of a set of | Moment of inertia of a
Moment of inertia | particle with respect to | particles with respect to 3- | continuous rigid body with
3-dimensioal Cartesian | dimensioal Cartesian | respect to 3-dimensioal
coordinate system coordinate system Cartesian coordinate system
About x-axis 2 3
Ly = 1i4 m@»? + z2) Zmi(yi +2f) f(y2 + z%)dm
L i
About y-axis WS
(x . 24,2
Ly =1, m(x? + z2) Z mi(x; + 7)) f(x +z%)dm
g M
About z-axis 2 5
Iz =133 m(xz + 3’2) Zmi(xi i) f(xz T yz)dm
L M

Products of inertia with respect to Cartesian coordinate axes are defined in the following table:

Product of inertia of a | Product of inertia of a set of | Product of inertia of a
Product of inertia particle with respect to | particles with respect to 3- | continuous rigid body
3-dimensioal :Cartesian | dimensioal Cartesian | with = respect  to - 3-
coordinate system coordinate system dimensioal Cartesian
coordinate system
Ly = lyxy = 112 = Ipq - mxy _Zmi Gt Ii fxy A
L M
Iyz = Izy = 123 = 132 — myz _Zmiyizi — fyZ dm
L M
Lz = Iz =113 = I3 - mxz _Zmixizi Vv sz e
L M

Definition: Radius of gyration k of a rigid body of mass M with respect to aline [ is defined as
k=M,
where, I is the moment of inertia of the body with respect to .

Problem: Prove in matrix notation that [L] = [I ][w], where, all the notations used have their usual meanings.
Proof: The angular momentum of a rigid body, in the form of a set of particles, about an instantaneous axis through

afixed point, is given by

L= Z r; X (myv;) = zmi(ri X Vi) = Zmi(ri X (0% 1)) V=X
i i i

= D X @ x ) = ) il e — 0 o))
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Mechanics Made Easy Moment of Inertia

Let, L =1Lji+ L,j+ L3k W = wii+ wj+ w3k and r; = x;i+yj+zk
> ron=xr+y?+z7 and 1 = x;0; + V0, + Zi0;

= Lji+Lj+Lk= Zmi[(xiz +y2 + Ziz)(a)li + w,j + w3K) — (xjw + yiw, + Ziw3) (i + i + zik)]
i

Comparing corresponding components on both sides of above vector equation, we get

Ly = Z mi[(x? + y7 + zF)w; — (w1 + yiwy + ziwa)x)| ——————— - - (1)
i
ket Zmi[(xiz +yf 28wz (iwy Hyiwr FZiwdy| e =ms o= > (2)
i
Ly = zml[(xlz +yE+ 27 )ws — (jwy + yiw, + Ziws)z)| ———————— - 3
i
From Eq. (1), we get, Ly = z mi[xl-zwl + (ylz + Zl-z)wl — xl-za)l — X YiWy — xiziw3]
i
= wq Z m;(yf +z7) — w; Z miXx;y; — w3 z m;X;Zz;
i i i
=L +pwy + 303 ——————— == - (4)
Similarly, from (2)-and (3), we get Ly =lpwy + Lhrwy +1z03 — =—=——— = — - (5
and Lz = 3wy + 3wy + 3303 ~— —— —— — — - (6)
Ly Ly oidyp o Iz (@1
Writing Egs. (4), (5)and (6)in matrix form, we get, Ly | = [Ly Ly I || w2
Ly 13- Up3 ) \I33// \W3
| = [L]=[1]w] Hence proved.

Problem: Prove that T = %MVZ + %w. L, where all the notations used have their usual meanings.
(or) prove that T = Ty + Tro; z ¢
where, - Ty = %MVZ = total translational kinetic energy of the body

andp ¢ Fngs 7 %w. L = total rotational kinetic energy of the body.

Proof: Consider a rigid body, in the form of'a set of particles, which is in general
state of motion (i.e., having both translation and rotation) with respect to a fixed
(inertial) frame of reference Oxyz.

Let, M =total mass of the body

I; = position vector of i-th particle of mass m; with respect to origin “0”

r; = position vector of i-th particle of mass m; with respect to centre of mass “C”
r = position vector of centre of mass “C” with respect to origin “0”

v; = velocity of i-th particle of mass m; with respect to origin “0” X
v; = velocity of i-th particle of mass m; with respect to centre of mass “C”

v = velocity of centre of mass “C” with respect to origin “0”

o = instantaneous angular velocity of body about instantaneous axis through centre of mass “C”

From figure, =r+r;
Differentiating both sides with respect to time “t”, we get
I =r+1
= Vv,=v+V,=v+wxr YVi=wXxr
ey : = 1
Kinetic energy of the i-th particle is T; = -Z-mivl-2

Kinetic energy of the whole body is

1 1 1
T=ZT1=EZmiVi2 =Ezmi(Vi'Vi)=52mi{(v+wxr{)-(v+wxrl-’)} YV =V+Hwxr
; ; 7 7

1
=52mi{v-v+v'(wxr{)+(wxri’)-v+(wxri')-(wxri’)}
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1
T=§Zmi{v2+2v-(ooxrl-’)+oo-rl-’ x (o x 7))}

L
! 1
= E(ZY”[)VZ +Zmlv ((1) X rl,’) +§Zml{w . rir x ((A) % ri,)}
7 ; .

L

1 1
= EMVZ +Vv- (m x Z miri'> + zhad Z m;r; x (0w x 1)), where, M= Z m; = total mass of the body
i i '

Also, Z m;r; =0, asry is the position vector of ith particle of mass m; with respect to centre of mass “C”

1 1
= T=EMv2+§m-Zmiri’x(wxri’) ———————— (1
But, angular momentum L of the body with respect to centre of mass “C” is given by
L= er(ml J—er{m(mn)}—zmlrx(wxrl) ———————— @

Using (2) in (1), we get

T—lM 2+1 L
—2 \"% 2(1).

| T=Ty+Trot |

1
where, Ty = EMVZ = total translational kinetic energy of the body

1
and Tpo = Zw. L = total rotational kinetic energy of the body

Problem: Find moment of inertia of a rigid body about a given line Z

passing through the origin and having direction cosines are (4,4, v).
Solution: Consider a rigid body, in the form of a set of particles. And let us take

44— Given line/

given line as z-axis, as shown in the figure. m. .
Let, M = total mass of the body ! °
r; = x;i +y;j + z;Kk = position vector of i-th particle of mass m; w.r.t. origin “0” ®
d; = perpendicular distance of i-th particle of mass m; from given line [ ®
8; = angle between position vector r; and given line [
e = unit vector in the direction of given line [ o
Then, e = Ai+ pj + vk, where, (4, u, v) are direction cosines of the given line . Y
The required moment of inertia /; is given by
X
I = Zmidiz = Zmi(lril sinf,)? = Zmi(le xrP?———=>'(1) = sinf; = % and |r;|sin@; = |e x 13

T n T l

i i i nirk i
Now, exr= |1 pu  v|=uz—vy)i+ (vx; —1z)j + (ly; — ux)k

X Vi 'z
= (le xr,)* = (uz; —vy)? + (v, —Az)% + Ay, —px)> —— — = — = - (2)

Using (2)in (1), we get
L= ) milus = vy = 2207 + (i = )

13
= Z m; [Pz + v2y2 = 2uvyz)) + (VX + 2322 = 20vx,z) + (Ry? ¥ uPa® = 22uxy;)]

—/'IZZm(yl +z;2) + p? Zm(xl +z;2) +v? Zm(xl +yL2)+2/1,u< melyl)
+2,uv< Zmlylzl>+2/1v( mezl)
|

= = Pl + WPy, + V2, + 20ulyy + 2uvl,, + 241, |
This is required moment of inertia.
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Problem: Find the equation of “ellipsoid of inertia” or “momental ellipsoid” of a rigid body.

Solution: As we know that moment of inertia of a rigid body about a given line [ having direction cosines (4, u, v)
with respect to a coordinate system Oxyz, whose origin “0” lies on-the line {, is given by
I = Pl A 121y b2, + 2AuLe, 20yl + 2401, — o= ——= (1)
On the line [, choose a point P such that |ﬁ| = 1/\/1_1 .If coordinates of P are (x, y, z), then
X y Z

7 R 7 I 17,
> A=x1, ,u:y\/l_, v=zJ/[—————>(2)

Eliminating /4, ¢ and v from (1) and (2), we get

I = I(Lxx? + Lyy? + 1,,2% + 2Leyxy + 21,,y2 + 21,,x2)

| Lo+ Ly y2 + 1,2 + 2L xy + 21,2+ 2L,xz = 1 |
Since, Iy, Iy, and I, are all positive, therefore, above equation represents an ellipsoid called “ellipsoid of inertia” or
“momental ellipsoid” of the rigid body.

Note:

(i) The momental ellipsoid of a rigid body contains-information-about moments and product of inertia of that
body.

(ii) The centre of momental ellipsoid lies at the origin of the coordinate system.

(iii) If P is any point on momental ellipsoid, then

1 / 1
il Bov
Vi |0B|
showing that moment of inertia about line 0P is equal to the reciprocal of square of distance of point P from
origin 0.
Problem: State and prove perpendicular axis theorem for-a discrete mass distribution.
Statement: The moment of inertia of a plane rigid body in the form of discrete mass

distribution (i.e., a set of particles) about a given axis perpendicular to the plane of the 4

body is equal to the sum of moments of inertia about two mutually perpendicular axes L' .
lying in the plane of the body and meeting at a common point on the given axis. o /M
Proof: We choose Cartesian coordinate system Oxyz such that xy-plane lies in the plane S ie?

of the body, while z-axis lies perpendicular to it, which is assumed to the given axis. * .y

Let, r; = x;i + y;j be the position vector. of i-th particle of mass m; w.r.t. origin “0”. o ' .

Then moment of inertia of the body about z-axis is

I, = Zmillﬂz = Zmi(xiz +yi%) = Zmixiz - Zmi}’iz = Ly + 1,y
7 7 ; i

L2 Tl by Hence proved. |

Problem: State and prove perpendicular axis theorem for a continuous mass distribution.

Statement: The moment of inertia of a plane rigid body in the form of continuous mass distribution about a given
axis perpendicular to the plane of the body is equal to the sum of moments of inertia of same body about two
mutually perpendicular axes'lying in the plane of body and meeting at-a common point y

on the given axis.

Proof: We choose Cartesian coordinate system Oxyz such that xy-plane lies in the plane
of the body having mass M, while z-axis lies perpendicular to it, which is assumed to the
given axis.

Let, r = xi + yj be the position vector of elementary particle of body of mass dm w.r.t.
origin “0”.

Then moment of inertia of the body about z-axis is

Bt f|r|2dm = f(xz + yz)dm ¥ szdm 13 jyzdm = Ly + Iyy
M M M

M
‘ 5. LY =L Hence proved. ‘
Problem: State and prove parallel axis theorem for the case of moment of inertia for a discrete mass
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distribution.
Statement: The moment of inertia of a rigid body in the form of discrete mass distribution (i.e., a set of particles)
about a given axis is equal to the sum of moment of inertia of same body about a parallel axis (to the-given axis)
through the centre of mass of the body and the moment of inertia due to the total mass of the body placed at its
centre of mass, about given axis.
Proof: Consider a rigid body, in the form of a set of particles. Let [ be the given and !’ be an axis which is parallel to [
and passing through centre of mass of the body. Let, M = total mass of the body

= position vector of i-th particle of mass m; with respect to ornigin “0”
r; = position vector of i-th particle of mass m; with respect to centre of mass “C”

= position vector of centre of mass “C ” with respect to origin “0”

0; = angle between position vector r; and given line [ z 24

: ; ) SAamir. : : ® sl di °
d; = perpendicular distance of i-th particle of mass m; from given axis [ ~——a
d;= perpendicular distance of i-th particle of mass m; from parallel axis I’ ® y °
d. = perpendicular distance of centre of mass C from given axis [

= perpendicular distance between l and ! ( °
e = unit vector in the direction of given line [ Given
From figure sinf; = ﬁ = d; = |r;|sinf; = |e x 1y
®

Similarly, d; = |e x rj| and d. = |e x 1]

Moment oflnertla of the body about given axis [ is given by

1= z:md2 Z:ml(lexrll)2 Zm(exrl) (exr)

Z m;[e x (r. +1;})] - [e x (r; +1})] “1; =TI, + 1] (from figure)

=Zmi(exrc+exri')-(exrc+exrl-’)
=) mile x o) (e x 1)+ 2(e x e x 1) + (e x 1)) (e X 1))
= mil(e x rD?+ 2(e x ) lex 1)) + (e x 1/ 1)?]

= (Z ml-) (le xrel)? +2(e x 1) - > mi (e xx) + > my(le xr/])?

l L

=Md>2+2(ext.)" (e x Zmi rl-’) + Zmidlfz, where, M = z m; = total mass of the body
7 7 7

Also, Z m;r; = 0, as 1} is the position vector of ith particle of mass m; with respect to centre of mass “C” and
i

Iy = 2 ml-d{2 = moment of inertia of the body axis [’

L

‘ = I,=1Iy+Md,* Henceproved. ‘
Problem: State and prove parallel axis theorem for the case of moment of inertia for a continuous mass
distribution.
Statement: The moment of inertia of a rigid body in the form of a continuous mass distribution about a given axis is
equal to the sum of moment of inertia of same body about a parallel axis (to the given axis) through the centre of
mass of the body and the moment of inertia due to the total mass of the body placed at its centre of mass, about
given axis.
Proof: Consider a rigid body, in the form of a continuous mass distribution. Let [ be the given and I’ be an axis which
is parallel to I 'and passing through centre of mass of the body.
Let, M = total mass of the body
r = position vector of elementary mass dm with respect to origin “0”
r’ = position vector of elementary mass dm with respect to centre of mass “C”
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= position vector of centre of mass “C " with respect to origin “0”
6 = angle between position vector r and given line [
d = perpendicular distance of elementary mass dm from given axis [ 7 B
d' = perpendicular distance of elementary mass dm from parallel axis I’
d. = perpendicular distance of centre of mass € from given axis [

= perpendicular distance between [ and I’

e = unit vector in the direction of given line [
From figure sind =d/|r| = d =|r|sinf = |e x|
Similarly,d’ = |e x r’| and d, = |e x r|
Moment of inertia of the body about given axis is given by

I,=fd2dm=f(|exr|)2dm=f(exr)-(exr)dm

. f[e x(r,+r)] - [e x (r;+r")]dm “r=r.4r'

f[(exrc)-(exrc)+2(exrc)-(exr’)+(e><r’)'(e><l")]d
M

X

f[(|e x 1:)*+ 2(e x 1) - (e x ')+ (le x r'[)?]dm
M
= (f dm) (Jlexr)?+2(exr)- j(e xr")dm + f(le x r'|)2dm

= Mdc2 +2(exr,)- (e x Jr’dm) + Jd’zdm, where, M = jdm = total mass of the body
M

M M
Also, fM r'dm = 0, as r' is the position vector of mass element.dm with respect to centre of mass “C”,

and Iy = [, d'*dm = moment of inertia of the body axis I’
‘ ="I;= Ilr + Md,>  Hence proved. ‘
Problem: Prove in matrix notation that [L] [@ x L] + [ I ][w], where, all the notations used have their

usual meanings.
Proof: As we know that the angular momentum of a system of particles is given by

L= Zri X (mivl-) = Zmirl- X V;
i i

Differentiating both sides with respect to time “t”, we get

i Zmlrl xvl+2mlrl><vl val xvl+2mlrl><vl

zmlrl (w X'1;) v viXv;=0 and v; =

dVl' d
E = a(ﬂ) X I'l-)

=Zml-rl- X ((A)XI"i)+((.'l)Xl'l')] =Zmirl- X(u)xi'i)+2mirix(d)><ri)

Writing in matrix form, we get

[i] = lz (e i) + Zmiri X (60 X rl-)] e
As We RibWwthat? Y [ & 1o [Z r, % (v, ] — [1][0] il 2 1 % (mpv;)
= lz myr; X vi] — [1][w]
a\ [Zmirilx (wxrl-)] — [1][w] v 2 X
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Replace w by @ on both sides, we get
[me X (6% rl-)] = )= ===~ @
i

Now consider,

Z m;r; X ((1) X rl) = Z m;Iy X ((.l) X Vi) = Z m;r; X [0.) X (0.) X l'i)] = Z m;r; X [((A) ) ri)u) B ((1) x (A))FL‘]

= Zmi[(w )X w) — (0 w)[;Xn)] = Zmi(w ) Xw)—————>3) “rxXr=0

Further consider that
oxXmxv)=oX[X(@xn)]=wx [ ne— (0wl = 5o Xw) = (1 o)(wxr;)

=—(n-ow)wxnp=WW rnHhixXxw) ——————— - (4) ToXw=0
Using (4)in (3), we get
Zmiri X ((.l) X rl) = Zmiw X (l'i XVi) = wXZI‘i X (mivl-) =wXL Yl = Zri X (mivi)
i i i i
Writing above equation in matrix form, we get, ’Z m;r; X (@ X r"l-)] =lwxXL]—-————— - (5)

Using (2) and (5) in (1), we get

‘ [L] = [w x L] + [1][] Hence proved. ’
Problem: Show that inertia matrix [ I ] is a Cartesian tensor of rank 2.
Proof: As we know that the angular momentum of a system of particles is given by

L= Z rg X (Mevy) = Zma(ra XVy) = Zma(ra X (@ %X T,)) YV, = WX Ty
a a a
= Z ma[(ra : l'a,)(x) . (ra = (x))l‘a] ' 2 ma[réw I (w ' ra)ra] ________ - (1)
a
Lety ey lislliiliagiha), o = (01, Wy, W3) and B s o X )
3
Then, W Ty = WXg1+ WX+ WiXg3 = Z WjXq,j
j=1

3

So (1) can be written as: (Lq, Ly, L3) = z my |r2(w,, w,, w3) — Z WjX; o (Xa1) Xa,20 Xa3)
=

= Li=z my |T2w; — Zw]xa] Xail» i=1,2,3
a
3
md 2 — L7
= Z Mg |Tq Z w;8ij — Z WjXe,j | Xa, Sl ES Z ;6
z Z[ra ij xajxal]w] Z w] zma[ra ij xatxa]] m z wj el T T = (2)
j=

a

where, z [ xa,l-xa,j] = ij'th component of inertia tensor

a
Since, both the angular velocity w = (w;) and the angular momentum L = (L;) are known to be vectors

(i.e,, Cartesian tensors of rank 1), it follows from equation (2) and quotient theorem that the inertia tensor
[1]= (Il-j) is a Cartesian tensor of rank 2.

Problem: Express angular momentum in tensor notation.

Solution: As we know that the angular momentum of a system of particles is given by
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L= Z r, X (mgvy) = Zma(ra X Vy) = Zma(ra X (@ %XTy)) YV, = @ XT,
L= Zm [(r - F) = (g - )] Zma[raw (@ rral = = === == - (D)
Let, - L =(Ly, Ly, 3) = (w1, w2, W3) and ro = (Xa1r Xa2) Xa3)
3
Then, W Ty = WXg1 + WX+ W3Xy3 = Z WXy j
j=1

So, (1) can be written as
3

(L1, Ly, L3) = Z My |15 (w1, Wy, w3) — Z WiXj o (x(x,lr Xa,2 xa,3)

j=1

=Z r(xwl Zw]x(x] xal ) i=1,2,3
a
3
- 2 e [—
= Z Mg | Ta Z @;8ij = Z WjXa,j | Xa,i el ops Z w;bij
a j=1 .
3
Z (70 — Xaj¥ai|w; = Z“’fzm“[ra § ~ ¥ai¥a,] = Z“’f ij T T T T - (2)
j=

a
xalixa,j] = ijth component of inertia tensor

where, Z

Equation (2)is required tensor form of angular momentum.
Problem: Express rotational kinetic energy in tensor notation.
Solution: As we know that the rotational kinetic energy of a system is given by

RO PHEL
rot 2"0

Let, w = (wl, Wy, (1)3): L= (LlJ Ly, L3)

3
1 1
= TT‘Ot = E (0)1L1 + (,Usz + (1.)3L3) = EZ w;L
i=

y 3 3 3 :
Tror = Ez wj Z wj zma[ra ij xalxa]] v L= Z ijma[raSij ey xa,ixa,j]
i=1 j=1 a j=1 a
3 3
1
= E wl Z wj <z my [ra ij — Xg lxa]]> Z wW;Wj Iij _____ = (1)

i=
where, Lij= Z mg [ra W xa,l-xa,j] = ijth component oflnertla tensor

a

Equation (1) is required tensor form of rotational kinetic energy.

Problem: Express parallel axis theorem in tensor notation for a
discrete mass distribution.

Solution: Consider a rigid body in the form of discrete mass distribution (i.e.,
a set of particles). Let; € be the centre of mass of the body. We consider two
parallel coordinate systems Oxyz and Cx'y’z’, as shown in the figure.

Let, M = total mass of the body

r, = position vector of a-th particle of mass m, with respect to origin “0”

r, = position vector of a-th particle of mass m, with respect to centre of
mass “C”

r. = position vector of centre of mass “C” with respect to origin “0”

From figure, reeTidlshmood £ - (1
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Let, r, = (xa,l' Xa,2 xa,3): e = (xc,lr Xc,2 xc,3) and I‘(; = (x(,z,lw x&,z: x(,z,3)
Equation (1) becomes

(xa,lr Xa,2) xa,3) = (xc,lr Xc,2) xc,3) + (x(,x,l’ xc,{,z’ x(’x,3)
2 Xk 5 Xe,ilh X AR ARSA PTE s - (2)
As we know that

lij = Z Mg [126;; — Xqi%q | = Z Mo [(Fy - Ta)8if — Xgi%a ]
a a
= Z ma[((rc +ry) - (rp+ r&))c?ij — (xc,l- + xc'z,i)(xclj + xc'{,j)] (by using (1) and (2))
a
— z ma[(rc ‘T, + 2 Ie rc;z + rc’z = r&)aij — Xc,iXc,j ™ xC,ixc,{,j b xc,jxtlx,i o} xtlx,ixtlx,j]

a

e 2 ’ 2 ! ! ! /]
- Z ma[(rc + 2 Ic Iy + Iy )6ij - xc,ixc,j - xc,ixa,j - xc,jxa,i - xa,ixa,j]
a

= z ma[r&26ij i xc'r,ix,'x'j] + 2 | <Z mar&> 5‘] + (Z ma> rcz5ij T (Z ma> xclixc,j
a a a

a
- (Z My x&,j) Xei — <Z My x;(,i) Xej ——— T TR —— - (3)
a a
Now , Z Mo |re? 6 — xc’,_ix(’z'j] = I;; = ijth component of inertia tensor with respect to Cx'y’z’ system

a

Also, Z mqry = 0, (v~ 1, isthe position vector of a-th particle of mass m, with respect to centre of mass “C”)

a

/ / ’ ’ s .. _ / ’ /
= Zma(xa'l, X2, Xo3) = (0,0,0) = Zmaxali =0, i=123 = ry= (X1 Xb2 X&3)
a a

And, Z m, = M = total mass of the body
a

So equation (3) becomes

Iij = Il,] + MI'CZ(SU — chjl-xclj
This is required tensor form of parallel axis theorem for discrete mass distribution.
Problem: Express parallel axis theorem in tensor notation for a continuous mass distribution.
Solution: Consider a rigid body in the form of continuous mass distribution. Let, C be the centre of mass of the body.
We consider two parallel coordinate systems Oxyz and Cx'y'z’, as shown in the figure.
Let, M = total mass of the body '
r = position vector of elementary mass dm with respect to origin “0” z
r’ = position vector of elementary mass dm with respect to centre of mass “C”
r. = position vector of centre of mass “C” with respect to origin “0”
From figure, refitEf Rt et o - (1)
LeC T = (%5, X3, X3); "Te= (Xo1, Xeg, Xp3) -and-T = (X1, %3, X3)
So, equation (1) becomes  (xy, Xy, X3) = (X1, Xe2, X¢3) +(x1, x5, x5)

= x; =X HXi, i=123 ———————— - (2)
Iij = f[rzé‘ij — xall-xa,j]dm = f[(r . r)6l~j — xa’ixa,j]dm
M M .
= f[((rc + 1) (e + 1) = (e + %) (% + x;)]dm (by using (1) and (2))
M

L ! ! ! ! ! r.!
= J[(rc Te+ 270, 1 118 — XX — XX — X jxi — x(x[|dm

M
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Mechanics Made Easy Moment of Inertia

— 2 ’ 12 ! 4 o
Ij = J[(rc + 21,1 128 — X iXe = XeiX] — X jX[ — XX |dm

M
= f[r’zdu = x{xj|dm + 2r, - <f r’dm) 8+ (f dm) 8 = (f dm) yebd) & (f dm)xu
M M M

M M
- ( i x{dm) Xej ——mm e 53)
M
Now, f[r’z&-j — x{xf]dm = I;j = ijth component of inertia tensor with respect to Cx'y’z" system
M
Also, f r'dm =0, (~ r’isthepositionvector of masselement dm with respect to centre of mass “C”)
M
= f(x;’l, Xy, x3)dm =1(0,0,0) = fx{dm =B res 1D2/3 Y =G e

M

And, f dm = M = total mass of the body

M
So equation (3) becomes

Iij = Il,] L Mrgé‘u = chjl-xclj ‘

This is required tensor form of parallel axis theorem for continuous mass distribution.
Problem: State and prove parallel axis theorem for the case of products of inertia for a discrete mass
distribution.

Statement: Consider a rigid body, in the form of discrete mass distribution (i.e., a set of particles). Let, C be the
centre of mass of the body. If Oxyz and Cx"y’z" be two parallel coordinate systems as shown in figure, then we have
Iij =Ii'j—MxC,ixc'j, i :/:j, i,jE{1,2,3} ° 7'

I;j = product of inertia with respect to Oxyz-system Z

I/ ¥ A ]

I ;= product of inertia with respectto Cx"y’z’-system

(xc,l, Xc2, xcl3) = position vector of centre of mass “C ” with respect to origin “0”

M - = total mass of the body

Proof: Consider a rigid body, in the form of.a set of particles.

Let, r, = position vector of a-th particle of mass m, with respect to origin “0”

r, = position vector of a-th particle of mass m, with respect to centre of mass “C”
= position vector of centre of mass “C” with respect to origin “0”

From figure, ra=retl s rmood - (1)

Let, r, = (xa,l' Xa,2, xa,S)' e = (xc,l' Xc,2 xc,3) and r(;’ = (x!x,l' xér,zr x(lx,3)

So,equation (1) becomes (x4 1, Xq2, Xa3) = (Xc1, Xeor Xe3) + (Xb1s Xl 2 Xi3)

2 Kei = Xei +Xg i i=123 —-———————— - (2)

Now consider fori # j, I;; = Z M hiKeni = z Me (X + x4:) (X j + Xg )

=—(zma)xmxc, (S ) D

a

X

where, z m, = M = total mass of the body,

Y L7

Also, - Z My Xy iXg ; = Iij = product of inertia with respect to Cx’y’z’-system

L
Zmar& =0 = Zma(xfx,l» Xy2 Xa3) = (0,0,0) = zmax&_i =0, i=1,23
24

a
‘ > Lj=1;—Mxc;x.;, i#j, 1,j€{1,23} Hence proved.
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Mechanics Made Easy Moment of Inertia

Problem: State and prove parallel axis theorem for the case of products of inertia for a continuous mass

distribution.

Statement: Consider a rigid body, in the form of a continuous mass distribution. Let, C be the centre of mass of the

body. If Oxyz and Cx'y’z' be two parallel coordinate systems as shown in the figure, then we have
Iijzli']-—MxC,ixC,j, i :/:j, i,jE{l,Z,B}

I;j = product of inertia with respect to Oxyz-system z

[N

Ii ; = product of inertia with respect to Cx"y’z’-system

(xc,l, X2 xc,3) = position vector of centre of mass “C ” with respect to origin “0”
M = total mass of the body
Proof: Consider a rigid body, in the form of a set of particles.
r = position vector of elementary mass dm with respect to origin “0”
r’ = position vector of elementary mass dm with respect to centre of mass “C”
r. = position vector of centre of mass “(C” with respect to origin “0”
From figure, rel+h+—————T1T—= - (1)
Let, r=(xy, X3, X3), T = (Xc1, Xc2, Xc3) and 1’ = (x1, x5, x3)
So,equation (1) becomes  (x1, X, %3) = (X1, Xe20 Xe3) + (X1, %5, x5)

= x;=x.; + x|, i=123 ———————-— - (2)

Now consider fori # j, [;; = — fxixjdm = — j(xc,i +x()(xgj + xj)dm

M M
= (f dm)xcll-xc'j - <fx]fdm> +¥31w] (fx{dm)xc'j - fx{x]fdm
M M

M M
where, f dm = M = total mass of the body,
M
Also, - fx{x;dm = Ij; = product of inertia with respectto Cx'y'z’'-system
M
And jr’dm =0> J(x{, X3, x3)dm = (fx{dm, fxédm, fxédm) =(0,0,0) > fx{dm =0, i=1,273
M M M M M M

So equation (3) gives

‘ Iij = 1j; = Mxgixc;, i#j, i,j€{1,2,3} Hence proved. ’
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Mechanics Made Easy Moment of Inertia

Example 1: Find the moment of inertia of a (uniform) rod of length [ about an axis perpendicular to the
rod and passing through one of its end points.
Solution: Let M, [ and A\, respectively, be the mass,

length and linear mass density of the rod. Choose -

axis and y-axis as shown in the figure, so that we have 4, s

to find moment of inertia of the rod about y-axis. We
divide rod into large number of elements of infinitesimal
lengths. One typical element of mass dm and length dz,
at distance = from the origin, is shown in the figure.

Moment of inertia of typical mass element about y-axis _.,,;d":,._
is given by - | xeaxis,
dl,, = z2dm R —— -

Thus, moment of inertia of rod about y-axis is

Iy, = /R dx2dm = )\/R g dx A= % = constant
M [ M (13 1 ,
=T Oa:2dac = (E) = §M12 el = % (for rod)

Example 2: Find the moment of inertia of a (uniform) rod of length [ about an axis perpendicular to the
rod and passing through its centre.
Solution: Let M, [ and A, respectively, be the mass,
length and linear mass density of the rod. Choose z-axis
and y-axis as shown in the figure. We divide rod into

large number of elements of infinitesimal lengths. One a~
typical element of mass dm and length dz, at distance x y-axis
from the origin, is shown in the figure.
Moment of inertia of typical element about y-axis is given ) | 3
b ] (4
’ dl,, = 2d vz 4
yy = T°dm X ’
Thus, moment of inertia of rod about y-axis is Idm |
L
r
I, = / z2dm = A z2dz N 5’% = constant —léxlt— Xx-axis
Rod Rod
M U2 M (B 1
= 22de = — [ = | = 202 + A=M (for rod)
. I \12 12

Example 3: Find the moment of inertia of a (uniform) circular
ring of radius a about

(7) an axis passing through its centre and perpendicular to its plane,
(1) its diameter.

Solution: (i) Moment of inertia about central axis: Let M, a
and A, respectively, be the mass, radius and linear mass density of the
ring. Choose coordinate axes as shown in the figure. We divide ring
into large number of elements of infinitesimal lengths. Omne typical
element of mass dm and length ds is shown in the figure.

Moment of inertia of typical element about z-axis is given by

dl,, = a®>dm
Thus, moment of inertia of ring about z-axis is
L.,=ad? / dm = )\az/ ds v A= % = constant
J Ring Ring
Ma [* M ,
= 2—:— . ds = -2—: (2ma) = Ma? o A= 2L (for ring)

(i1) Moment of inertia about diameter:
By perpendicular axis theorem

Ly = Ing + Iy = 205, | I,. = I, (by symmetry) |
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Mechanics Made Easy Moment of Inertia

1
= Ipy = 51\1(12

Example 4: Find the moment of inertia of a (uniform) circular disc of Mass M and

radius a about

(7) an axis passing through its centre and perpendicular to its plane,

(71) its diameter.

Solution: (i) Moment of inertia about central axis: Let M, a and o, respectively, be the mass, radius
and surface (areal) mass density of the disc. Choose coordinate axes as shown in figure.

We divide disc into large number of concentric circular
rings of infinitesimal widths. One typical elementary ring
of mass dm, radius r, width dr and area dA is shown in
the figure.

Moment of inertia of typical elementary ring about z-axis

is given by
Al = sl -

Thus, moment of inertia of disc about z-axis is

Izz=/ r2dm
Disc

=270 / ridr voo=9dm — _dm__ congtant
JDisc dA @mrydr
2M [* . oM [ at 1 ; - :
=— P r3dr = = (%) = 51\1“2 o #_ (for disc) 1)

(i7) Moment of inertia about diameter: By perpendicular axis theorem

I = Ipp + Ly = 2@, Ty = Iy, (by symmetry) |

1 :
= I.'L':r > Z]\/[(LZ (2)

Example 5: Find the moment of inertia of a
(uniform) elliptical plate with semi-major axis and
semi minor axis a and b, respectively about

(7) major axis,

(47) minor axis,

(#17) an axis passing through centre of plate and per-
pendicular to its plane.

Solution: Consider an elliptical plate in zy-plane

whose boundary curve is given by x-axis
N T Lt
i o 5
? b—z = 1, a >

Let M and o, respectively, be the mass and surface

(areal) mass density of the elliptical plate. To find z-axis

moment of inertia about major axis (x-axis), we pro-
ceed as follows. We divide plate into large number of
elementary rectangular pieces of infinitesimal areas with sides parallel to x and y axis. One typical area element,
located at point (z, y), having mass dm, area dS, length dz and width dy is shown in the figure.

Moment of inertia of typical area element about z-axis is given by

Al = y2dm

Thus, moment of inertia of elliptical plate about z-axis is

Ty i= y’dm=o y? da ds v oo=92 = dm _ copgtant
Yy Y Yy s = Gady
Elliptical plate Elliptical plate .
M 9 M s
=l y“dazdy o= = (for elliptical plate)
Ta

Elliptical plate

M [ L S M (223 [* . " AMB? [* ., .
— / yidy | de = — (—);> / (a® — 22)%%dz = - )1 / (a® — z2)%%dx
mab J,—_ T | mab \ 3a’ S 3mat J.—o

=—a
a
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Put z=asinf =dr=acosfdfd, t=0=60=0, c=a=0=m/2

AMbB? [T/?
I = 5 / a* cos* 6d6
3ma =0

4Mb? (3 1 1
Using Wallis cosine formula, we get, - = <Z> <§) <g> = ZM b? (3)
- o . . |
Similarly, moment of inertia about minor axis is Iy, = —-Ma

By perpendicular axis theorem, the moment of inertia about the axis passing through centre of the elliptical
plate and perpendicular to its plane, is

1
Ly=Le+ILy= ZM(a2 + %) (4)

Corollary: The moment of inertia of a (uniform) circular disc of radius a about (i) its diameter and (i7)
an axis passing through its centre and perpendicular to its plane can be obtained by putting b = a in (3) and
(4), to give (respectively)

1
and I
L= 5Ma? (6)

Note that, the results obtained in (5) and (6) are in accordance (as they should be) with the results, obtained
in (2) and (1), respectively.

Example 6: Find the moment of inertia of a
(uniform) triangular lamina (i.e., two dimensional tri-
angular plate) of mass M about one of its sides.
Solution: Let M and o, respectively, be the mass and
surface (areal) mass density of the triangular lamina
lying in zy-plane. Choose z-axis and y-axis as.shown
in figure. We divide lamina into large number of strips
of infinitesimal widths parallel to the base’AB of lam-
ina. One typical elementary strip DE of mass dm,
width dy and area dS is shown in the figure.
Moment of inertia of typical elementary strip about
side AB (z-axis) is given by

y-axis

x-axis

dI:L'.’L' = y2dm

Thus, moment of inertia of triangular lamina about
r-axis is

s = / y?dm = a/ y?| DE|dy L= ‘(% = |DdE1"|Ldy = constant
Triangular lamina Triangular lamina _

oM ,|DE]|
=== olg
h Y1aB|?Y

5 i S e
O = I74ABT (for tiangular lamina)

Triangular lamina
From equivalent triangles ABC' and DEC, we have

|DE|  height of triangle DEC  h —y
|AB| ~ height of triangle ABC ~ h

2M h—vy
= L = — y2 ( ) dy
h Triangular lamina h

oM [k oM (Bt B4 1
= —/ Y (h —y)dy = T <— - —> = —Mh?
y=0

3 4
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Moment of Inertia

Example 7: Calculate the inertia matrixz of a
(uniform solid) rectangular box (rectangular paral-
lelopiped or cuboid) of mass M at one of its corners,

z-axis

by taking coordinate axes along its edges.
Solution: Let M and p, respectively, be the mass

and volume mass density of the rectangular box. Let

figure. We divide box into large number of elemen- o

the lengths of adjacent edges be a, b and ¢. Choose ’”@ dr
coordinate axis along the edges of box, as shown in - dy -

y-axis

tary rectangular boxes of infinitesimal volumes. One
typical elementary volume element of mass dm, vol-

ume dV and dimensions dz, dy and dz, is shown in
the figure.

x-axis

\

Moment of inertia of typical elementary volume ele-
ment (or elementary box) about z-axis is given by

Al = (y + 2 )dm

Thus, moment of inertia of rectangular box about z-axis is

c oy dm _
&~ qv =

dm

dzdydz

= constant

Ls = / (y2 + 22)(1771/ = p/ (y2 + 22) drdydz
Rectangular box Rectangular box

M

M

abc

=T (y* +2*) dedydz . p= == (for rectangular box)

abe Rcct'mgulwr box

]\[ a c b 9
(y? + 2°)dzdydz = dx (y* +
ab( 2= Jy=0 J =0 abe [Ja—o =0 Jy=0

I

Similarly, I, = % ((12 s 02) and I, = A3[ ( T bz)

For product of inertia

1
Similarly, I, =— Z]\[b(' and Ve

1
= - Z]\[u,(-

z

The required inertia matrix is given by

—(1/4)Mac _(1/8)Mbe  (1/3)M(a® +0?) | 12

2%)dy dz]

rS e M (b bed M
1z = — bz A= — [ — _— 1)2
/ / (y? + 22) dyc 0<3+ )l bc<3+3> 3(

b 2

M b
Imy:/ rydm = / / / Tstrdydz_——(—) (—
Rectangular box (Ib( 0Jy=0 2 2

(1/3)M(b? + c?) —(1/4)Mab —(1/4)Mac ] 4(b2 + ¢2)
[Io] = —(1/4)Mab (1/3)M(a® + c2) —(1/4)Mbe =—M —3ab

—3ac

¢?)

—3ab

4(a? + ) —3bc

—3be

>c:—l]\1ab
4

—3ac

4(a® + b?) |

Example 8: Calculate the inertia matriz of a (uniform
solid) cube of mass M at one of its corners, by taking coordi-
nate axes along its edges.

Solution: Repeat example 7 for a = b = ¢ and get

Az-nxis

) 8 -3 -3
[Io] = E.Mu‘z -3 8 -3
-3 -3 8

y-axis.
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Moment of Inertia

Example 9: Find the moment of inertia of a (uniform

solid) hemisphere of mass M about

(7) its axis of symmetry

(i7) an axis perpendicular to the axis of symmetry and passing

through the centre of the base.

Solution: (i) Moment of inertia about axis of symmetry:

Let M, a and p, respectively, be the mass, base radius and vol-

ume mass density of the hemisphere. Choose coordinate axes as shown in figure.

Moment of inertia of typical volume element of hemisphere, having mass dm and volume dV, about z-axis is

given by
dI,, = (2 + y*)dm

Thus, moment of inertia of hemisphere about z-axis is

Iy = / (22 + y*)dm = p/ (2 +y2)dV vop= ‘(i—"’,—‘ = constant
Hemisphere Hemisphere
_3]\1 m2 "2 % i & _ M for 1 ispher
== 1 e (z*+y°)d " P = @7zar (for hemisphere)
emisphere

To make the computation simpler, we transform the problem from Cartesian coordinates (x, y, z) to spherical

coordinates (7, 6, ¢) by using
x = rsinf cos ¢, y = rsinfsin ¢, z #F'Rcosf
where, volume element in spherical coordinates is given by
dV = dr (rdf) (rsinfde¢) = r?sin 0 dr df do

= 2%+ y? = r?(sin? O cos® ¢ + sin? f sin” ) ‘=12 sin® f(cos? ¢ + sin? ¢) = r?sin? 0

For hemisphere, 0<.r<.a; 0<60<m/2, 0<p<2m
M /2 M a w/2 ) 27
o3 / / / PANRD drdgde = > 3/ 7'4d'r/ sin"ﬁdf)/ dé (1)
2ma3 Jr—o Jo=o Jg= 2ma® Jr—o 0=0 ¢=0
/2 1 /2
where, / sin®6df = — / (3'sinf — sin 30) | sin 30 = 3sin @ — 4 sin3 9|
=0 4 Jg=o
1 1 T/2 1\ 2
:Z<_3COSO+§COS36) 9:021(3—§> =g (8)
Using (8) in (7), we get
3M (a’ 2 2
Lowi= =25 S = 2 Ma?
= ( 3 ) (3) (2m) 5]\1(1
(i7) Moment of inertia about a diameter of the base:
; ; M > ;
= | (02 +)dm = o (v + ) AV
Hemisphere 2ra Hemisphere
Transforming problem in spherical coordinates (r, 0, ¢), we get
/2
I, = 3'M; / / / (sin® @ sin? ¢ 4 cos? Osin O)dr df de
2wa® Jy=o Jo=0 Jo=
3IM 2w /2 27
= - / rddr / sin® 0 d6 sin? ¢ do + / cos? 0sin 6 do do |, (9)
2ra® J,— Jo=0 J =0 0=0 Jp=0
where,
/2” in? ¢ do 1/2”(1 26) do 1(«5 L 2¢)|2W - (2m) (10)
sin“¢pdo = = —cos2¢)dop = = — —sin _n==0C2m)=mn
- 2 S 2 2 »=0 "2
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and

/v7r/2

=0

/2
0=0

1
cos?fsinfdl = — 3 cos® 0

Using (8), (10) and (11) in (9), we get

M
I’L‘;L‘ = =

2ma3

a® 27r+27r _ 3M [a® 47
5 3 3 /) 2mad \'5 3 5

Example 10: Find three products of inertia of a (uniform) solid hemisphere of mass M with respect to
coordinate axes as in figure of example 9.

1

=3 (11)

= gMa2

w/2 27
/ r*sin® 0 sin ¢ cos ¢ dr d0 d¢
=0 J¢=0

: f;;ro singcos¢dg = 1 sin® ¢

2r
=0 ="

a /2
Jeado

27
/ r*sin? 0 cos 0 cos o dr df do
$=0

27 . 27
p—0 COSPdo = Sm¢‘¢:0 =0

Solution:
3M 3M [
I_ry:—/ a:ydm:——g/ zydV = — 3/ /
Hemisphere 2ma Hemisphere 27a r=0J6
1\/[ a 7r/2 27
=— J 3/ r4d7‘/ sin30d0/ singpcospdp =0
2ma r=0 6=0 »=0
Now,
M M
Im=—/ ;L'zdm=—3 3/ .’L'ZdV=—3 =
Hemisphere 2ma Hemisphere 2ma
M a /2 27
=— g 3/ r4d7'/ sin26’cos¢9d9/ cospdop =0
2ra® J,— =0 $=0
Thus,
I.ry = I.Tz = Iyz = Oa | I

2z =dy- (by symmetry) |

Example 11: Find the moments and products of inertia of a (uniform solid) sphere of mass M and

radius a with respect to its axes of symmetry.

Solution: (i) Moment of inertia about axis of symmetry:

Let M, a and p, respectively, be the mass, radius and volume mass

density of the sphere. Choose coordinate axes as shown in figure.

Moment of inertia of typical volume element of sphere, having mass

dm and volume dV, about z-axis is given by
dI,, = (z%%%°)dm

Thus, moment of inertia of sphere about z-axis is

L wi= / (22 + y*)dm

Sphere

—o [ @eav

Sphere

3M

= 3 / (z% +y?)dV
dra Sphere

To make the computation simpler

Cartesian coordinates (z, y, z) to
using

x = rsinf cos ¢, y=mr

where, volume element in spherical

= constant

" = {arsies (for sphere)

-
>

, we transform the problem from

spherical coordinates (r, 6, ¢) by

sin 0 sin ¢, z=rcosb

coordinates is given by

dV = dr (rdf) (rsin 0 dp) = r?sin 0 dr dd d¢

= 22 4 y? = r?(sin” O cos® ¢ + sin? § sin ¢) = 72 sin” O(cos® ¢ + sin? @) = r?sin? 9
For sphere, 0<r<u; 0<f0<m, 0<p<2m
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M M @ =
- ) / / / rtsin®0drdfde = 3 3 / rd dr/ sin® 6 d6 do,
~ Indd r=0 Jo=0J p= dra® J,—o 6=0 $=0

where,
/ sin® 0 df = l/ (3sinf — sin 30) ’ sin 30 = 3sin @ — 4sin® 9|
0=0 4 Jo=o
1 1 ™ 1 1 1 4
= (—3c059+ 500539> |9=0 ~5 [(3 - §) - (—3+ g)] =g
Thus,
3M (a® (4 % 5
[zz = 471'_0,3 <€> (g) (271') = g]\.[a
Similarly,

2
g = dyze= gl\la2 | Ipe = Iyy = I.. (by symmetry) |

(i7) Products of inertia with respect to axes of symmetry:

M M
Igcy:—/ :rydm=—3 3/ zydV =— 5 3/ / / 4 sin® @ sin'¢ cos ¢ dr df d¢
Sphere dma Sphere dra r=0J60=0J¢p=
M a ™ 27 9
:—437ra3 /7:0r4dr/9_osi1130d6/¢zosin¢cos¢)d¢=0 f oSingcospdo = 251n2¢ qblO:O
Similarly,
L= Lom =10 0 Igy = Iy & I, (by symmetry) |

Example 12: Find the moments and products of inertia of a (uniform) solid ellipsoid —(Tl; + Z; +

of mass M with respect to its axes of symmetry.

n
o

=1

4

(]

Solution: (i) Moment of inertia about axis of symmetry:

Let M and p, respectively, be the mass and volume mass density of
the ellipsoid. Choose coordinate axes as shown in figure.

Moment of inertia of typical volume element.of ellipsoid, with mass
dm and volume dV, about z-axis is given by

dl.; = (;L'2 + y2)dm

Thus, moment of inertia of ellipsoid about z-axis is

I, = / (12 + y2)dm'
Ellipsoid

- p/ (a® +y%)dV v p= g% = constant
Ellipsoid
S 2l fig ; 3 M o
~ dmabe /E”ipsoid(m +y)dv - P= W3)rabe (for ellipsoid)

Let us substitute
sla=x", gb=y', zle=g'
= dz/a=dz’, dy/b=dy’, dz/c=dz’, dV =dxdydz=abcdz'dy’dz’
Under the above transformation, the given ellipsoid is transformed into the unit sphere

S:xl2+y/2+z/2:1.

M M
» g / (2" + 1y ™) (abeds’ dy' &) = 2 / (a2 + b2y '2)dV’, where, dV’ = da’ dy’ 2’
drabe Jg ar g
3M (a2 + b
_ (‘17:’ ) / 24V’ fs$/2dvl _ fsy’de’ (by symmetry)
s
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To make the computation simpler, we transform the problem from Cartesian coordinates (z’, y’, z') to spherical
coordinates (r, 6, ¢) by using

x' = rsinf cos ¢, y' = rsinfsin ¢, 2! =rcosé,
where, volume element in spherical coordinates is given by, dV’ = dr (rd) (rsin 0 dp) = r* sin 0 dr df dg
For unit sphere, O rl, 0<f<m, 0<p<2m
3M(a2+02) [ [T [*7 ; 3M(a® +b?) [* ® i .
Lyn = & / / / r4sin® 0 cos? pdr df do = ((z——k))/ ré (l'r/ sin“HdG/ cos? ¢pde,
dm Jr=0Jo=0Jp=0 47 r=0 0=0 $=0

& 1, " 1 1 T 1 1 1 4
where, /0=0 sin® 0 do = 1 /0=0(3sin() —sin30) = 1 (—3(:030 + 3 cos30) |9=O =g [(3 - 3) - (—3 + 3)] =g

27 2m 9
and / cos? pdep = L / (14 cos2¢)dep = % <¢)+ %sin 2(/5) |¢10 = %(271') =7

P=0 2 $=0
3M(a*+b%) (1) (4 |
L,=———(-|(= =-M
= g 3 3 (m) 5 (a“+ b°)
Similarly, I, = %]\[(1)2 +c?) and I, = %]\{((12 +c?)

(i) Products of inertia with respect to axes of symmetry:

3M 3IM
I, =— zydm = — zydV = — bl bede du'ds!
= /Ellipsoi(llLy(nL 47r(1'bc./F;|lip,;(,i(|‘Ly 47T(I,b(,‘_/s:(a Ty )(a b Z)

bM bM [t >
_ . S80 /;L"y’dV’ — o 24 / / / 4 sin® 0 sin ¢ cos ¢ dr df de
S 0 r=0J0=0J¢=0
27

47 4
3abM (' B . o : 2m
= — o .[:() rtdr ./():0 sin® 0 d6 ./(p:() singcospdp =0 /;:0 sin¢gcospdeo = %sm2 0] g=hi = 0

Similarly, it is not difficult to show that
Iyz =1I;.=0

Corollary: The moment and product of inertia of a (uniform) solid sphere of mass M and radius a with
respect to its axes of symmetry can be obtained by putting @ = b = ¢ in results of above example 12. The
obtained results are in accordance (as they should be) with the results of example 11.

Example 13: Find the moment of inertia of a (uniform) right circular solid cone about

(7) its axis of symmetry and

(71) any diameter of the base.
Solution: (i) Moment of inertia about axis of symmetry:
Let M, h, a and p, respectively, be the mass, height, radius of base z
and volume mass density of a (uniform) right circular solid cone. A
Choose coordinate axes as shown in figure. Let us divide cone into C
large number of elementary solid discs parallel to the base of the
cone. One such elementary disc of radius r, mass dm, thickness
dz and volume dV is shown in the figure, which is located at a
distance z from the base of the cone.

Moment of inertia of elementary disc about z-axis is given by

1
dI,, = = r2dm
-2
Thus, moment of inertia of cone about z-axis is
= 1 2 _p 2 2 - _—dm __ dm
Topr= = redm = = r° (wr<)dz S P=T = o
2 Cone 2 Cone
3M A 24
= — rtdz = 7—“ (for cone)
2a%h Cone - ¢ (1/3)ma®h 4—a—»
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Mechanics Made Easy Moment of Inertia

From similar triangles AOC and DBC

r _h-—z i ~_a(h—2)
a h or "= h
3M a(h—2)1" 3Ma? [h 1 3M a? 5|k B .-p
o= — 2| dz=="r h—2) dz=——F (h— a=—=M
= 2a%h /Co [ I ] Sy /zzn( 2) i Tors W2 la=0 = g Ma

(i7) Moment of inertia about diameter of the base: It is clear that, the moment of inertia of elementary
disc of mass dm about its diameter, along DB, is given by

1
dls= 1 r’dm

We note that the diameter (along DB) of elementary disc passes through its center B (which is also its centre
of mass). Hence, by parallel axis theorem, the moment of inertia of the elementary disc about axis AO (parallel
to DB and passing through the centre of the base O) is given by

1 1 3M [1
= 2 = - 2 z2 = — 2 2 = —_— i
dly, = dl, + (dm) 2 il dm + (dm) <4 r° 4z > dm T <4

rt+ 7'2z2> dz, | dm = pdV = %(7'2 dz)

Therefore, the moment of inertia of whole cone about diameter of the base is given by

3M [ [1 fa(h-2) s a(h — 2) 4 9 T
I, =—+ - | ——= = =) 2*|d vop = B2
W a2h /z=0 lél ( h W h i d L
3M " [ ot a?
= —_— s (i 4 = h2 2 _ 2% 3 4
th/z:O[élh’*( z) +h2( z 2° 4+ 27 [
_3m[ a (h—2)° + a® (h?2%  h2' X h
T a?h | 20hf h2 \ 3 2. \V5 /| 12=0
_3M [a® (R® B h® n h® " a*h] , 3M 2 10 -15+6 + ath
" a?h [B2\3 2 ' 5 20<] " a2h 30 20
3M [a?h® a'h 3M [2a?h® +3a*h 1
= || = | | = —M(3a% + 2h?
ah |30 " 20 ] a?h [ 60 ] e +a)

Example 14: Find the moment of inertia of a (uniform) right circular solid cone of mass M, height h and
base radius a about a line through its centre of mass and perpendicular to the axis of the cone.

Solution: Firstly, we find moment of inertia of solid cone about

diameter of its base. Let M, h, a‘and p, respectively, be the mass,
height, radius of base and volume mass density of a (uniform)
right circular solid cone. Let C' be the centre of mass of the
cone, which lies on its symmetry axis OC. Choose coordinate
axes as shown in figure. Let us divide cone into large number of
elementary solid discs parallel to the base of the cone. One such
elementary disc of radius r, mass dm, thickness dz and volume
dV is shown in the figure, at a distance z from the base of the
cone.

Moment of inertia of the elementary disc of mass dm about its
diameter, along DB, is given by

1
dI, = = r’dm
4

We note that the diameter (along DB) of elementary disc passes A
through its center B (which is also its centre of mass). Hence, by

parallel axis theorem, the moment of inertia of the elementary -——a—
disc about axis AO (parallel to DB and passing through the X
centre of the base 0) is given by
L., =&l 2_1 o 2_(l2 2 :ﬂ 1 a, 22 7 _ _ 3M (.24,
yy = dlo + (dm) 2 i dm + (dm) z i + 2% | dm T b +7r°2% | dz, [ dm = pdV = =5 (7r° dz)
— __|
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From similar triangles AOC and DBC

h—z
h

r
- =
a

Therefore, the moment of inertia of whole cone about diameter of the base is given by

i h 4 2
_ 3M 1 fa(h—2) 1 a(h — 2) 22| s I a(hh~z)
ah J,—o |4 h h

3M

"l at 4,9 0o 3, A

=m/z=0|:m(h—2) +—2(hz —2hz +Z):|dZ
_3M [ (h—2)5+ 11,23_hz4+z5 h
“@h | 20mV 7 h2 3 2 "5 )| 12=0
M [af (B KB\ ath] M [0 (10-1546) a'h
" a2h |R2\3 2 ' 5 20 a2h 30 20

3M [a?h® a*h 3M [2a%h3 +3a*h 1
= — [ — =l = —_——— ]\I 2

a’h | 30 T ] a’h [ 60 ] (e +2h')

Using parallel axis theorem, the required moment of inertia about line FF, which is passing through centre of
mass C' of the cone and perpendicular to its axis, is given by

Igp = I, — M|OC'|? = +10C’| = h/4

2
[(3a +2r%) - M Gh)

N 7 2 2\ _ = arp2
—20]\[(3(1 + 2h?) 16Mh

(Do simple calculation by yourself)

3
= — M(4a® + h?
g e Y

Example 15: Find the moment of inertia of a (uniform) hemispherical shell of mass M about

(1) its axis of symmetry

(74) an axis perpendicular to the axis of symmetry and passing through the centre of the base.

Solution: (i) Moment of inertia about axis of symmetry:

Let M, a and o, respectively, be the-nass, radius of base and areal mass density of the hemispherical shell.
Choose coordinate axes as shown in figure.

Moment of inertia of typical area element of hemispherical shell, with mass dm and area dS, about z-axis is

Moment of Inertia

given by i
dI,, = (2% + y?*)dm

Thus, moment of inertia of hemisphere about z-axis is

z-axis

S : hemispherical shell

fzz—/u +y2)dm,

—a/(x +97) © 0 =492 = constant T EELT R,
e y-axis
s g M sy Sl o
27ra2 /S( +y%)dS 0 = 5= (for hemispherical shell) /(-axls
To make the computation simpler, we use the parametric equations of hemispherical shell as follows
x = asinf cos ¢, y = asinfsin ¢, z=acosf
For hemispherical shell : 05057/2, 0<op<2r
dS = (adf) (asin O dp) = a®sindh do
2+ y? = (12(sin2 0 cos® ¢ + sin? @ sin? ¢) = a?sin® §(cos? ¢ + sin® ) = a?sin’ 0
/2 Ma2 /2 27
= / / a*sin®0dodo = / sin® 6.d6 do, (12)
271'(12 9=0 Jo= 21 Jo—o $=0
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Mechanics Made Easy Moment of Inertia
where,

/2 1 /2 -
/ sin®0df = = / (3sin# — sin 30) | sin30 = 3sinf — 4sin® 0 |
6=0 4 6=0

1 1 T2 101\ 2
=Z(_3C089+§C0539> 9:0=Z(3—§>=§ (13)

Ma? 2
L= 211) = =Ma?
2m ( > \2) 3¢

(i1) Moment of inertia about a diameter of the base:

Using (13) in (12), we get

Ipz = /(y2 +2%)dm = 0/(3/2 +22)dS =
S S 2

Using parametric equations of hemispherical shell, we get

(> +2%)dS, S: hemispherical shell
s

/2 p2m
/ / a’(sin® @ sin® ¢ + cos? O sin 0)dH do
0=0 Jo=

Loz = 271'a2
Ma2 /2 2m w/2 27
= / sin30d0/ sin2¢d¢+/ cos205in0d0/ do (14)
27 =0 $=0 =0 ¢=0
where,
2"'2d 127r1 2 L L s IQW Lo 15
/¢:OSH1¢ ¢>—§/¢:0( —cos2¢)dg = §<¢—55m ¢> ¢:0—§( T =7 (15)
and
w/2 1 T/2
/ cos 051n9d9——§cos 0|p= 0=3 (16)
0=0

Using (13), (15) and (16) in (14), we get

Ma? (21 2« Ma? [4x 2 9
="y (?*?)— o (?)—51‘“

Example 16: Find three products of inertia of a (uniform) hemispherical shell of mass M with respect
to coordinate axes as in figure of example 15.

Solution:

M
I,y = —/ rydm = —0/ zydS =— 5 / rydS, S: hemispherical shell
s s 2ma® Js

Using parametric equations of hemispherical shell, we get

e Ma? [™/? 2n
Iy = — / / a*sin® 6 sin ¢cospdfdo = — / sin® 0 do sin ¢ cos ¢ d¢
27ra R 21 Jo

=0 »=0
But
sin ¢ cos = —sin A= — oy =
$=0 2 ¢'—0 Y
Now,
M wyR
Izz:—/xzdm:— 2/:::zdS:— / / a* sin? 0 cos O cos ¢ d6 dg
S 2ma® Jg 21a? Jo—o Jo=
M2 /2 2w
=— Lol / sin? 9cos9d0/ cos pdo
21 Jo—o ¢=0
But
27 27r
/ cospdo = sin¢|¢_0 =0 =3 dppi=i0= Ly, ‘ Iz = Iyy (by syrnmetry)|
$=0 B
Thus,

Ipyy=1Ip, =1,, =0

Example 17: Find the moments and products of inertia of a (uniform) spherical shell of mass M and ra-
dius a with respect to its axes of symmetry.
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Moment of Inertia

Solution: (i) Moment of inertia about axis of symmetry:

in figure.

dm and area dS, about z-axis is given by

dI,, = (z% + y*)dm

Let M, a and o, respectively, be the mass, radius of base and areal
mass density of the spherical shell. Choose coordinate axes as shown

Moment of inertia of typical area element of spherical shell, with mass

Thus, moment of inertia of spherical shell about z-axis is

I.= /(:c2 + 32%)dm, S : spherical shell
S
= 0/(;102 +12%)dS g d% = constant
S
M 2 2 M s
= Tra? S(:c +y°)dS * 0= g (for spherical shell)

B
>

spherical shell as follows

dS =

x2+y2

where,

Using (18) in (17), we get

x = asinf cos ¢, y = asinfsin ¢,

= a*(sin? 0 cos® ¢ + sin? fsin? ¢) = a

= I, = 47ra2/9 o/¢ a*sin® 0 df do =

/ sin39d9:1/ (3sin @ — sin36)
0=0 4 0=0

oF. 3cosf ! 5 30 |7r _! 3 = 3 sl =
4o 58] a3 -2) (53]

( 3) (27) = §A1a2

(7i) Products of inertia with respect to axes of symmetry:

L. =

Ma?
47

To make the computation simpler, we use the parametric equations of

z=acosf

For spherical shell : 0<6<m,
(adf) (asinfde) = a® sinfdb de

2

Ma

M
I;I;yZ—/l'ydmZ—U/Ide: zydsS,
S S 471'0,2 S

Using parametric equations of spherical shell, we get

Sy = 47ra2/9 o/qs a* sin® @sin ¢ cos ¢ df do

sin?0(cos? ¢ + sin? ¢) = a

2 ™
/ sin® @ do
™ Jo=0

sin? 6

sin30 = 3sinf — 4sin’ 0 |

: spherical shell

(18)

]u 2w
e / sin® 6 dé sin ¢ cos ¢ do

AT Jo—o $=0

But
27 ) 4 1 . 9 |27T 0 I 0
3 = —girn p— = b =
/¢>_0 sin ¢ cos ¢ do 5 sin“ ¢ $=0 Ty
Similarly,
L= Ty =0 | Ly =Lz = Iz (by symmetry)l
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Definition: A set of three mutually perpendicular axes having origin O which are fixed in the rigid body and
rotating with it and which are such that the product of inertia with respect to them are zero are called “principal
axes of inertia” or simply “principal axes” of body at point O.

Definition: An axis is called “principal axis of inertia” or simply “principal axis” of a rigid body if directions of
angular momentum L and angular velocity w are same, when rigid body is rotating about this axis.

Theorem: Above two definitions of principal axes are | Conversely, suppose that for a rigid body we have
equivalent. three mutually - concurrent and mutually]
Proof: Suppose that for a rigid body we have three | perpendicular axes for which second definition holds.
mutually concurrent and mutually perpendicular axes for | Choosing these axes as Cartesian coordinate axes, and
which- first definition holds. Choosing these axes as | assuming that body rotates about x — axis, we have,
Cartesian coordinate axes, the inertia matrix with respect by supposition, angular momentum and angular

to this coordinate system is given by velocity are parallel
L1 002002 Q = L,=\ow,, where A is constant
[1] = ( 0 ~H) 0) = O L + L)) ¥ LisK =4 (w),;1+0j ¥ 0k)
0 AQnida Ly A Wy
If rigid body rotates about x — axis, then its angular = Ly )= 0 —==-—(1)
wxl Lx3 O
velocity has the form w, = ( 0 ) As vxze know t}lat I[Lx] I= [1][w,] ,
0 x1 1112 13\ /@x1 11Wx1
AS we knOW that [Lx] = [l][wx] (LX2> = (112 122 123>< 0 > = (Ilza)x1> 4 (2)
Lyt Ly 0 my 0 Wi L1102 Lys Iz I3 " I33 0 130y
= (L= 0 I 0 0 )=( 0 = From (1) and (2), we have
wLx3 0 0 133 0 0 }\1(I)x1 Illwxl
F 6‘1 0 |)=|l120x1
foe 0 0 130051
= 112 = 113 =0 '~° (le * 0

= L, =10,
This shows that angular momentum is parallel to angular
velocity. Similarly, we can show that when body rotates
about y or z axis then angular momentum is parallel to
angular velocity. Hence second' definition also“holds for
given axes.
Definition: The moment of inertia with respect toa principal axis is called “principal moment of inertia”.
Theorem: Prove that for a rigid body.a set of three mutually perpendicular principal axes exists at given
point.
Proof: As we know from the definition of principal axis that if a rigid body rotates bout principal axes, passing
through a point O, then the angular momentum L and the angular velocity w of the body are in same direction. So
we can write, L =Aw, where, Ais constant

Similarly, assuming the rotation of body about y —
axis (L, = A, w,), we get, I, = I3 = 0.

= All product of inertia are zero. Hence first definition
also holds for given axes. (Note: &; = 1;;, i = 1,2,3)

Let, L=L;i+ L,j+ L3k w = wi+ w,j + w3k

Then, Lii+ Lyj+ Lk = A(wqi + w,j + w3k)

Comparing corresponding components on both sides of above vector equation, we get
Li=Awy, Ly=4w,, Lz3=Aw; ——————— - (1)

As we know that, [L] =[1][w]

Ly L1 Lz L3\ /@1
B\ dad LR ey reatny T — D
Ly Liz I3 I33/ \w3

Li1w1 + 10, + 1303 = Aw,
1120)1 + 1220)2 + 123(1)3 — /1(1)2
1130)1 + 1230)2 + 133(1)3 = /1(1)3

From/(1) and (2), we get,

This system can be written as,
(l11 = Dwy + L0, + L1303 =0
Lipwi + Iz = Dwy + Izwz =0 — — — — — —— - (3)
Lizw; + zwy + (I33 =) w3z =0
This is homogeneous system of three equations in three unknowns w, w, and w;. This system will have non
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trivial solution if an only if

111 HIL P I3
I, I, — A I3 =0
I3 I3 I33 -1

This is cubic equation in-I which is called characteristic equation of inertia matrix [ I ]. It has three roots, say, 4,
A, and A3, which are, in fact, principal moments of inertia. By substituting 4 = A;in system (3), we can obtain the
ratios - wq: w,: w3, which give direction of principal axes relative to which moment of inertia is - 1. Similarly, we
can find direction of other two principal axes corresponding to moments of inertia A, and 4;. We can always find
three mutually perpendicular principal axes because [ I ] is symmetric. This shows that there exists three mutually
perpendicular principal axes passing through given point O.

Problem: A triangular plate is made of uniform material and has sides of lengths a, 2a and v3a.
Determine the (direction of) principal axes and corresponding principal moments of inertia at 30°

corner (or vertex).
Solution: Let M and o, respectively, be the mass and surface (areal) mass density of triangular plate OAB lying in

xy-plane, as shown in the figure, with |0A| = v3a, |AB| = a and |0B| = 2a.

Clearly, [0B|? = (2a)? = (V3a)" +a? = |0A[? + |AB|2. B
This shows that OAB is right angled triangle with right angle at A.

_ 4Bl _ a —tan-1(L) =300 V
Also, tan(m £AOB) = orve T vk 2AOB = tan (ﬁ) = 30°.

Thus, we have to find principal axes and corresponding principal
moments of inertia at vertex 0. The moment of inertia of triangular
plate about side OA (x-axis)is given by

lx = Iy = los == M|ABJ? = = Ma?

The moment of inertia of triangular plate about side AB is;given by
Lip = =M|0A]? = M(v3a) = Ma?

Let C be the centre of mass of the plate and take D on OA and Eo

OB such that DE-is passing through € and-parallel to AB. Z
Then moment of inertia of plate about DE is given by (using parallel axis theorem)

Ipg = Iap = MIAD|? = ZMa? = MJAD|? =+t~ = = 5 @)
From figure, ~ |AD| = |0A| — |0D| =A/3a —(x-coordinate of centre of mass C) = v3a — é (Bo=t-eabr¥a )
=\/§a_§(0+\/§a+\/§a) =\/§a_2\£§a= 3v3a-2+3a =@=i___) @)

3 3 V3
: . _ 1,5 fa) _ 1, 5 1. 5 _3Ma?-2Ma® _ 1, ,
Using (2) in (1), we get, IDE—ZMa M(@) —2Ma 3Ma =T 5 oY —6Ma
Then moment of inertia of plate about y-axis is given by (using parallel axis theorem), as follows,
2
1 1 0++V3a++3a
Iy = I, = Ipg + M|OD|? = gMa2 + M (x-coordinate of centre of mass C)? = gMa2 +M (f)
2
1 2v3a 1 4 Ma® +8Ma* 9 3
=—-Ma*+ M =-Ma*+-Ma*> = ————— ==Ma* = = Ma?
6a+<3>6a+3a 6 6a2a

Then moment of inertia of plate about z-axis is given by (using perpendicular axis theorem), as follows,

. _ 1, 5 .3 2 _ Ma%?+9Ma® 10 2 5 2
122—133—Ixx+lyy—gMa +5Ma —T—?Ma —EM(Z

i
V3
y:

Va( V3 :
Ly =L, = —[xydm=—0¢ [xydxdy = —0 x=(;1< 3;/ioxy dy> dx = -0 ng (x (y?) 0) dx -~ dm = odxdy

o E T3 4 D e WY 2M ) i ‘/§a__1 2MON-L98 W i A Bar 2 2 I ECORRTIONg 1.7 TR TGSty Vgt N o W2t
T 6x=0xdx— 6(\/§a2)(4)x=0— 6(\/§a2)(4)— 4Ma ' O-_%|0A||AB|—%(\/§a)(a)_\/§a2

As z = 0 inxy-plane, therefore, I, = 1,3 == [xzdm = 0-and I, = I,3 = — [ yzdm = 0
The inertia matrix at point 0, with respect to coordinate system Oxyz, is given by
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1 3
~Ma? - Ma? 0
Iin Ly I 6\/_ 4 20 -33a 0 1
Hol=|liz b2 Ls|= _TSMaz %Ma2 0 =(-3vV3a 18« p. B rbere azﬁMaz
Iiz Dz Iz
0 0 SMCLZ 0 0 20«

To find the eigenvalues, we have the characteristic equation det([I,] — A[I3]) = 0, where [I5] is unit matrix of
order 3.
20 —1  —3V3a 0
det([Ip] =A[LD=0 = —3v3a 18a -1 0 =0
0 0 20— A
On expanding by third row, we get,

(20 = ) |@a - )18~ 2) = (—3\/§a)2] =0 5 (20a—2)[36a%=2al—18al+ A2 ~27a%] = 0

= (200 — D)[A? = 20ad +9a?] =0
20a++/(20a)2-4(1)(9a?)

or, A22—-20a1+9a*’=0 = A=
2(1)

20a+v400a2—36a? _ 20a+V364a? _ 20a+2V91a
* 2 - 2

Either  20a—1=0 = A =20a

> A= >
= (10 +V91)a

Thus, 4 =20a, A, =(10+v91)a,  and  23=(10—-V91)a
These eigenvalues gives principal moments of inertia at point O. To find the direction of corresponding principal
axes, we find eigenvectors corresponding to each eigenvalue.

X1
For A, = 20a: LetX = <xz> be the required eigenvector corresponding to eigenvalue 1; = 20a, then
X3
2a—20a ' =33a 0 Xy 0 ~18a —3V3a 0\ /X1 0
(Mo} = 4[LEDX =0=( -3y3a  18a~ 20« 0 2 =10]=|-3v8a« —2a 0]|*2|=(0
0 0 20a — 20a/ \¥3 0 0 OREER | ie 0
{—18ax1 —3\3ax, =0 N {6x1 £ ABrA= 0 Mr— A mit €))
—3\3ax; — 2ax, =0 3V3x; +2x, =0 —— — —— (4)

From Eq. (3), we have x; = —?xz and putting it in (4), we get, 3v3 (gxz) —2x,=0= %xz —2x,=0=>x, =0.
Putx, =0in (3), weget, x; =0

X1 0 0
Thus,X=<x2>=<O>, where, reR, r+ 0 = For r =1, we get, X=<0>=Oi+0j+k=k
X3 T 1

)1
For 21, =(10++91)a: Let ¥ = <)’2> be the required eigenvector corresponding to eigenvalue A, = (10 +

V3
\/‘ﬁ)a, then

—(8++v91)a  —3V3«a 0 v 0
(To] =A[DY =0 ''= ~3V3a (8 =V91)a 0 <y2> = <0>
0 0 (10 —v9T)a/ Y3 0
—(8+V91)ay; —3v3ay, =0 (8+V91)y, +3V3y, =0 ———— —— (5)
= {-3V3ay; +(8-V9T)ay, =0 = {3v3y, —(8—v91)y, =0 ———— —— (6)
(10 =v91)ay; =0 y3 =0
From Eq. (5), we have ﬁ- = 8_+3\/‘/§i and from Eq. (6), we have z—: =2 ;\/\gﬁ =2 ;\/?_1 . ::\/\[3:1 = 3@(::@) = 8_+3://_§I

Thus, Eq. (5) and Eq. (6) are mutually identical, therefore, last system of equations can be written as

y3=0
_ -3
y1_8+\/9_15

Let, y, =5, where, sER, s# 0 =
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Y1 s K 3V3
Therefore, Y = (yz) = 8+‘F = For s =—(8++91), weget, Y=|_(8++91)|=3V3i—(8+V91)j
V3 0 0
2
For A;=(10—+91)a: Let Z= (Zz) be the required eigenvector corresponding to eigenvalue
3
A3 = (10 — \/ﬁ)a, then
~(8=91)a = =3V3a 0 2 5
(o)~ 2alhZ =0 = | —33a - (8+voD)a 0 <Z> . <o>
0 0 (10 +v91)a) 3/ O
—(8- \/ﬁ)azl —3vV3az, =0 (8- \/ﬁ)zl +3V3z, =0 ——— — — — (7
= ~3VBaz; + (8 +V91)az, =0 = 43v3z —(84+V91)z, =0 — —— = — = (8)
(10++91)az; =0 2 % P
zy _ —3V3 z; _ 8+V91 _ 8+V91 8-V91 _ —27 _ —3V3
From Eq. (7), we have = T and from Eq. (8), we have ramih G B fsrvee LABR a0 5 —FT

Thus, Eq. (7) and Eq. (8) are mutually identical, therefore, last system of equations can be written as

{(8 ~N91)z; +3V32, =0

Z3 = 0
Let, z, =t, where, teR, t#0 = Z1 = s_j%t
Z 8_3://—2_1t 3v3
Therefore, Z = <§2> t = For t = —(8 — \/ﬁ), weget, - Z = —(8 17, \[tﬁ) = 3/3i— (8 Ve \/‘ﬁ)]
3
0 0
Principal moment of inertia Principal axis Normalized principal axis
A =20« X=k X=k
Ay = (10 +V91)a Y = 3V3i— (8 +V91)j - 1 [3v3i — (8 + VO1)j|
V182 + 16vV91
A3 = (10 —V91)a Z =3V3i- (8 —V91)j — 1 [3v3i = (8 — VOT)j]
V182 + 16v/91

Problem: Determine the (direction of) principal axes and corresponding principal moments of inertia of a
uniform solid hemisphere at a point on its rim.

Solution: Let M, a and p, respectively, be the mass, radius of the base and volume mass density of a uniform solid
hemisphere. Let A, 0 and C, respectively, be point on the rim, centre of the base and centre of mass of the
hemisphere. Choose three coordinate axes Axyz, Ox'y'z’ and

Cx''y"z'" as shown in the figure. z

As we know that, the moments and product of inertia with z

respect to coordinate system 'Ox'y'z’ are given by

2 2
lp11 = loz2 = lp33 = gMa and lo1z = Ipz3 = lp13 = 0.
Therefore, the inertia matrix with respect to coordinate
system Ox'y’'z' is given by

2
ZMa? 0 0
lor1 - do1z lors B b -
[lo] = (IOij) ={lo1z lo2z o2z |= 0 EMa2 0
lorz - lozz  loss 0 0 gMaZ X

Next, we apply parallel axis theorem in tensor notation to find inertia tensor [I;] with respect to coordinate
system Cx""y"'z", as follows
IOij = ICij + MI‘CZ(YU =5 chjl-xcjj

— 2
= ICij = IOij - MI'C 611 + ch,ixc,j
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2
Icrr Teiz o Ies Ip11  lo1z o1z re 00 Xe1Xe1 XcaXea XcaXes
= (lciz Iczz Icas | =(lo1z dozz lozs |—=M| 0 12 0 |+ M| Xc1Xc2 XeaXc2 XczXegs |,

Icis~ Ic2z Icss 1013 Io23 loss 0 0 r? Xe1Xe3  XeaXe3  Xce3Xes
where, 1, = (xc 1 Xe2 xc3 ( ) is the position vector of centre of mass C with respect to coordinate
system Ox'y'z’.

0 0 o2 0 0
64" K D
Ie11  Ic1z 1c13 9 0 0 0
= | Iz ez IC23 0 -M| 0 aaz 0o |+M 9
Ieis Iezz Iess \ ) / \ 9 L aaz
0 —Ma? 0 0 —a?
5 64
83
——Ma 0 0 — Ma? 0 0
Ici1 leaz ez ( J g (320 {1
> [l =\le1z lcaz lcaz | = 0 EMaZ—aMaZ 0 = 0 %Ma2 0
ey ez ez 0 0 Ma? ~Z Ma? + 2 Ma? \ 0 01172 pq2
5 64 64 5

Now, we apply parallel axis theorem in tensor notation to find inertia tensor [I4] with respect to coordinate system
Axyz, as follows
Lyij = leij + M8 = Mg ix, ;

Iyi1 Ipaz g1z Ie11 Iciz a3 r> 0 0 XeaXean XeaXep XeiXes
= <1A12 vy; IA23> <1C12 Icos ICZB) HhelFel =R MRy A 2xdy T SXS ),
Ipyz - lazz a3z Ieiz A2z Igss 0 Orapi Xinfor Aopkix Miaks
where, r;, = (xéyl, X1 xéyl) = (0, a, ga) is the position vector of centre of mass C with respect to coordinate system Axyz.
93 Ma? 0 0 7 0 0 0 0 0
2RaEs b 3200 \ 64" \ 3
A1l Al12 Al13 83 I I 73 I 0 az _az
= Lpiz o oz | = 0 ——Ma? 0 +M 0 —qa? 0 -M 8
Iyiz a2z a3z 20 G4 Bl 9T L
0 R 0 - 0 5% g2t
4 64"
da Ma? + L3 Ma? 0 0
Liai Lig 1 / 32000 Tea \
11 la1z a1
83 73 3
Mgl = | larz lazz lazz | = 0 —Ma? +—Ma?* — Ma? ——Ma?
Iyiz a2z Ipzs3 320 64 8
0 —Ea2 EMa2+7—3Ma2—iMa2
8 5 64 64
7D
gMCl 0 0
[I4] = 0 gMa2 —§Ma2 =( 0 16a  —15a |, where, a = EMa2
3 7 0 =15a ~ 56«
0 —gMClZ gMaZ
To find the eigenvalues, we solve characteristic equation det([I4] — A[I5]) = 0, where [I5] is unit matrix of order 3.
56a,— A1 0 0
det([L,] - Al =0 = 0 1t6a—A4 ' =150 [=0
0 —15a - 56a— 1

On expanding by first row, we get,
(56a — D) [(16a — 1) (56a — 1) — (=15a)?] =0 = (56a — 1)[896a? — 16al — 56al + 12 —225a?] =0
= (56a — 1)[A? — 72al + 671a?] = 0

Either 56a—A1=0 > A1=756a of, DARrr720 H 6710 Bl 72ai\/(72a;2(;4(1)(671a2)

__ 72a+V5184a%-2684a% _ 72a+v2500a? _ 72a+50«a
T 5 2 =] 2

220!
N5 [T =6la, 1la

2
_ 72a+50a 72a-50a _ 122a
T > { 2 IT. 2
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Thus, A =56aq, Ay =61la, and @ A3=1la.
These eigenvalues gives principal moments of inertia at point A. To find the direction of corresponding principal
axes, we find eigenvectors corresponding to each eigenvalue.

X1
Fori, = 56a:letX = (x2> be the required eigenvector corresponding to eigenvalue 1; = 56a, then
X3

56a —56a 0 0 X1 0 0 0 0 X1
(] - [DX=0 = ( 0 16a — 56« —15a )(XZ) = <0> > <0 —40a —15a> <x2> =
0 —15a 56a — 56a/ \X3 0 0 —15« 0 X3

o

{— 40ax, — 15ax;=0 2, {8x2 By =) - (@)
—15ax, =0 X1=0 —=——= —— (2)
Thus we have, x, =x3 =0 and x; =r, where, r€R, r#0
X1 r 1
Thus, X=<xz>:<0>, = For r =1, weget, X=(O>=i+0j+0k=i
X3 0 0
V1
For 4, = 61a: LetY = | Y2 | be the required eigenvector corresponding to eigenvalue 4, = 61a, then
Y3

56a — 61la 0 0 Y1 0 —5a 0 0 Y1 0
(] = AL[LDY =0 = ( 0 16a — 61a —15a ><}’2> = (0) = ( 0 —45a —15a> (J’2> = <0>
0 —15a 56a —6la/. \V3 0 0 —15a =5a/ \V3 0
—Say; =0 NG -0
= {—45ay2—15ay320 = {Byz +y; =0 = {3 +y1—_0
—15ay, — 5ay; =0 IR y; =0 V2T Y3 =
Let, y,=s, where, s€R, s #0 = Y3 =—3S

V1 0 0
Thus, Y = y2)= s) = For s =1, weget, Y=(1 =0i+j-3k=j-3k

Y3 —3s -3
Zy
For A; =11a:letZ = (Zz> be the required eigenvector corresponding to eigenvalue A; = 11q, then
Z3

56a — 11« 0 0 Z1 0 45a 0 0 Z1 0
(L] = A[DZ=0 = ( 0 16a— 11a —15a ><22> = (o) = ( 0 5a _15a> <z2> = (0)
0 —15a 56a — 11a/ \Z3 0 0 —15a 45a Z3 0
—45az, = z; =0 Ag
= { Saz,; — 15az3 = 0 = {22—323=0 = {z _3221_:0
=15az, + 45az; =0 Zy — 323 =0 2 i
Let, z3 =t, where, teR, t#0 = z, = 3t

4 0 0
Thus, 7 = <22> = <3t> = For t =1, we get, Z = (3) =0i+3j+k=3j+k
Z3 t 1
Principal moment of inertia Principal axis Normalized principal axis
Ay = 56a X=i X=i
A, =6la Y=j-3k Y = (1/v10)(j — 3k)
Az = 1la Z=3j+k Z = (1/¥10)(3j + k)

Definition: Two distributions of matter are said to be “equimomental” if they have the same moment of inertia
about any line in spase.

Theorem: Two systems S, and S, are equimomental if and only if the following three conditions are
satisfied

(i) they have same mass,

(ii) they have same centre of mass, and

(iii) they have same principal axes and principal moments of inertia at centre of mass.

Proof: Suppose that two systems S; and S, are equimomental. We will show that conditions (i), (ii) and (iii) are
satisfied.
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(i) Let M, and M,, respectively, be the masses of the systems S; and S, and C; and C5, respectively, be their centres
of mass. Since the systems are supposed to be equimomental, therefore their moments of inertia about any line
should be same. In particular, their moments of inertia about line [ 'through C;-and €, 'should also be same, say, Il

Let I’ be any line parallel to [ and d be the perpendicular distance 0
between [ and l". Further suppose that I;» be the common moment r S, I
of inertia of both systems about line ['. ' l
By parallel axis theorem, we have, z. 13 ¢
Iy =L+ Myd? — (forsystemS;) — ————- (1)
Iy =1+ Myd?  (forsystem S,) — — — ——— (2)

From equations (1) and (2), we have,
I, + M;d?> =1, + M,d*> = M, =M, = M (say)
= masses of both systems are same = condition (7) is satisfied.
(ii) Now, let l; and [,, respectively, be the lines through €; and C, and
perpendicular to line . Let common moment of inertia of each system about line /; be I; and about line [, be I,,.
By parallel axis theorem, moment of inertia of system S; about [, is

Ilz =Ill+M|C1C2|2 —————— d (3)
Again, by parallel axis theorem, moment of inertia of system S, about [, is 0 0,
L =L — M|C1Cz|2 —————— - (4)

From equations (3) and (4), we get K— —\_ 5 \
PR MIC.C s I, — MIC,C,|? = |C1C,l = 0. = €y =C, = C (say) 2
= centres of mass of both systems are same = condition (ii) is satisfied. \c, y
(iii) Since both system have same centre of mass C and same mass M, ey
Therefore, they both have same momental ellipsoid at C. Hence, they have same principal axes 'and principal
moments of inertia at centre of mass C.. = ' condition (iii) is satisfied.
Conversely, suppose that for two systems S; and S,, conditions (i), (ii) and (iii) are satisfied. We will show that
both systems are equimomental.
Let C and M, respectively, be the common centre of mass-and common
mass of both systems. Further let that I;, I, and /3 be the common principal
moments of inertia about common principal axes-at centre of mass €. In
figure, common principal axes at C are shown by Cartesian coordinate
system Cxyz.
Let [ be an arbitrary line in space. Draw a line I’ through C parallel to [.
Then the moment of inertia of each system about !’ is given by

Iy = LA? + Lyu? + 1372,
where, 4, ;- and v are direction’cosines of line I’. Now, by using parallel axis theorem, the moment of inertia of each
system about line [ is given by

I =1y + Md? = 1,2% + L + ;v + Md?,
where, d is the perpendicular distance between lines [ and l". Since the moment of inertia of both system about an
arbitrary line [ in space is same. This shows that both systems S; and S, are equimomental.
Problem: Show that a hoop of mass m and radius a/+/2 is equimomental with a circular plate of mass m
radius a.
Proof: The moment of inertia of a circular hoop (or ring) of mass m and radius a/+/2 about an axis through its

centre and perpendicular to its plane is L =m (%)2 == %maz.

The moment of inertia of a circular plate (or disc) of mass m and radius a about an axis through its centre and
perpendicular to its plane is I, = %maz.

Since, both moments of inertia are same. Therefore both systems are equimomental.

Problem: Find the equimomental system of particles for a uniform rod AB of mass M and length 2a.

Solution: Let O be the centre of mass of the rod AB having mass M. If we replace (o

the rod by three particles, as shown in the figure, such that two particles, each lo

having mass m, are placed at end points 4 and B of the rod and third particle of A[® ;]
mass M — 2m is placed at its centre of mass O, then it is clear that, m m "Zm m

(i) mass of both systems-is equal to M,
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(ii) centre of mass of both systems is same (i.e., point 0),
(iii) symmetry axes (and hence, principal axes) of both systems are also same at centre of mass O.

Moment of inertia of the rod about an axis- €D through O and perpendicular to the rod is given by
1

Iy = —M(2a)? = zMa?
Moment of inertia of the system of particles about axis CD is given by
I, = ma® + 0 + ma? = 2ma?
The two systems will equimomental if
L =L 8T 0Ma? = 2ma?'s - m'LiM

Hence, equimomental system of particles is given by first particle of mass M at A, second particle of mass M —2m
at 0 and third particle of mass M at B.
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Problem: Find the (direction of) principal axres and principal moments of inertia of a (uniform)
solid hemisphere of mass M at centre of its base.

Solution: Moment of inertia about axis of symmetry:

z-axis

Let M, a and p, respectively, be the mass, base radius and
volume mass density of the hemisphere. Choose coordinate
axes as shown in figure.

Moment of inertia of typical volume element of hemisphere,
having mass dm and volume dV, about z-axis is given by

drI.. = (2% + y*)dm

L e
n
v

Thus, moment of inertia of hemisphere about z-axis
. /{-axls
is
. 2 2 _ ) i .. _dm __ e
s = (z*+y*)dm =p (z* +y*)dV . p = i = constant
Hemisphere Hemisphere
S / (z® +y?)dv v p= 2L __ (for hemisphere)
= < . = 3
2ma? Hemisphere (3/3)ma

To make the computation simpler, we transform the problem from Cartesian coordinates (z, ¥, z) to spherical
coordinates (7, 6, ¢) by using

x = rsin 6 cos ¢, y = rsinfsin ¢, z =rcosf
where, volume element in spherical coordinates is given by
dV = dr (rdf) (rsin @ d¢) =2 sin O dr df de

= z2 + y? = r2(sin® 0 cos? ¢ + sin® fsinf ¢) = r2 sin® O(cos® ¢ + sin® ¢) = r2sin? 9

For hemisphere, 0 <r<a, 0<6<m/2, 0< <27
/2 a /2 27
= = 3]\[3 / / / risin® 0 drdodeo = 3]\/[3 / rt dr/ sin® (9d6’/ do (1)
~ 2ma =0 J 0= b= 2ra® Jy—o 0=0 ¢=0
/2 1 /2
where, / sin®0do = — / (3sinf — sin 30) | sin360 = 3sin @ — 4sin® 0 |
0=0 4 Jp=0
1 1 |7r /2 1 1 2
_Z(—3c059—|—§coa30) 9:0—2(3——5 =g (2)

Using (2) in (1), we get

3M [a® 2 2
I.= — Z ) (27) = S Mda?
- 27ra3<5)(3)(7r) 5

Moment of inertia about diameter of the base:

3M
Ly = (2 + 22)dm = / 2+ 22)dV
J Hemisphere 2ma3 chlisph(,lc(
Transforming problem in spherical coordinates (r, 8, ¢), we get
]\/[ 71'/2 27 )
Tpw = 2 / / / 7“4(sin3 0 sin? ¢ + cos? 0 sin 0)drdo do
2mwa3 O— =0
3M a 2 /2 o 27 . & /2 5 ) 27
= - rodr sin” 6 d6 sin” ¢ d¢ + cos” fsinf do do |, (3)
2ma® J,r—o 0=0 =0 0=0 =0
where,
/2” in? ¢ do 1/%(1 s dgpm = [ f= Laimtig ) |5 = Eom) ()
sin == — cos do = = — —sin == =
- sin” ¢ ¢ 2/, cos 3 58 $=0= 3 T T
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and
e 1 /2 4
/0:0 cos? 0smc9d6’——§cos 09— §=5 (5)
Using (2), (4) and (5) in (3), we get

I _ 3M [a® 27r+27r _ 3M [(a® 47 _2]\/12
*2 = 9ra® \ B 37 3) 273 \5 3)°5"°¢

Products of inertia:

M M /2
I;L-y:—/ zydm:—3 3/ rzydV = — 3 3/ / / r*sin® 0 sin ¢ cos ¢ dr d d¢
Hemisphere 2rar Hemisphere 2ma r=0J 0= b=
3IM a /2 " 277
=—-—73 / rt d7'/ sin® 9d9/ singcospdp =0 f sin g cos pdop = sm2 1) ¢ o= 0
2ma® Jr—o =0 $=0
Now,
3M 3M /2
I;Ezz—/ rzdm = — 5 zzdV = / / / r*sin? 6 cos 6 cos ¢ dr df do
Hemisphere 271a Hemisphere 27I'Cl r=0 J 0= =
3M /a r /71'/2 . & 27 ] 21
=— rdr sin“ @ cos 6 df cospdp =0 cos ¢ d¢p = sin )
oma® J,—o - | ¢ Jolqeos¢do = ¢|¢—0
Thus,
Iy = I, = Iy, = 0, | I,. = I,. (bysymmetry) |

The inertia matrix with respect to coordinate system Oxyz is given by

2Ma* 0 0
[Fo] = 0 2Ma> O
0 0 2 Ma?

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required principle axes
and corresponding moments of inertia I, = I, = 1., = %]b[ a? are principal moments of inertia.

Problem: Find the (direction of) principal axes and principal moments of inertia of a (uniform)

solid sphere of mass M at its centre.
Solution: (1) Moment of inertia about axis of symmetry:
Let M, a and p, respectively, be the mass, radius and volume mass >

density of the sphere. Choose coordinate axes as shown in figure.
Moment of inertia of typical volume element of sphere, having mass
dm and volume dV, about z-axis is given by

dr,, = (2% + y®)dm

Thus, moment of inertia of sphere about z-axis is

Izz — (.732 + y2)dm > :9'
Sphere
= p/ (%2 +y%)dv % B 3’",’ = constant
Sphere
3M
= 4nad /S : (2% +y*)dV W P= W (for sphere)
phere

To make the computation simpler, we transform the problem from
Cartesian coordinates (z, y, z) to spherical coordinates (7, 8, ¢) by
using

x = rsinf cos ¢, y = rsin @ sin ¢, z=rcosb

where, volume element in spherical coordinates is given by

dV = dr (rdf) (rsin @ de) = r?sin @ dr dd de¢
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= 22 4+ y? = r2(sin? 6 cos? ¢ + sin? O sin? p) = 2 sin? O(cos? ¢ + sin? ¢) = rZsin? 0

For sphere, 0<r<a, 0<6<m, 0< ¢ <2rm
M M a T 27
EO 3/ / / r4sin® 9 dr do dp = — 3/ T4dr/ sin®0do [ de,
4a 0=0 J p= 4dma Al 0—0 $=0
where,
L i " :
/ sin® 0 do = —/ (3sin 6 — sin 30) |- sin30=3sin0 —4sin®0|
0=0 4 Jo—o

_1 3 50 1 5360 |7'(' —1 3 . 3 : _4
_Z(_ cos +§C0b ) 0:0_2[< _§>_<_ +§>]_§

3M (a®\ (4 % 5
]z:: = 47{'0,3- (?) (g) (27r) — gA.[a

2
Iy = Iy'y = SZWGQ I Iy = Iyy =1I.. (by symmetry) |

Thus,

Similarly,

(77) Products of inertia with respect to axes of symmetry:

3M 3M
Imyz—/ zydm = — .3/ rzydV = — 3/ / / r4 sin® @ sin ¢ cos ¢ dr d do
Sphere drar Sphere dma r=0 J0=0
3M % 4 B 3 i e ) . 27 . ; T 27
e /r:o r* dr /o‘ . sin” 6 d@ /4)20 singcospdep = 0 ; f¢=0 sinpcos pdgp = 5 sin” ¢ Gl = 0
Similarly,
Iyz = Izz =0 Izy — Ly, — Izz (by Symmetry) |

The inertia matrix with respect to coordinate system Ozyz is given by

2 Ma? 0 0
[Zols~ 0 ZMa? 0
0 0 2 Ma?

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required principle axes
and corresponding moments of inertia I,, = I,, = I.. = %1\1 a? are principal moments of inertia.

Problem: Find the (direction of) principal axes and principal moments of inertia of a (uniform)

2 y2

2
Solution: (%) Mong)ents of inertia about axis of symmetry:

Let M and p, respectively, be the mass and volume mass density of the ellipsoid. Choose coordinate axes as
shown in figure.

Moment of inertia of typical volume element of ellipsoid, with mass dm and volume dV', about z-axis is given
by

solid ellipsoid — +—==1 of mass M at its centre.

dI,, = (22 + y?)dm

Thus, moment of inertia of ellipsoid about z-axis is

5 (2 4+ y?)dm
Ellipsoid
= p/ @2 +9y2)dV | p= g’& = constant
Ellipsoid
3M 2 2 M : :
= dy |:.- = —=+—— (for ellipsoid
4rtabe /Elllpsoid(z Ty ) 2 (A/Simabe ( il e )

Let us substitute
zla=x'y ylb=g'; zle=z’
= dz/a=dz’, dy/b=dy’, dz/c=dz’, dV =dzdydz = abedz’ dy’ dz’
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Under the above transformation, the given ellipsoid is transformed into the unit sphere

S:x'2+y'2+z'2=1.

Moment of Inertia

M M
= Jpp = 8 /(azw’2 +b%y"?)(abeda’ dy’ d2’) = gl (a®xz’? + b%y’2)dV’, where, dV’ = dz’ dy’ d2’
drabe Jg dr Jg
%)
= w/z'QdV' v fgx?dV = [y 2dWN\> (by symmetry)
43 S

To make the computation simpler, we transform the problem from Cartesian coordinates (z’, y’, z’) to spherical

coordinates (r, 6, ¢) by using

x’ = rsinfcos ¢, y' = rsinfsin ¢, z' =rcosé,
where, volume element in spherical coordinates is given by, dV’ = dr (rd#) (rsin 0 dp) = r?sin @ dr df do
For unit sphere, 0 rgly 0< <™, 0< ¢p<2m

M 2 2 1 ™ 27 M 2 2 1 0y 27
= I, = M / / 7*sin® 0 cos? ¢ dr df d¢ = M / rdr / sin® 0 d6 / cos? ¢ de,
0=0 L) 4m r=0 0=0 ]

47 r=0

=0

. I , i 1 |7r 1 1 1 4
" i3 -t in ) — i e ] = — i ) s ] e =) | ==
where, /ezosm 0do = 4/920(3sm9 sin 30) = 4( 3cosb + 3cos30> 6=0= 7 [(3 3> ( 3+ 3)] 3

a /27 ~2¢d¢—1/2”(1+ g (ot snmg) |3 5 = A
an L o cos =2 - cos = 5 sin p=0=302m) =7
3M(a?+b2%) (1 (4 1 B » ol
I,=————-—=|- = =—-M b
= 4r (5) (3)(”) s M@ +6%)
Similarly, I, = éM(b2 +c?) and Ly = -;—M(a2 +c2)
(i1) Products of inertia with respect to axes of symmetry:
3M 3M
Ioy = — dm = — dV = — bz'y)(abeda’ dy dz’
. /Ellipsoid I drabe /Ellipsoid e ¥ drabce /S( el )( i )
1 T 27T
= 3abA{/x'y'dV’:— 3ab]\/[/ / / rsin® 0'sin ¢ cos ¢ dr d6 d¢
47 S 4 r=0J0=0 J p=0
» 1 ™ 27 b 2
= — % .[:0 rtdr /9:0 sin® 6 d6 /¢=0 singcospdep =0 f;zosin(bcosq’)dqb — %sinzqﬁ (;;0 =0
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Similarly, it is not difficult to show that

Ty =1L, =10
The inertia matrix with respect to coordinate system Oxyz is given by
%J\I(bz +c?) 0 0
[Io] = 0 1M (a® + ?) 0
0 0 +M(a® + b?)

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required principle axes
and corresponding moments of inertia I,,, I, and I.. are principal moments of inertia.

Problem: Find the (direction of) principal axes and principal moments of inertia of a (uniform)
hemispherical shell (hollow hemisphere) of mass M at centre of its base.
Solution: (i) Moment of inertia about axis of symmetry:

Let M, a and o, respectively, be the mass, radius of base and
areal mass density of the hemispherical shell. Choose coordi- z-axis
nate axes as shown in figure.

Moment of inertia of typical area element of hemispherical
shell, with mass dm and area d.S, about z-axis is given by

dI,, = (=% + y2)dm

Thus, moment of inertia of hemisphere about z-axis is

by = /(:1:2 + y2)d‘m, S : hemispherical shell
S
=g / (22 +y%)dS 78 G = d—’g = constant
27ra2 / (2 +y?)dS W= 27]:{12 (for hemispherical shell)

To make the computation simpler, we use the parametric equa-
tions of hemispherical shell as follows

x = asinf cos ¢, y = asin @ sin ¢, z=acosb

For hemispherical shell : 0<60<7/2, 0< op<2m
dS = (adf) (asin b do) = a*sin 6 d d¢
z? +y? = a® (:sin2 0 cos? ¢ + sin® @ sin? ¢) = a? sin® O(cos? ¢ + sin? ¢) = a? sin” 9

/2 Ma2 /2 27
= L / / a*sin® 0do do = / sin® 0 do / do, (6)
27“1 0= = 2w Jo—o ¢=0

/2 ) 9 /2
/ sin® 0 df = 1 / (3sin @ — sin 360) I sin 360 = 3sin @ — 4 sin® 9|
7 0

=0 =0

1 1 /2 4 1
= 5 (—3c050—|—§c0536> 9—=0 = 1 (3— §> =

g 2 ( )(2 s ]\/[a

where,

wlN

(7)

Using (7) in (6), we get

27

(i) Moment of inertia about a diameter of the base:

L= /(y2 + 2%)dm = U/(y2 +22)dS = -
s s 2

Using parametric equations of hemispherical shell, we get

O 4.2 48, S : hemispherical shell
s

M [7/?
Lis = B / / 4(sin3 0 sin® ¢ + cos? Osin 6)de do
2ma O— b=
Ma?2 /2 27 /2 27
= / sin® 0 d6 / sin? pd¢ + cos® Osin 6 do / do (8)
2m 0=0 =0 0=0 =0
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where,

27 ) 1 27 1 1 271_ :
/¢=0 sin® pd¢p = §/¢=0(1 —cos2¢)do = > (¢— 551112(;5) |¢=O - 5(27r) — 9)

and

w2 1 /2 1
/ cos? Osinf df = — gcos Olo—0 = = (10)
0=0

Using (7), (9) and (10) in (8), we get

o2 T2
Lm:]\[a (2_7r+2_71'):JUa (4—7r)=2]\/1a2

27 3 3 27 3 3

(#it1) Products of inertia:

M
Ty = —/ rzydm = —0o / zydS = — / xydS, S : hemispherical shell
S JS 27'ra2 S

Using parametric equations of hemispherical shell, we get

/2 1\/[0,2 /2 2m
Ipy = / / a’ sin® 0 sin ¢ cos pdOdpp = — / sin® 9d9/ sin ¢ cos ¢ do
27ra2 0 B 27 Jo—o $=0
But
27 1
/_Osin¢cos¢d¢:2 020 — ¥y =0
Now,
]\/.[ 71'/2
Imzz—/xzdmz——Q/:L'zdS:— 2/ / a* sin? 0 cos 0 cos ¢ df do
S 2ma?® Jgq 2ma =
J\/I 2 7T/2 27
e / sin? 6 cos 6 d6 cospde
27 Jo—o ¢=0
But
27 27
/ cos pdp = sin @ $=0= 0 = INF0=1,, " Iy, = I,. (by symmetry) |
»=0 -
Thus,

[rcy:Izz: yz:0

The inertia matrix with respect to coordinate system Ozyz is given by

2Ma? 0 0
o] = 0 2Ma? 0
0 0 2 Ma?

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required principle axes
and corresponding moments of inertia I, = I, = I.. = %1\/[ a? are principal moments of inertia.

Problem: Find the (direction of) principal azxes and principal moments of inertia of a (uniform)
spherical shell (hollow sphere) of mass M at its centre.

Solution: (i) Moment of inertia about axis of symmetry:

Let M, a and o, respectively, be the mass, radius of base and areal mass density of the spherical shell. Choose
coordinate axes as shown in figure.

Moment of inertia of typical area element of spherical shell, with mass dm and area d.S, about z-axis is given
by

dr.. = (2% + y?)dm

Thus, moment of inertia of spherical shell about z-axis is

Lyge= /(.12 + y?)dm, S : spherical shell
s
= cr/(ac2 +y?%)ds o =92 = constant
= 47ra2 /( +y%)dsS g = # (for spherical shell)
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To make the computation simpler, we use the parametric equations of spherical shell as follows
x = asinf cos ¢, y = asin 0 sin ¢, z=acosf
For spherical shell : 0<0<m, 0< <2
dS = (adf) (asin @ dop) = a®sin O dh.de
2?2 +y? =a? (sin2 0 cos? d) = sin2 0 sin? ¢) = a?sin? O(cos? ¢ + sin? ¢) = a? sin?

M [, =
= L= a*sin®0do do¢ = sin” 6 d@ do, (11)
47“1 0=0 J =0 4 6=0 =0
where,
/ sin® 0 dg = i / (3sin @ — sin 30) | sin 30 = 3sin — 4sin® @ |
0=0 4 Jo=o
i 1 |ﬂ' 1 1 1 4
_Z(—30050+500530> 9_:0—2 |:(3—§> - (—3+§):| =3 (12)
Using (12) in (11), we get
2
LonE ol <4> (2m) = zJ\Ia
4

(71) Products of inertia with respect to axes of symmetry:

" M
Ty = —/ rzydm = —0/ zydS = ——2/ xzydS, S : spherical shell
5 s dma® Jg

Using parametric equations of spherical shell, we get

Lpyi= / / a* sin® 0 sin ¢ cos p dO dop
> 471'(12 0=0 J p=

M 27
_ a’ / sin® 0 do / sin ¢ cos p do
A Jo—o $=0

But
27 1
/ singcospdp = — sin? 10} =0 — Loy =0
$=0 2 )
Similarly,
I,,=1I,,=0 | Iy, =1,.=1,. (by symmetry) |
The inertia matrix with respect to coordinate system Ozyz is given by
ZMa? 0 0
[Io] = 0 ZMa? 0
0 0 2 Ma?

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required principle axes
and corresponding moments of inertia I, = I, = I.. = %]W a? are principal moments of inertia.
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