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CHAPTER

GENERAL INTRODUCTION &
1 NON INERTIAL REFERENCE
SYSTEM

What is Mechanics?

Mechanics is the branch of science which studies the state of rest and motion of
objects and laws governing rest, equilibrium and motion. Since material objects
exist in the form of liquids gases and solids there are corresponding types of
mechanics to deal with them.

i Kinematics
ii. Dynamics
iii.  Statics

Kinematics

Kinematics is the branch of mechanics which describe the motion of objects
without consideration of their masses and force acting on them. It is the motion of
objects without discussing the causes of motion.

Dynamics/Kinetics

Dynamics is the branch of mechanics concerned with the motion of objects under
the action of force. It is the motion of objects with discussing the causes of motion.

Statics

Statics is the branch of mechanics concerned with objects at rest or in equilibrium
under the action of forces.
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Classical Mechanics

This is the branch of mechanics in which we study the mechanics of big bodies. It
deals with the motion of physical objects at macroscopic level. It is based upon
Newton’s Law of Motion. It is also called Newtonian Mechanics because the
bodies obey Newton’s Law of Motion. The study of bodies on atomic scales falls
in the category of Quantum Mechanics. The problems involving velocities which
are not negligible when compared with the velocity of light or discussed on the
basis of relativity. Galileo and Newtonian provide the base of classical mechanics
in 17" century.

Non — Relativistic Mechanics: Non — Relativistic Mechanics based on the laws of
Newton’s is concerned with bodies moving at speed and velocities negligibly small
as compared to the speed of light. i.e. ¢ = 3 x 108ms™!

Relativistic Mechanics: Relativistic Mechanics is concerned with bodies moving
at speed and velocities comparable to the speed of light. i.e. ¢ = 3 x 108ms™1

Division of Classical Mechanics
Three major divisions of classical mechanics are the following:

» Mechanics of particles and rigid bodies: It is based on newton’s law.
Basic concepts and terms are space, time and mass; particle and body;
velocity, momentum and acceleration; force and energy.

= Mechanics of fluid: It is also based on newton’s law and their extensions
and deal with the behavior of the fluid (liquid and gases) in motion. Its two
well-known branches are hydrodynamics (for fluid) and Aerodynamics (for
gases).

» Mechanics of elastic solids: it deals with the behavior of solids when the
undergo deformation under forces.

Macroscopic Objects: Visible objects through naked eyes are called Macroscopic
Obijects. e.g. Star, Table, Horse etc.

Microscopic Objects: Invisible objects through naked eyes are called Microscopic
Objects. e.g. electron, proton, bacteria etc.
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Classical Mechanics by Methodology and Approach

= Newtonian Mechanics or Vector Mechanics: In this type of mechanics
vector quantities such as position vector, velocity, momentum etc. appear as
basic physical entities. This is directly based on Newton Laws of motion.

» Analytic Mechanics or Scalar Mechanics: In this type of mechanics scalar
guantities occupies the central position.

Rectangular Components

The process of splitting a vector into various parts or components is called
“Resolution of vector” and these parts are called components of vector. If we split
a vector in a rectangular plane OXY, such components are called rectangular
components of a vector.

Component Along x-axis is called horizontal component of vector.
Component Along y-axis is called vertical component of vector.

Position vector: It is often convenient to describe the motion of a particle in terms
of its x, y or rectangular components, relative to a fixed frame of reference. In a
given reference system, the position of a particle can be specified by a single
vector, namely, the displacement of the particle relative to the origin of the
coordinate system. This vector is called the position vector of the particle. In
rectangular coordinates, the position vector is simply r = xi + yj

The components of the position vector of a moving particle are functions of the
time, namely, x = x(t) ,y = y(t)

CLASSIFICATION OF COORDINATES

Cartesian or Rectangular Coordinates: Let (x, v, z) be a point on surface S in R®
then (x, y, z) are called Cartesian coordinates.

Polar Coordinates: Let P(r,8) be a point on the curve in R* then (r, 8) are called
Polar coordinates. Its parametric equations are x = rCos6,y = rSinf

— 2 2 — -1Y
Where r = \/x? + y%? and 6 = tan "
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Cylindrical Coordinate System (r, 0, z)

Let P(r, 0, z) be a point on surface of cylinder S in R3then (r, 6, z) are called
Cylindrical Polar coordinates.

Its parametric equations are x = rCosf,y = rSinf,z = z .

_ 2 2. _ -1Y _
Wherer = \/x? + y%;r > 0and 6 = tan x,OSGSZnand 0 < z< o

Fix Vary Locus
0,z r Straight Line
r,0 Z Line
T,z 0 Circle
z 7,0 Disk
2} r,Z Plane
r 0,z Cylinder

Spherical Coordinate System (7, 0, @)

Let P(r, 0, @) be a point on surface of sphere S in R*then (7, 8, ¢) are called
Cylindrical Polar coordinates.

Its parametric equations are x = rSinfCos@,y = rSin8Sing, z = rCos@.

[ 22 2
Wherer=\/x2+yz+zz;r>0and6=tcm_1 Xy ;—%SHS

Z

SIS

and(p=tan‘1§;0Sg0S2n

Fix Vary Locus
1,0 [0, Circle
r,Q 0 Semi-Circle
0,p r Line
r 0, Sphere
7} 7,Q Cone
© r,0 Plane
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Framework

A framework that is used for the observation and mathematical description of
physical phenomena and the formulation of physical laws, usually consisting of an
observer, a coordinate system, and a clock or clocks assigning times at positions
with respect to the coordinate system. A system of geometric axes in relation to
which measurements of size, position, or motion can be made.

Frame of Reference

The system in which the clock and the meter scale used for the measurement are at
rest. Such coordinate system is called a frame of reference. There are two types of
frame of references

= [|nertial frames of reference (Newtonian Frames)
= Non — inertial frames of reference

Inertial Frames of Reference

Inertial frame of reference is that in which the law of inertia (Newton’s first law of
motion) holds, that is a frame in which a body that is acted upon by zero net
external force moves with a constant velocity.

The law of inertia holds in any frame of reference, which happens to move with a
constant velocity relative to a given inertial frame. Therefore, any frame of
reference, which moves with a constant velocity relative to an inertial frame, is
also an inertial frame. These frames are non — accelerated. i.e. @ = 0

Examples

= A frame of reference fixed with respect to the stars is an inertial frame.

= A spaceship drifting in outer space without spinning and with its engines shut
off would be an ideal inertial frame.

= However for all practical purposes, any frame of reference fixed to the earth
such as a railway station or a laboratory can be taken as an inertial frame. Thus
a railway station is an inertial frame and a train travelling at constant velocity
with respect to the railway station is also an inertial frame.
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Non — Inertial Frames of Reference

Non — Inertial frame of reference is that in which the law of inertia (Newton’s first
law of motion) does not holds, that is a frame in which a body that is acted upon by
zero net external force does not moves with a constant velocity. i.e. velocity
remains change. E.g. person sitting in a moving train.

Newtonian or The Principle of Relativity (Galilean Invariance)

The Principle of Relativity (PR) applies to inertial frames of reference. This
principle states that the laws of Physics take the same mathematical form in all
inertial frames.

Or the basic laws of Physics are identical in all frames of reference which are
moving with uniform velocity (unaccelerated) relative to one another.

Or Itis impossible by using any physical law to distinguish between inertial
frames.

GALILEAN TRANSFORMATION (G.T) / NEWTONIAN
TRANSFORMATION

This is the set of equations in classical physics that relate the space and time
coordinates of two systems moving at a constant velocity relative to each other.
The transformation equations which relate the time and space coordinates in
frames S and S’ and are called Galilean Transformations (G.T.) as follows;

x' = x — vt, y' =y, z'=z, t'=t

Nature of time and Space:  According to G.T.

= the concept of time is absolute (invariant) (t' = t)
= the concept of space that is the concept of distance or length is also
absolute (invariant) (L' =L ).
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Absolute (Invariant) Space

Space that is not affected by what occupies it or occurs within it and that provides
a standard for distinguishing inertial system from other frames of references. For
example, Bob on Earth, sitting at his telescope, catches sight of Alice in her rocket
ship streaking at 9/10 the speed of light right towards the sun.

Application of G.T. to Mechanics

On the basis of G.T., it is possible to obtain relations between physical quantities
measured by two inertial observers in relative motion. Some of these are merely
listed below:

(a) If u and u’ are the velocities of a particle as observed from frames S and
S’ respectively, then 4’ =u — v
Where v is the velocity of S’ relative S. This is the familiar ‘common
sense’ formula of relative velocity.

(b) Acceleration of a particle as measured in S and S’ is the same. That is say
a=a

(c) The mass of a particle has the same value in different inertial frames. If m’
and m are the masses of a particle as determined in frames S" and S
respectively, then m' = m.

Hence equation of motion such as F = ma in frame S is transformed into

F' = m'd’ in frame S'. Not only this equation but in fact Newtonian
Mechanics has the same form in different inertial frames according to pre-
Einstein relativity.

Covariant

Laws which remain same in all inertial frame of references are called covariant
laws. e.g. Newton law F = md is covariant in all inertial frame of references.

Invariant (Absolute)

Quantities which remain same in all inertial frame of references are called
Invariant quantities. e.g. mass, length, time etc.
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Newton’s 1% law of motion (Galileo’s Law)

An object continues its state of rest or of uniform motion in a straight line provided
no net force or external force act on it. It is also called Law of inertia. This law
measures the force of an object qualitatively.

The symbolic form of first law of motion is }; F=0.ieemd=0

As the mass of the object is non-zero, therefore the acceleration of the concerned
object must be zero. i.e. @ = 0. implies % = 0. Then v = Constant.

Examples: A ball kicked in a ground, A car moving with constant velocity, A
book lying in a book shelf.

Inertia: It is a property of a body due to which it resists any change in its state
of rest or of its motion. It depends on mass of body. i.e. I = mr?

Newton’s 2" law of Motion
(Time rate of change of momentum equal to net force)

Newton’s 2" law of motion describes the relationship among the force, mass and
acceleration of the given object. We can states the 2" law of motion as;

Change of motion is proportional to the external applied force and takes place
in the direction of the straight line in which the force acts. Or For any particle
of mass m, the net force F on the particle of mass m times the particle’s

—

acceleration. i.e. F = ma.

The second law can be rephrased in terms of the particle’s momentum, defined as

ﬁ=mﬁthenﬁ=ma=m%=%(mﬁ):ﬁ:‘;_’:
That is the rate of change of linear momentum in the direction of applied force

is equal to that force.
Examples

When we apply same force to move a truck and a bicycle, the bicycle will have
more acceleration than the truck, because the mass of bicycle is less than the truck.
An empty shopping cart is much easier to move than a full one, because the empty
one has less mass.
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Newton's 3" Law of motion

Newton's first two laws concern the response of a single object to applied forces.
The third law addresses a quite different issue: Every force on an object inevitably
involves a second object the object that exerts the force. The nail is hit by the
hammer; the cart is pulled by the horse, and so on. Newton realized that if an
object 1 exerts a force on another object 2, then object 2 always exerts a force (the
"reaction” force) back on object 1.

Newton's third law can be stated very compactly:
To every action there is an equal and opposite reaction.
Examples

A fish’s thrust through the water, A bird’s fly in the air, A rocket’s launch, The car
moving on a road, The nail hit by hammer.

Gravitational Mass

Mass of the body define on the basis of gravitational properties is called
Gravitational Mass.

Rigid Body

A rigid body is defined as a collection of particles such that distance between every
pair of its constituent particles remains unchanged whatever the forces acting on it.

Constraint of Rigidity

The defining condition of a rigid body is called the constraint of rigidity. It can be
expressed as (r; — ;)" = (r; — 7). (r; — ;) = ¢;; Where r; is the position vector
of the i" particle and c;; is a constant. This definition implies that a rigid body will
not undergo any deformation.



visit us @ Youtube | Learning with Usman Hamid

Question
A constant force F acting on a particle of mass m changes the velocity from v, to
U, in time .

m(V,-v,)

a) Provethat F =
b) Does above result hold if the force is variable? Explain.

Solution
, > S dv __ dv _ F . F
By Newton’ssecond law F=ma=m—=—=—=dv =—dt
dat dt m m
Zr e F (T > 5 F m(v,—7,)
=>1_},1dv—mf0alt=>v2 v =—(0)=>F=—=

Above result does not hold in general if the force is variable (13 IS not constant),
since in such case we would not obtain the result of integration achieved above.

Question

What constant force is needed to bring a 900 kg mass moving at a speed of
100km/h to rest in 4seconds?

Solution

We shall assume that the motion takes place in a straight line which we choose as
the positive direction of the x — axis. Then we have;

m = 900kg, ¥, = 100ikmh™1 = 27.78ims™1, ¥, = 0ims™1,t = 4s

Using formula F = Z27%) \e have
F=mad=""" 695 103 newtons

t

Thus the force has magnitude 6.25 x 103 newtons in the negative x direction. i.e.
in the direction opposite to the motion. This is of course to be expected.
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Question

On the basis of G.T. show that the force acting on a particle is independent of the

inertial frame in which it is measured. i.e. F' = F. Or Show that Newton’s 2™
Law of motion is Covariant. Or Show that Newton’s 2" Law of motion is
invariant under G.T.

Solution

If i and u’ are the velocities of a particle as observed from frames S and S’
respectively, then according to Galilean Transformations

ax' _ d dx' _ dx dat .
X'=x—-vt=>—==—Kx—-vt) > S=——v— inG.T.t' =t
at’  dt at’  at dt

s>u=u—-v=>@,00)=w00)-wW00)=>uUu=u-—v

du’ d du'! du dv  dui @ — =
L l@-p)=>E = TG4
dt dt dt dt dt t

Multiplying m’ on both sides we get = m'a’ = m'a
=>m'd =ma In inertial frame m’' = m

>F =F

Equilibrium
A body is said to be in equilibrium if no net force acts on it. i.e. F=0
Types of Equilibrium

» Stable Equilibrium/Stability of Equilibrium: In Stable equilibrium the
particle will return to its original position when slightly displaced to either
side.

= unStable Equilibrium: In unStable equilibrium the particle will not return
to its original position when slightly displaced to either side.

= Neutral Equilibrium: In neutral equilibrium the particle will return to its
new position when slightly displaced to either side from its previous
position.
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Condition of Equilibrium State

There are two conditions for equilibrium state;

= Net force acting on a body is zero. i.e. ), ﬁi = 0.
= Net torque acting on a body is zero. i.e. Y. 7; = 0.

Keep in Mind

= Theorem: If the force field is conservative with potential V,thena

Necessary and sufficient condition for a particle to be in equilibrium at a
. = . 9V oV oV

point is that V¥ = 0. le.— = ¥y oz

= Theorem: A Necessary and sufficient condition that and an equilibrium
point be one of stability is that the potential V' at the point be a minimum.

"~ ox 9y 9z

Question

A particle is acted upon by the forces

F, = 51— 10j + 15k, F, = 101 + 25j — 20k and F, = 15{ — 20j + 10k

Find the force needed to keep the particle in equilibrium.

Solution
The resultant of forces is R = F, + F, + F; = 301 — 5j + 5k

Then the force needed to keep the particle in equilibrium is —R =-30{+ 57 — 5k
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Stable Equilibrium/Stability of Equilibrium

In Stable equilibrium the particle will return to its original position when slightly
displaced to either side.

Point of Stability

If a particle which is displaced slightly from an equilibrium point P tends to return
to P, then we called P a point of stability or stable point and the equilibrium is said
to be equilibrium. Otherwise we say that the point is one of instability and the
equilibrium is unstable.

Theorem: A necessary and sufficient condition that an equilibrium point be one of
stability is that the potential V at the point be a minimum.

Question

A particle moves along the x — axis in a force field having potential
V= %kxz; k > 0 then

a) Determine the point of equilibrium
b) Investigate the stability

Solution

a) Equilibrium point occur where W =0

av _ a (1, 2) _ _ _
=>dx—0:>dx(2kx)—0:>kx—0=>x—0

Thus there is only one equilibrium pointat x = 0
2y —
b) Since % =k > 0, it follows that at x = 0, V' is minimum then by using
theorem “A necessary and sufficient condition that an equilibrium point be one

of stability is that the potential V at the point be a minimum.” x = 0 is a point
of stability.
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Bounded and Unbounded Motion of a Particle

Dynamic system may be categorized as bounded or unbounded.

If the sum of the kinetic and binding energies is less than zero, interacting
entities are considered bounded. In this, system lies confined in a particular
region of space. This generally happens when the energy of the particle is
less than or equal to the total potential barrier at infinite separation. In other
words, the particle has less energy than is required to escape the barrier. In
classical mechanics, a bounded system is one where the motion of all the
objects in the system is restricted to some finite region of space.

For example consider an object moving in a Newtonian gravitational

potential V(r) = — g The motion of this object is bounded if it has

negative total energy. In this case, the object will move in a close orbit in the
shape of a ellipse. We can draw an imaginary box of finite size that
completely encloses the orbital ellipse of the object.

If the sum of the kinetic and binding energies is greater than zero, interacting
entities are considered unbounded. In this, system does not lies confined in
a particular region of space. This generally happens when the energy of the
particle is greater to the total potential barrier at infinite separation. In other
words, the particle has greater energy than is required to escape the barrier.
In classical mechanics, an unbounded system is one where the motion of
all the objects in the system is not restricted to some finite region of
space.

For example consider an object moving in a Newtonian gravitational

potential V(r) = — g The motion of this object is unbounded if it has

positive total energy. In this case, the object will move along a hyperbolic
escape trajectory. And there does not exist any finite sized trajectory. In this
case, the motion is unbounded.
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Foucault’s Pendulum

The Coriolis effect resulting from the rotation of the Earth was dramatically
demonstrated by Jean Foucault (1819 — 1868) in 1851, using a long pendulum
of 67 meter string with a very heavy bob (to reduce the effects of air currents)
of 28km hung from a support designed to allow the pendulum to swing
(rotated) freely in any direction (especially in a given vertical plane). His
experiments showed that the plane in which the pendulum oscillates rotates slowly
with time. The effect is very striking because, unlike previous examples, the
motion takes place in a small region of space, and the velocity of the pendulum is
not very great. The gravity force is, of course, much more important than the
Coriolis force in determining the pendulum’s motion. However, the direction of the
small Coriolis force is out of the plane of oscillation; thus, despite its smallness,
the Coriolis force has a significant effect on the motion of the pendulum.

M |

As shown in Figure, ¢ is the angle between the line along which the
pendulum oscillates and a reference polar axis. Foucault showed that the rate of
rotation ¢ of the direction of swing of the bob is related to the latitude A of the
pendulum on the earth and the angular velocity o of the Earth’s rotation by the
expression = wsinA .
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Statement: Foucault’s Theorem (Foucault’s Formula)
The plane of oscillation of the plane rotates with an angular frequency wsinA
Proof

Consider a Foucault’s Pendulum comprises a bob of mass m suspended by a light
wire of length L from the point P on a high ceiling. The tension force on the bob is

shown as T and its x and y components are T, and T, for small oscillation the
angle S is very small.

Consider a coordinate system OXYZ with origin O at the point of
equilibrium and z — axis coincident with the local vertical; with point of suspension
S on the z — axis. Then the xy — plane will be coincident with the local horizontal
plane. We consider very small oscillation of the pendulum and therefore it is
reasonable to assume that they take place in the horizontal plane.

>Y
7 (X, 3, 2)

’
A (®)

Let 7 denote the position vector of the bob at any time t. If is the tension T in the
string then the equation of motion of bob will be

ME+2mBXF =T +MG e, (1)
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Where the quantities on the L.H.S refer to the body (or rotating) coordinate system
OXYZ, and those on the R.H.S to a fixed (or inertial) coordinate system with O as
origin. Let «, 8,y be the angles which the line segment SP makes with coordinate

axes, then the angles which the tension T makes with the same axes will be
m—a,m — 3, —y. The component of T will therefore be

T, = T.i= Tcos(m — a) = —Tcosa
T, = T.j = Tcos(mt — ) = —Tcosf
T, =T.k = Tcos(m —y) = —Tcosy

Let (x, y, z) be the coordinates of the point P. now we will use the following
relations from the three — dimensional geometry
X2—X Y2—V1

Tl=cosa; T=cos,8;

Z3—2Z1

= cosy

Where [ denotes the distance between the points (x;, v4,2z,) and (x5, y,, Z5).
Noting that the end points of the string have coordinates (00, ) and (x, y, z) we
obtain

x—0 z—0
—— =cosa ; y—=cos,8 ; = = cosy

X Z
T = cosa ; %zcosﬂ; T = cosy

Therefore on substitution T,, = —T% s T, =-TZ ; T, = —T%

We consider very small displacement in the YZ — plane. Then x < [,y « L and
z ~ —l. Under these circumstances T ~ mg, and for the components we can write

T,=T%; T,=T%; T,=T (becausez = 0)
The angular velocity vector & can be written as @ = (wcosA)i + (wsind)k and

g = —gk. Therefore
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~

i j k
W X7 =|wcosd 0 wsind
X y Z
G XT = —(wysinA)i + w(xsind — zcosA)j + (wycosA)k

Using in the equation (1) we have
mr +2ma x# =T + mg

m(x1 + 3] + zk) + 2m[—(wysind)i + w(isind — zcosD)] + (wycosDk] =
— 2 (xi+ yj + zk) — mgk

On equating the coefficients of , j, k we have

. . . Tx

X+ 2w(—sind)y = -—

V4 2w(xsind — zcosA) = — % ..................... (2) for all three equations
Tz

Z+ 2w(cosA)y = ——=g

Next we will make use of the assumption that the bob of the pendulum oscillates in
the XY — plane. Because of this assumption z = [ and therefore z = Z = 0 also

using T ~ mg equation (2) reduces to the following form

X — (Lwsinl)y = —% ; V+ Qwsinl)x = —% ; wcosAd)y =0

Putting wsind = w,, the motion of the pendulum in the XY — plane is given by
42 =20y and J+Z = —20% (3)

(5& + %) +i (y + %) = Quw,y) + i(=2w,%)

(% + i) + % (x + iy) = 2w,(y — ix) = 2w,(—i%y — ix)
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(% + i) + 7 (x + iy) = —2iw, (% + iy)

g + %g — —Ziwzé using & = x + iy $+%E = 0 is called equation of
v . S.H.M. with period 277\/% and
E+2iw,E +36=0

the terms —2iw,¢ is called

(Dz + 2iw,D + %) £=0 Damping Term

D2 4 2iw,D +§=0

1 . .
D= E(_lez + ./ —4wZ - 4(»3) = —i (a)z + Jw? + a)g)
Where wi = % is the angular frequency of the pendulum, in the absence of the
damping term.

Since the roots are imaginary the general solution can be written as
; i |wZ+wit —i /w2+w2 t
E=e Wz |4e V" ° +Be SR ORI (3)

&y = Ae®ot + Be~®ot in the absence of the damping term

The angular frequency (which is the same as angular velocity) w, of the undamped
oscillator is much greater than the angular velocity w of earth’s rotation. i.e.
wy > w, therefore above solution (3) can be approximated as

E ~ e—iwzt[Aewot + Be—wot] or E ~ e—iwztfo
= x + iy = (cosw,t — isinw,t)(x" +iy") using &g = x' + iy’
= x = x'cosw,t + y'sinw,t and y = —x'sinw,t + y'cosw,t

Above equations describe a rotation through an angle w’ = —w, = —wsinA. Thus
the plane of oscillation of the plane rotates with an angular frequency wsinA. This
result clearly demonstrate the rotation of the earth.
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CHAPTER

2 KINETICS

Kinetics

The branch of Mechanics/Dynamics which deals with the geometry of motion of a
body with reference to the force causing motion is called kinetics.

Conservation Laws of Mechanics

Certain quantities such as linear and angular momentum, under certain
circumstances, remain constant during motion of mechanical system. They are
called constant of motion or conserved quantities. The results expressing
constancy of these quantities play fundamental role not only in mechanical but also
in other areas of theoretical physics.

In mechanics these results follow as consequences of the fundamental laws of
motion and therefore sometimes called conservation axioms. But in other
branches of physical sciences, such as Elementary Particle Physics, where
fundamental dynamics laws are not known, the results expressing conservation of
guantities such as linear momentum, angular momentum and energy are regarded
as fundamental postulates of the theory or fundamental laws of nature. Our belief
in their universal validity is bases on the observation that in the areas of physics,
such as mechanics, electromagnetic theory and thermodynamics, where
fundamental laws are well — founded and well — understood, these conservation
laws are found to be strictly valid.
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Momentum (Linear Momentum)

If a body of mass m is moving with velocity, then the momentum of that body is
equals to the product of mass and velocity of the specific body. Mathematically,

we can write is as P = m#. It is a vector quantity. It S.I unit is kgms .
Momentum of system of particles

The total momentum of a system of particles is the vector sum of the momenta of
the individual particles:

Psys = ﬁl + ﬁz + -t ﬁn = Z?=1ﬁi = Z?=1miﬁi
Where the system consists of n particles and m; is the mass of i"" particle and ¥; is
corresponding velocity.

Angular Momentum/ Moment of Momentum about Origin

Angular momentum of a particle of mass m, position vector 7 and linear
momentum P is defined as 7 x P. The angular momentum of a single particle is the
cross product of linear momentum and position vector of concerned particle. It is
also called moment of momentum. It is represented by L, H or Q

Angular Momentum of System of Particles

The angular momentum L of a system of particles is defined accordingly, as the
vector sum of the individual angular momentum, namely, L = Y, r; X m;v;
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Law of Conservation of Momentum (Linear Momentum)
Law of conservation of momentum can be stated as:

If the sum of the external forces on a system is zero, the total momentum of the
system does not change. i.e. P = Constant.

Momentum is always conserved (even if forces are non-conservative).

Proof

We know that F = ‘;—i

If F = 0 then Z—i = 0 and hence P = Constant.

Explanation

In simple terms, momentum is considered to be a quantity of motion. This quantity
Is measurable because if an object is moving and has mass, then it has momentum.
Something that has a large mass has a large momentum or something that is
moving very fast has a large momentum. The momentum of individual component
may change but the total momentum of system remains conserved.

Example

= A 3000 kg vehicle moving at 30 m/sec has a momentum of 90,000 kgm/sec
as a result of product of the mass and the velocity.

= Two hockey players of equal mass are traveling towards each other, one is
moving at 9 m/sec and the other at 5 m/sec. The one moving with the faster
velocity has a greater momentum and will knock the other one backwards.

= A bullet fired from a gun, although small in mass, has a large momentum
because of an extremely large velocity.



visit us @ Youtube | Learning with Usman Hamid

Law of Conservation of Angular Momentum

Total angular momentum of the system remains constant if external torque act on
the system is zero. i.e. L = Constant

Or The time rate change of angular momentum in the absence of some external
forces is zero. Mathematically, we can write % = 0. i.e. L = Constant

1% Proof

We know that T = %

If T = 0 then % = 0 and hence L = Constant

2" Proof
Let us calculate the time derivative of the angular momentum. Using the rule for

differentiating the cross product, we find

E = _(Zl LT X myv;) = i (v x m;v;) + Yic (X m;d;)

Now the first term on the right vanishes, because, v; X ¥; = 0 and, because m;d; is
equal to the total force acting on particle i, we can write

— =y (i x md;)

p .
d—i = 3 (% (B FE0 + B T FY)) @
dL (ext) (int)

— = Xi=1 ( x F )+Z —1 2= Fijm (3)

Where F; denotes the total external force on particle i, and F;; denotes the
(internal) force exerted on particle i by any other particle j. Now the double
summation on the right consists of pairs of terms of the form (r; x F;) + (r; X Fj;)
Denoting the vector displacement of particlej relative to particle i by r;;, we have
r;; = 17 — 1;. Therefore, because F;; = —F;;, expression (3) reduces to —r;; X Fj;
Which clearly vanishes if the internal forces are central, that is, if they act along
the lines connecting pairs of particles.
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Hence, the double sum in Equation (3) vanishes. Now the cross product (r; X F;) is
the moment of the external force F. The sum Y:(r; X F;) is, therefore, the total
moment of all the external forces acting on the system. If we denote the total

external torque, or moment of force, by N, Equation (3) takes the form % = N.

That is, the time rate of change of the angular momentum of a system is equal to
the total moment of all the external forces acting on the system.

If a system is isolated, then N = 0, and the angular momentum remains constant in
both magnitude and direction:

L = Y%, r; Xx m;v; = Constant vector (8)

This is a statement of the principle of conservation of angular momentum. It is a
generalization for a single particle in a central field.

Applications (Examples) of angular momentum

= Planets move around the sun and satellites move around the earth are
examples of angular momentum.

= |f a car move with constant velocity then momentum of the car remains
constant.

Examples

A particle moves in a force field given by F = r27 where # is the position vector
of the particle. Prove that the angular momentum of the particle is conserved.

Solution
The torque acting on the particle is T = 7 X F
5T =7rXr’F=r?2(Fx7)=0

Then by theorem “Total angular momentum of the system remains constant if
external torque act on the system is zero. i.e. L = Constant”

The angular momentum is constant. i.e. The angular momentum is conserved.
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Torqgue

Torque is defined as the turning effect of a body. It is trend of an acting force due
to which the rotational motion of a body changes. It is a moment force acting on
the particle about origin. It is also called twist and rotational force on an object.
Mathematically, torque is defined as the cross product of the force vector to the

distance vector, which causes rotational motion of the body. i.e. T = 7 X F

The magnitude of torque depends upon the applied force, the length of the lever
arm connecting the axis to the point where the force applied, and the angle between
the force vector and the length of lever arm. Symbolically we can write it as:

T = rFSinf

Torque is a vector quantity implies that it has direction as well as magnitude. The
Sl unit for torque is the newton meter (Nm). The direction of torque can be
approximate using Right Hand Rule.

Principal of angular momentum
Relationship between Torque and Angular Momentum

Or  The moment of force or torque about the origin O of a coordinate system is
equal to the time rate of change of angular momentum.

Proof: We know that

a
> =1 +m(@ x 9)

dL _
dt
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Principal of angular momentum (Another Way)
If T is the torque about the axis and Lis angular momentum then t = %

or  If L is then angular momentum then show that the rate of change of angular

dL

momentum equal to the moment of torque or force. i.e. G = —

Proof

: . . ar  d . d
G=r><F=r><P=r><mv=mr><r=mr><d—Z=E(mr><r)=E(r><P)

dL
G=—
dt

Work Energy relation in case of Plane Rotational Motion

The total work done in rotating a rigid body from an angle 8, where the angular
speed is w, to angle 6, where the angular speed is w, is the difference in KE of
rotation at w; and w,.

0, 1 2 1 2
Or  Prove that fel Gdo = lw; — - lwf
Proof
From work done we have W = | 9912 Gdo
92 _ tz dw
= J,7Gdo = [ (152) (wdt)
0 dt
=y 66 = [ (1) (wdo)
= :2 Gdo = f(j)z lwdw
1 1
= 9912 Gdo =1 f:’f wdw

6, 1, 5 1, 5
= =-lw; —=1
0, Gdo Slw; —>lwg
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Work

When some external force is applied on an object, work is done by this force in the
direction of force. Also when some work is done by the applied force, energy
transferred from one place to another.

The work done can be defined as a product of force and the displacement in the
direction of applied force. The amount of work done can be expressed as the
following equation:

Work = Applied Force x Distance

The Sl unit of work is the joule (J), which is defined as the work done by a force of
one newton through a displacement of one meter.

If a force F acting on a particle gives it a displacement d7, then the work done by
the force on the particle is defined as dW = F.d7.

Since only the component of F in the direction of d# is effective in producing the
motion.

X

The total work done by a force field (vector field) F in moving the particle from
point P, to point P, along the curve C of Fig. is given by the line integral

w = f;z F.di = frr: F.d#, Where r, and , are the position vectors of P; and P,

respectively.
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Energy

Energy is defined as the ability to do the work by the object. It is a measurable
characteristic of a system which may be in the form of kinetic energy or potential.
There exist many forms of energy. The energy neither can be created nor be
destroyed but can be converted from one form to another. In mechanics, energy is
the characteristic that transferred from one particle to another. The Sl unit of
energy is the joule; 1 joule can be defined as the energy transferred to an object
by the work done of moving it a distance of 1 meter against a force of 1
newton. The forms of energy include kinetic energy, potential energy, elastic
energy, chemical energy, thermal energy and many others.

Potential Energy/ Potential/Scalar Potential

Energy possess by a body due to its position is called potential energy. It is a work
done by a particle from its existing position to the standard position. It is denoted

by V. Mathematically it is written as V = f;" F.d#

Kinetic Energy (T)

Kinetic energy is the energy stored in a body due to its motion. It can be
transferred from one objects to another and transformed into other kinds of energy.
In classical mechanics, the kinetic energy is equal to 1/2 the product of the mass

and the square of the speed. In formula form: K.E =T = %mV2
The measuring unit of kinetic energy is the joule. It is denoted by T.

The kinetic energy increases with the square of the velocity. If a car is moving with
double velocity then we can say that it has four times as much kinetic energy. As a
consequence of this quadrupling, it takes four times the work to double the
velocity.

If P denotes momentum of the object and m is the mass then we can symbolize the
2

kinetic energy in the form of momentumas T = I:n
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Gravitational Potential Energy

Gravitational Potential Energy is the energy possessed or acquired by an object due
to a change in its position when it is present in a gravitational field. It is energy that
is related to gravitational force or gravity.

Using Newton’s Law of universal gravitation between two particles m, and m,
ﬁ — —G m1m2 —)
Where vector 7 is directed from m, to m,.

If we replace m, by M and m, by m, thenpro

F=—G227= Gva( ) V(GM’") = -V (— GM’”)

r r

VYV = -V (_ GMm)

r

Which shows that gravitational potential energy between particles of masses M and
m is given by

GMm

V(i) =—-—

Electrostatic Potential Energy

Electrostatic Potential Energy is the electric potential energy per unit charge. It
results from conservative coulomb forces and is associated with the configuration
of a particular set of point charges within a defined system.

Using Coulomb’s Law of the force between two charged particles g; and g,
D 1 192> Q192 gl _ (91921
F= 4mey 13 r= 4TTE, v (r) =V (47‘[60 r)

—yV = -y (L&)

471'60 T

Which shows that electrostatic potential function is given by

V() = 22

4TTEG T
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Conservative Force Field

A force field is said to conservative if the total work done by the particle moving
along a curve is independent of the path taken by the particle and depend upon the
end points of the curve only.

Necessary and sufficient conditions for a Conservative Force Field
Conservative force fields conserve the following properties:

. A force field F is conservative if and only if there exists a continuously
differentiable scalar field V such that F = —VV or, equivalently, if and only
if curlF=VxF =0.

Ii. A continuously differentiable force field F is conservative if and only if for
any closed non-intersecting curve C (simple closed curve)

W =§.F.dif =0
I.e. the total work done in moving a particle around any closed path is zero.

Examples of Conservative Forces

= Gravitational force is an example of a conservative force.

» Elastic spring force is example of conservative force.

= The work done of a particle moving along a closed path is zero and the
force which causes such motion is conservative.

Physical Significance of Conservative Force

For any conservative force F we have ¢ F.d7# = 0 for any closed path (in a simply
connected region). This means that the force is not dissipative and any mechanical
process taking place under its influence is reversible.

The property of reversibility can be described as follows;

If, at a certain moment, the velocities of all moving particles are reversed, then,
following the same physical laws, a reversible mechanical process will retrace its
former sequence of position and accelerations, in reverse order, as though time
were running back.
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Theorem

Show that a necessary and sufficient condition that F;dx + F,dy + F;dz be an
exact differential is that curl F = V x F = 0 where F = F,{ + F,j + F3k

Proof:

Suppose F,dx + F,dy + F;dz be an exact differential. Then x,y,z are independent
variables. We know that

Fidx + F,dy + F3dz = dg =Z—(£dx+g—$dy+g—fdz

_aqo_F_a_(p
» 13

ap
F=5 Y = oz

dx

|
5

d¢p

- n A ~ a(p’\
F=F11+F2]+F3k=5l+ay

N dp +
]+5k—|7(p
Ihuscurlﬁ——Vxﬁ_—Vpr——O

Conversely suppose that 7 x F = 0. Then F = Vo and s0 F.d7 = Vg.d7 = dg
Thatis dp = F;dx + F,dy + F;dz be an exact differential.
Question

Show that (y?z3cosx — 4x3z)dx + 2z3ysinxdy + (3y?z?sinx — x*)dz be an
exact differential of a function ¢ and find ¢.

Solution
Given that F = (y2z3cosx — 4x32)i + 2z3ysinxj + (3y2z2sinx — x*)k

Clearly V x F = 0. Then according to result “F;dx + F,dy + F;dz be an exact
differential iff ¥ x F = 0”

(v?z3cosx — 4x3z)dx + 2z3ysinxdy + (3y?z?sinx — x*)dz be an exact
differential.

To find ¢ integrate these terms as needed and arrange to get required answer

F =% .p-%.p_2%
17 ox 7 727 9y ? 737 4z
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Theorem: If F = —VV, where V is single valued and has continuous partial
erivatives, show that the work done in moving the particle from one point p; =
(x1, ¥4, z1) in this field to another point p, = (x5, y,, z,) is independent of the path
joining the two points.

Proof: W= [PFdi =W = [*—VV.dF
|41 |41

W o— _ (P2(9V, V. OV 5 5 7

W = fpl(axl+ay1+azk)'(dxl+dyj+de)

7 %4

D, 0 av av 14
W=— [ detdy+dz=—[dV = -V =V(p) — V(p,)

Integral depends only on points not on path joining the points.

Theorem: If fc F.d7is independent of the path C joining any two points, show
that there exists a function V such that F = —FV.

Proof: Let F = Fi+ Fpf + Fsk e, (1)

If fC F.d#is independent of the path C joining any two points which we take as
(x1,¥1,21) and (x, y, z) respectively then

V(x,y,z) = — Cva B oap = — f(x’y’z) (Fidx + F,dy + F3dz)

(x1.y1,21) (x1,Y1,21)

SinceV = —fc F.d7is independent of the path C joining any two points, thus

V(x,y,z)= —fC[Fl(x, y,z)dx + F,(x,y,z)dy + F;(x,y,z)dz]
Let us choose a particular path the straight line segment from (x;, y;,z;) to
(x,y1,21) 10 (x,y,2,) to (x,y,z) and call V(x, y, z) the work done along this path

V(x,y,2) == [} Fi(oy,z0dx = [ B0y, 20)dy = [ F3(x,y,2)dz

ov
6_2 = —Fg(x,y,z)

av

OF.
oy = ~R00ym) — [ 2y, 2)dz = —F(x,7,2)

av
e —F (%, y1,21) — f;l Fy(x,y,21)dy — fzzl F5(x,y,z)dz = —F,(x,y,2)

W= F=-21-2 _YEsF=-pv

0x ay 0z



visit us @ Youtube | Learning with Usman Hamid

Theorem:

Prove that If f;;z F.d#is independent of the path C joining any two points in a

given region then gﬁﬁ. dr = 0 for all closed paths in the region and conversely.

Proof

P,

P,
A

Let P,AP,BP; be a closed curve then

$F.dP = [, 4p gp F-d7

$F.dP = [, \p F.dF+ [, ,, F.d7
$F.dP = [, \p F.dF = [, ;, F.d7
$F.di =0

Conversely

if $F.df=

S pap, FodP+ [ pp F.d? =0

[ oo ap, Fod? = [ g F.df =0

That is f;;z F.d7is independent of the path C joining any two points in a given
region.
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Theorem

If F is a conservative field force then there exist a scalar point function V such that
F=-vV.

Proof
Consider a particle which is at existing position p and move towards the standard

position p,. At existing position potential energy is V, = fpp" F.d#

At existing position potential energy is V,, =0

P-’ ém‘;i‘" :'nJ

= I/p —_ ]/po = fppo F_) d? P!ff'd'.u.
= [Pav = [P°F.d? = [P av = — [P F.d? = dV = —F.d? .

Po p Po Po ' A

av av av S '
:adx+@dy+£dz——F.dr |

ov, oV, 0Vs N N ~ =N . Standard
> (Si+ i+ k). (dxi + dyj + dzk) = —F.d7 3 0 CUE

S VV.dit = —F.di = F = -7V
Theorem

If the force acting on the particle is given by F = —VV then the total work done in
moving the particle along the curve C from p, to p, is

W= [F.df =V(p) —V(p,)

Proof

=
I

P2 7 4= 7 — (P2 _ =
fplF.dr=>W—fp1 vv.ds

—

W=—["dV =V

W=V, — V()
OI’ W12 = Vl — V2
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Work - Energy Theorem

A particle of constant mass m moves in space under the influence of a force field
F. Assuming that at times t, and t, the velocity is ¥; and v, respectively, prove

that the work done is the change in kinetic energy, i.e.,
t2

1
W= f d?=—mv2—5mv1 =T,—-T,

t1

Proof: Consider the work done by taking an external force F, the force F
moves the particle from position 1 to position 2 in the horizontal direction then

> dr 2dv

W = der=>W f d—dt=>W = mf——dt— /;

1

2
2 v > 1 5

>W=m] ﬁdﬁ=m|— =-mbP:—-m¥iosW=T,-T,
1 2 2 2

t, = - 1 - 1 -
Hence sztzF.drzzmvg—Emvlz=T2—T1
1

Question

2 , dv
v—vdt

Find the work done in moving a particle once around a circle C in the xy — plane, if
the circle has center at the origin and radius 3 and if the force field is given by

F=Q0Qx—y+2)0i+@+y—2z2)]+ Bx -2y +42)k

Solution

Inxy — plane we have  F = (2x — y)i + (x + y)] + Bx — 2y)k

>W = fcﬁ.df = fc[(Zx - i+ x+y)j+QGx— Zy)lAc]. [dxi + dyj]

=>W = [ (2x —y)dx + (x + y)dy

>W =18n using x = 3cost,y = 3sint;0 <t < 2m

. _
If C were traversed in Counterclockwise (Clockwise) direction K /

The value of integral would be 18w (—18m)

(i

T

x4 yj
Qcosti+8aint]



visit us @ Youtube | Learning with Usman Hamid

Conservation of Energy for a System of Particles in case of Conservative force
Principle of Conservation of Energy / Law of Conservation of Energy

The law of conservation of energy describes that the net energy of an isolated
system remains conserved. Energy can neither be created nor destroyed; rather, it
transforms from one form to another.”

In case of conservative force field, the total energy is a constant. i.e. If T is for
Kinetic energy and V is for potential energy, then the total energy E is
E =T +V = constant

Proof

Consider a particle move from position 1 to position 2. There will be two cases;

Case — I: Consider the work done by taking a conservative force F derived from a
potential energy V, then

Wiy = [[F.df =Wy = [[=VV.di 5 Wy, =—[1dV = —|V3
= le == V1 - VZ ............... (1)

Case — I1: Consider the work done by taking an external force F, the force F
moves the particle from position 1 to position 2 in the horizontal direction then

Wi, = [[F.di = Wy, = [[md.Srde = Wy, =m [ Tdt =m [[ V.50 dt
Wy, = m [2vav = m || = Lmyz - imp?

O

>Wp,=T,-T, ... (2)

From (1) and (2) we get
V1 - V2 - Tz - T1
=>T1+V1 =T2+V2

= E =T + V = constant
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Question: A particle of mass m moving along the x — axis under the influence of
a conservative force field having potential V/(x). If the particle is located at the
position x; and x, at respective times t, and t,, prove that if E is the total energy

X
then t, — \ffxz N

Solution: By the conservation ofenergy T+ V =E

= - m(dx) +V(x)=E=>(%)2=—(E V(x)):>— IW

dt_ff EV( ff EV(x

Conservative Systems and Orbits of Particles

A single particle moving in a conservative field of forces may perform an
important type of motion. Suppose the total energy E of the system is a constant of
motion i.e. %mfz +V(r)=E

Where E is some constant denoting total energy of the system.

Suppose the particle’s motion in such that it returns to the same position,
represented by the position vector r, at a later time. Then it must have the same
K.E. and therefore the same speed. It follows that in a conservative system it is
possible for closed trajectories to occur. This fact is very relevant in the study of
Earth’s motion about the Sun.

Question: s the force F = A X 7 conservative?

Solution: Let A = A,1 + A,j + Ask and # = xi + yj + zk then

- - i j l; =~
F == A X F == Al AZ A3 - (AzZ - A3y)i + (A3x - Alz)j + (Aly - Azx)k
X y Z
i j k
0x O0x 0x

Azz - A3y A3X - A1Z Aly - Azx

Thus the force F = 4 X # is conservative.
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Question

Find the potential energy function associated with the force
F = —yzi — xzj — xyk

Solution

In this case F = -7V

= —yzl — xzj — xyl? =—-VW=VV=yzi+xz] + xyE
=>Z—Zi+3—;j+3—:l€ = yzi + xzj + xyk

av v
=== YZ o (1), 9y = XZ e (2), o T XY e 3)

D=2fdVv=yz[dx=>V=xyz+f(y,2)  .ccoooevvn, 4)

= 3—; =xz + Z—f] b,z) (5) partially differentiating w.r.to y
= xz=xz+ Z—’; (y,2) from (2) and (5)

N %(y,z) =0=f(3,2)=0+g@)=>f,2) =g(Z)  eererrr (6)
A)=>V=xyz+g(2z) .............. (7) using (6) in (4)

= Z_Z =xy+ g'(2) partially differentiating w.r.to z
>xy=xy+9'(2)=>9'(2)=0=>g9(z)=K using (3)

Hence our required potential function is

>V =xyz+K
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Question

Find the potential energy function associated with the force
F = axi + byj + czk

Solution

In this case F = -7V

= axi+ byj+czk = -VV = V7V = —(axi + byj + czlAc)

:Z—Zi+g—;j+3—:/’€ = —axi — byj — czk
= Z—Z = —ax ... (1), 3—; =—by ... (2), Z—Z = —CZ ...... (3)
(1)=>de=—afxdx=>V=—%ax2+f(y,z) .............. (4)
3—; = Z—}; ViZ) i (5) partially differentiating w.r.to y
= —by = Z_f] (v, 2) from (2) and (5)
= f= —%byz Fh(Z) e (6)
B =V =——ax?—~by? +h(z) ............. (7) using (6) in (4)
Z_‘Z’ = 3—2 partially differentiating w.r.to z
:g—:= —cz=>h= —%cz2

Hence our required potential function is

1 1 1
>V =—>ax?—->by? —=>cz?
2 2 2



visit us @ Youtube | Learning with Usman Hamid

Question: Discuss whether the following force is conservative, if so, find the
potential energy function associated with the force

F = (ax + by?)i + (az + 2bxy)j + (ay + bzH)k

Solution:  For conservative force we will prove VX F =0

i j k
= = d 0 0
VxF=| < 2 Z |=o0
dox ox ox

ax + by? az+2bxy ay+ bz?
Thus the force F is conservative.
In this case F = -7V
= (ax + by?)i + (az + 2bxy)j + (ay + bz?)k = —=VV

W, V., g R 5 -
= —(al+5] +£k) = (ax + by?)i + (az + 2bxy)j + (ay + bz»)k

S _ax— by? ..(1), Z—; = —az — 2bxy ...(2), Y- —ay — bz? ...(3)

0x 0z
D)=>V= —%ax2 —bxy?+ f(y,z) 4)
av of : : .
=5 = —2bxy + 3y ,z) (5) partially differentiating w.r.to y
= —az — 2bxy = —2bxy + g—i (y,2) from (2) and (5)
= Z—f] z)=—az=>f(y,z) =—ayz+h(z) .............. (6)
4)=>V-= —%ax2 — bxy?+ —ayz+ h(z) ........... (7) using (6) in (4)
= ‘Z—'Z/ = —ay + h'(2) partially differentiating w.r.to z

= —ay — bz? = —ay + h'(z) = h'(2) = —bz? = h(z) = —=bz3 using (3)
y y - g

Hence our required potential function is V = —%axz — bxy? + —ayz — §b23
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Question: Find the work done by the force field

F = (y223 — 6x29)1 + 2xyz3] + (3xy2z% — 6x22)k

in moving a particle from the point (—2,1,3) to (1, -2, —1).
Solution:  To find work done we will use the formula W = ff F.d7

2 —

= W= f: F.dF = ff —rV.dr = —f((_l’z’_l"g)l) dv = |-y|&-27D

(-2,1,3)

=> W =|-3x%z% + xy?z3 — Clg’z_jg)l) =155

Question:

Show that F = (2xy + z3)i + x2j + 3xz2k is a conservative force field. Find the
potential. Also find the work done in moving an object in this field from (1, -2,1)
to (3,1,4).

Solution:  For conservative force we will prove VX F =0

i ik
VX F = 9 9 2 | = 0. Thus the force F is conservative.
ox ox ox
2xy +z3 x? 3xz?

To find potential we have F = -7V

= (2xy + z3)i + x?j + 3xz%k = —VV

(Y5 4V LR = 3¢ 4 27 2
= (axl+ay]+azk)—(2xy+z)L+x]+3xzk

Our required potential function is V = —(x2y? + xz3)
To find work done we will use the formula W = ff F.d7#

>W= [ F.dif= [l -VV.di = - (gff;‘fi) av = |-vI$,
=W = |-y +x2%) |51, = —202
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Question

A particle of mass m moves under a force F = —cx3 where c is a positive
constant. Then

. Find potential energy function.

Il If the particle starts from rest at x = —a what is its velocity when it reaches
atx = 0.

ilii.  Where in the subsequent motion does it come to the rest?

Solution

i Given that F = —cx3

SsF=—wW=-Y_ 3= _x3sdV=cx3dxo>V =2cx*+4
dx dx 4
i. W= [ Fdx
“mv? = —c [ x3dx since W =K.E
2 0
v= [—a?

2m

iii.  When body moves from x = —a to x = b it comes to restthen W = 0
> [P Fdx=0=—c [  x3dx=0=b*—a*=0
-a —-a
=>b=a , b =-—a(negelcted)
When b = a then it comes to the rest.
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Motion of a Particle under a Constant Force
Let F be a constant force applied on a particle of mass ‘m’. Then

F = md = Constant = d = Constant
Since % = d Therefore dv = ddt

at+4 on integrating

<
Il

=

Initially using ¢ = 0, % = B, we get 4 = ¥,. Thus ¥ = @t + ¥,

d_) —> - —> —> -
=>d—2=v0+at=>dr=v0dt+atdt

—

>7=vt+d—+B on integrating

N|‘T\,

Initially using ¢t = 0,7 = 0we get B = 0. Thus 7 = Bt + %Zitz
Motion of a Particle under a Time Dependent Force

LetF =F (t) be a time dependent force applied on a particle of mass ‘m’. Then
@:ﬂzwzdﬁz%dt

=mi=>Ft)=mi=>d=
m dt m

T

N 1 (t 3 - 1 ct 3 - - 1 pt 3
= [V dv = — [, F®dt = [915, = — [, F(t)dt = ¥ — T, = — [, F(t)dt

4

(=)

= U

- 1 t =2
U +;ft0F(t)dt

.

d - 1 pt = - - 1 t =
> = By + [ F(t)dt = dF = Bodt +— | [} F()dt|dt
- - t 1 pt t 2
= frz dr = v, fto dt +;fto [ftOF(t)dt] dt
- - 1 ,t t 2
= 1715, = oltlf, + . [1 [ i, Foyde e
=7 =7 =Byt — ty) +%ftto [fttoﬁ(t)dt] dt

ST =7y +Vo(t—ty) + ifti) [f;?(t)dt] dt
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Motion of a Particle under a Velocity Dependent Force

LetF = F (V) be a time dependent force applied on a particle of mass ‘m’. Then

av

F= ma=>F(v)—md— ............ (1)
t _ v 1 - t _ v 1 -
fto dt = mfvo 7y 47 = ltl, = mfvo 7@ 4V
_ _ v 1 —
>t tO_mvoﬁ(a)
v 1 -
:>t=t0+mfv0%d
(1)=>F(v)—mﬂ=mﬂd—x—m13ﬂ=>dx—mfdﬁ
dt dx dt dx F®)
=>f dx = F() dv
=>f alx—mf0 ()
v 'b.) -
=>x—x0=mvoﬁd
=>x—x0+mf 2 4y

o F(?)

Question

A particle of mass m is projected vertically up with an initial velocity v,. If the
force due to the friction of air is directly proportional to its instantaneous velocity,
calculate velocity and position of the particle as a function of time.

Solution

. F;nc v
s ‘F,‘ o -y '
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Body move upward, so frictional force = F, = —kvand W = —mg

F=F+W=—-kv—mg= F(v) =—mg — kv where m, g, k are constants.

d - -k — k
=>md—:=—mg—kv=>dv= = vdt:dv:—(mi: Y dt
1 ,v k —_i t l =_i ¢
:>k vomg+kvdv_ mfo dtzklln(mg-l_kv)lvo mltlo

= —[In(mg + kv) — In(mg + kv,)] = ——=> - [ln(mgHw )] =t

_m mg+kv0)]
== k [ln(mg+kv

Now t = —%[ln(mwkv)]

Bl

mg+kv,
=>ln(mg+kv) = ko Mot —e_%t =>mg + kv =(mg+ kv )e_%t
mg+kv, - m mg+kvg - g o 9 0

k k k
= kv =(mg+kvy)e m —mg=>v = %(e_ﬁt — 1) + vpe mt

k

dx m _k .
Now —=—g<e mt — 1)+voe m'
dat  k

k k
= f;: dx = %fot (e_ﬁt — 1) dt + v, fote_ﬁtdt

_k, t _k, gt
x mg |le m em
$|X|x0 — | & —t| +v 3
m 0 m 10
_k k,
_mgf[em 1 e m 1
m m m m

mg me_%t m me_%t m
2X=Xxot |\ TtttV -+

mgt mZ mv _E
=X = X9~ +(kzg+ k“)(l—e mt)
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Question

A particle of mass m is falling under action of gravity near the surface of Earth. If
the force due to the friction of air is directly proportional to its instantaneous
velocity, calculate velocity and position of the particle as a function of time.

Solution

-
F,t -fv

e -=v-a
Body move downward, so frictional force = F, = —kvand W = mg

F=W+F, =mg—kv= F(v) =mg— kv wherem, g, k are constants.

d -k —k
:>m—v=mg—kv=>dv=mg “dt = dv ="""dt
dt m m
_1 v _k 1t 1 _ v _ _ 1t
- vomg_kvdv—mfo dt=>k|ln(mg kv)1p, mltlo

= % [In(mg — kv) — In(mg — kvy)] = ——= - [ln (nng_—:;)] =t
== {m (0]

Now t = —%[ln ("‘g"“’ )]

mg—kv,

_k, _k,
=e m =>mg—kv=_(ng—kvyle m

mg—kv k mg—kv
=>ln( . )=— :

—t=

mg—kv, m mg—kvg

k k k
= kv =mg — (ng — kvy)e m' = v = %(1 — e_ﬁt> — pye mt

k k
dx m - .
Now —=—g<1—e mt)—voe m'

at ~ k
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Xo
t
K, K,
_mg e m e m
= x5, =t ——=x| Vol =
m 10 m 10

Question

A mass m tied to a spring having force constant k oscillate in one dimension. If the
motion is subjected to the force F = —kx, find expression for displacement,
velocity and period of oscillation.

Solution

Given F = —kx
In this case Law of Conservation of Energy holds as K. E + P.E = Total energy

T+V=E oo, L)

Since T = %mvz butV = [ Fdx = — [ Fdx = — [ (—kx)dx = %kx2 therefore
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O %mv2 +%kx2 =E

1-—kx?)=v? =£(1—ikx2)

m 2F
2
= v? =£<1—< Lx) )
m 2E
Put\/zx = Sinf = dx = \/ECOSQdQ
2E k

1 1 1 1
=>Emv2=E—Ekx2=>5mv2=E( )

2
= v2 =2£(1 - 5in%9) = (ﬂ) =2 05?0 = & = /E Cosf
m dt m dt m

2E
dt 1 dx \’?Cosede m
=>d—= = dt = >dt="—>=dt = ;de
x fECose /ECOSQ fECose
m m m

= dt =>do withw = |
w m

0 t
:>wdt=d6=>f90d9=ft0wdt=>9—90=wt=>9=60+wt
Then \gx = SinO becomes x = \/%Sine

=>x = \/%Sin(@o + wt)

dx

— = \/%wCos(@o +wt) >v=w \/%Cos(wt + 6,)

We know that T = %ﬂ

2T
>T=—
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Question

A particle of mass m is at rest at the origin of the coordinate system. Att =0a
force F = Fy(1 — te™**) is applied to the particle. Find the velocity and position
of the particle as a function of time.

Solution
Given F = Fo(1 — te™™)

In this case Newton’s 2™ Law holds. i.e. F = ma

=>md = Fy(1—te ™) = mZ—f =F(1—te™™)=dv = %(1 — te™*)dt

> [di=2[(1- "“)dt:ﬁ:%[t+/_ﬁle—/‘lt+%e—u+A]
Initially t = 0 then ¥ = 0 we have 4 = _,%2
:5:%[t+§e—u+%e—u_%]:5:%[t+%(te_u+%e_u_%)]
>V = F°t+ (te‘“+%e‘“—%)

dx Fot FO ( —At 1 At 1)
=>=="2+"2(te oM — -
dt m +Am +/1 A

= [dx =f[%+f—;l(te‘“+%e"“—%)] dt

2m A2m A3m A3m A2m

Fyt?2 Fot  _ F, _ F, _ Fyt
= x =0 0 ,-At 0 At 0 p—At _ ot 4 p

Initially t = 0 then x = 0 we have B = %

2m A2m A3m A3m A2m  A2m

=>x=F0t2 Fot ,-at _ Fo_ ,—at _ Fo_,-ar _ Fot | 2K

ZFOt(l —lt) Fot (1+ _At)+

A3m
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Question

A particle having total energy E is moving in a potential field V/(r). Show that the
time taken by the particle to move fromr; tor, ist, — t; = [ a1

t1 [2(E-v)
m

Solution: T and V are position dependent energiesand T +V = E

:%mv2+V=E:>%m(%)2=E—V=>(%)2

2(E-V dr 2(E-V
_2E-v) L dr _ [2(E-V)
m dt m

=>ftt;2dt=ftzi=>t2—t1=ft2 dr

t1 [2(e-v) t1 [2(E-V)
m m

Question

A block of mass m is at rest on a frictionless surface at the origin. Attimet =0a

force F = Fye ™t where 1 is a small positive constant is applied. Calculate x(t)
and v(t).

Solution:  Given F = Fye™*t

In this case Newton’s 2" Law holds. i.e. F=ma

= md = F,e '“=>mE=FOe “=>dv=;°e Atat

e At

-1

5 =50 (-2t 5=l
= [dv=—[e dt=>v—m(

)+4

Initially t = 0 then ¥ = 0 we have 4 = %

e At

-1

S Fo(
S>v=—
m

)+%=>1_5(t) =%(1—%e‘“)

ax _1(4 _F _,u) _ (l_& _,u) _ 1,0 R -a
= —/1(1 —e = [dx=] e)dt=>x=st+—-e" +B

dt A mi mA2
Initially t = 0 then x = 0 we have B = — fo
mA2

> x(t) =7t+-5 (e ¥ —1)
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Question

A particle of mass m having initial velocity v, in horizontal direction is subjected
to retarding force proportional to its instantaneous velocity. Calculate its velocity
and position as a function of time.

Solution
In horizontal direction a retarding force is = F = —kv
=>ma=—kv:mE=—kv
v1 —)__it _"U__E t > —>__£

= vﬁdv = mfo dt = |Invly, = ——|tlg = In? — Inv = ——t

v k v . 1
:ln(;)z——t:;=e m' =V =Voe m

Vo m Vo

k k
dx N —t X - t ——t
> —=7Pje m > dx =v e mdt
—t -t

k.t k
>X—Xo=Vo|\——F*+%
m

_k L3
m lg m

= |x|%, = Vo

= k
mv ——
=>x=x0+T°<1—e mt)

Question

A ball of mass m thrown with velocity on a horizontal surface, where the retarding
force is proportional to the square root of instantaneous velocity. Calculate its
velocity and position as a function of time.

Solution

Sinceﬁocx/?zﬁ=—k\/5=>m&=—k\/5=>m%=—k\/?

v 1 ., kot sV ke >[5 _ _ Kk
> f 547 = fodt=>|\/;|v0— —tly = Vo — Ty = ——t
= k \2
ﬁ\/_— vO——tﬁv—(\/vo—at)
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z%= (Jﬁ_o—%t)z :fx’;dx=fot(\/ﬁ_o—%t)2dt

2 =
= [ dx =[] Bodt + (%) [ t2dt — kTJ”_"fOt tdt

2 1.3t = 1.2t 2 4.3 > .2
k t k/Vg |t k t k\vg t
S ek, = olelh + () [ ~BRIZL & g = e 4 (L)L kB
2m 31p m 121g 2m 3 m 2
2.3 [ 12
=>X=X Vol (—) -_— = —
o TVl + 5 ) 3 m 2

Question

A particle of mass m is at rest at t = 0 when it is subjected to a force F = Asinwt.
Calculate values of v(t) and x(t).

Solution

=

= . - . dv .
F = Asinwt = ma = Asinwt = mE = Asinwt

= [Vdp = iftsina)tdt = |v|¥ i|—lcoswt|t >V = i(1 — coswt)
0 mY0 0 m w 0 mw

dx A X A t
== %(1 — coswt) = fo dx = Mfo (1 — coswt)dt

t
A 1 . A 1,
= |x|§ =— |t — —smwt| =X = —(t — —smwt)
mw w 0 mw w
Question

A particle of mass m is at rest at the origin of the coordinate systematt = 0, a

force F = bt starts acting on the particle. Find velocity and position of the particle
as a function of time.

Solution

> S v v 5 bt L1 b 2|t
F=bt>mid=bt=>m—=bt=> [ div=—[tdt = |D|§ ==|=
dt 0 m-0 ml?2

0

— b dx b
SVP=—t!"=—

2 x _ b (t o _ b .3
— — =t =>f0dx—2mf0t dt=>x—6mt



visit us @ Youtube | Learning with Usman Hamid

Question

Find the displacement and velocity of a particle moving horizontally in a resistive
medium in which the retarding force is proportional to the velocity.

Solution

| Bwd

In horizontal direction a retarding force is F=—k'p

pd - d‘l_j -
= ma=-—mkv = — = —kv
v1 - t Sy ¢ . L,
= fvogdv = —k fo dt = |lnv|,,0 = —k|t|g = Inv — Invy, = —kt
v B 3 o
=>ln(r)=—kt=>7=e kt = = Pye Kt
Vo Vo

dx__> —kt X = t —kt
= — =Tt = [dx =7, [ e7dt

—kt -kt

e e 1
= x =7, (— + -

-k lg k k

):>x=%(1—e"‘t)

= |x|§ = v

Question

A particle falling in a resistive medium in under a retarding force proportional to
the velocity. Find its velocity and displacement.

Solution

In particle falling downward a retarding force is F= -mg — k'v

=

zmaz—mg—mkﬁz%z_g_kg

w__ _ 1 D) = — > _ ,—kt+kC _ -kt kC
> [S=—[dts g+ kD) = —t+C=>g+ki=e — oktg
= g+ kv = Ade™* o

kv

Suppose that initially the particle has velocity v, and

Position y,.i.e. v = vowheny = y,att =0 mg

We have A = e*¢ = g + k¥,
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> g+ ki = (g +kip)e ™ = 5 = — L4 (L) ookt
v__9 M) —kt — _ 94 _ (g+k‘70) —kt
= P ( Py A L = )¢ tB

g+k170
k2

Using initial conditions. i.e. y = y, whent = 0 We have B = y, +

g g+kv —kt g+kv,
=t () e

g g+kv _
=>y=y0—zt+70(1—e kt)

Equation shows that in the limit t — oo (i.e. after the passage of long enough time)
Vo — % This velocity is called terminal velocity.

Question

Discuss equilibrium for the particle subject to the force F = —a?x2.

Solution

Since F = — &
dx
SV(x)=—[Fdx+C=>V(x) =—[(—a?x?)dx+ C = a? [ x2dx + C
=>V(x) = §a2x3 +C
Now since F = 0 at x = 0, the particle is in a state of equilibrium at x = 0.

: el d?v
To see further if the equilibrium is stable or unstable, we calculate —;
av dzv
If — = a®x? then — = 2a%x
dx dx?

2 2 2
Wenotethatd—':=0atx=O,d—Z>0atx>O,d—Z<0atx<0,thenthese
dx dx dx

results show that the equilibrium is stable for positive displacement and unstable
for negative displacement.
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Non-Conservative / Dissipative Forces

Forces that cannot be expressed in the term of a potential energy function are
called non-conservative forces. We can also state that forces that do not store
energy are called non-conservative or dissipative forces. If there is no scalar
function V such that F = —AV [or, equivalently, if V X F = 0], then F is called a
non-conservative force field. Friction is a non-conservative force, and there are
others. It is always opposed to the direction of motion and is not a single valued
function of position alone. Similarly the impulse (time dependent force) is also
non-conservative and cannot be derived from a scalar point function. An example
of non-conservative force, we have F = kv, where v is the velocity of the particle,
then §F.d = [F.Sdt=[*F.6dt =k [ ddet =k [[*v?dt > 0
Which shows the integral is not equals to zero. Hence the force is non-
conservative.

Work-Energy relation and Non-conservative Forces

We have already shown that for any general force F: f;; 2F.d7 = T, —T;
When the force F can be broken into conservative and non-conservative parts
F = F© 4 fno)

Then we have fpiz F© d7 + fPPlZ FOO df =T, — T,

SV, —Vy+ [ FO9.dF =T, — T, w FO© = AV

ST, +V, + flfizﬁ(”c).d? =T, +V,

The work done in overcoming friction is always negative, because F™© is
opposite to the displacement relation above proves that the influence of friction is
dissipative and therefore decrease the total mechanical energy of the system.
Alternatively above can be expressed as

> W, —V)+ (T, —T) = f;f FO g7 5 AW +T) = f;’f Fo) gy

It is interesting to remember that the process in which work is converted into
internal energy (due to friction) are irreversible.
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Impulse

Impulse is a special type of force defined by applying the integral of a force F,
over the time interval, t, for which it acts on the body. Impulse is a directional
(vector) quantity in the same direction of force as force is also a directional
quantity. When Impulse is applied to a rigid body, it results a corresponding vector
change in its linear momentum along the same direction. The Sl unit of impulse is
the newton second (Ns), and the dimensionally equivalent unit of momentum is the
kilogram meter per second (kgms ). The particle is located at P, and P, at times t,
and t, where it has velocities v; and v, respectively. The time integral of the force F

given by f:lz Fdt is called the impulse of the force F.

Angular Impulse

The time integral of the torque I = fttz Adt is called the angular impulse.
1

Theorem
Impulse is equal to the change in momentum fttf Fdt = md, —m®, = B, — P,
Proof

We have to prove that the impulse of a force is equal to the change in momentum.

By definition of impulse and Newton's second law, we have

t2 2 _ ty d_i; _ ) > >ty > 5> B _ -
ftl th—ft1 ’mdtdt—ft1 mdv = m|v|? = mv, —mv; = P, — P,
Where we use the conditions  v(t;) = ¥; and ¥(t,) = v,

The theorem is true even when the mass is variable and the force is non-
conservative.

Theorem

Prove that [ ttz Adt = Q, — Q
1

Proof

tz _ tz aq _ tz _
ft1 Adt —_ ftl Edt —_ ft1 dQ —_— QZ - Ql
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Question

A mass of 5000kg moves on a straight line from a speed of 540km/h to 720km/h in
2 minutes. What is the impulse developed in this time?

Solution

Assume that the mass travel in the direction of positive x direction. In Sl system

. a1 _ 540ix1000m o
¥, = 540fkmh™! = ————— = 1.5 x 10%ims ™!
3600s
S a1 _ 720ix1000m .
v, = 720Tkmh 1= 26005 = 2.0 x 10%ims~1

I =m(?, — v;) = (5000kg)(0.5 X 10%2ims~1) = 2.5 x 10°tkgms™1
I =2.5x%10%Ns
Thus the impulse has magnitude in the positive x direction.

Power

The rate of doing work is called power. If an agent does work AW in time At, then
the average power is defined as the ration to total work done to the total time. It is
described mathematically as:

AW
Pav=(P):A_t

If the power is variable, then the instantaneous power is given by the expression:

Pins = limy,_,o = = &
ins At—0 At dt

Watt
The Sl unit of power is watt which can be defined as:

“If an agent does work of one joule of work per second, the power of that agent
will be 1 watt”

Question: Prove that P = F.

Proof: As P=2¥
dt
SP=CT_FY_E using dW = F.d#
dt dt
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Atwood Machine

As an example of a two — particle system we discuss the motion of the Atwood
machine. It is a mechanical system consisting of two particles connected by a
string passing over a pulley. It is an idealized mechanical system used to gain
insight about the behaviour of a two — particles system.

Here is assumed that

a) The string is massless and inextensible.
b) The pulley has no inertia and rotates on frictionless bearings.

We first determine the acceleration of each particle by a simple application of
Newton’s 2" Law;

T— mlg == mlil ............... (1)
T— ng - mzzz ............... (11)

Where 7 is the tension in the string, supposed to be constant at all points of the
string and z,, z, are the instantaneous distances from the centre of the pulley to the
respective particles. Since the string is inextensible, we must have

l=z,+2z,+2nR  ............... (ii1) where [ is the length of the string.
(ili) = Z.Z = _Zl ; 2.2 == _22 ............... (IV)

Eliminating Z, and from (i) and (ii) with the help of (iv) we have

my—mq

21 =g——— i, (v)

mo+my




visit us @ Youtube | Learning with Usman Hamid

Form, > m,; Z; > 0. i.e. the particle m; moves upwards.
Form, < m,; Z; < 0. i.e. the particle m, moves upwards.
Form, =m,; Z;, = Z, = 0. 1.e. no motion.

In each case the acceleration remains constant.

To calculate the tension 7 in the string we have from (i)

. mp—mq
T=mg+mz; =mg+m ( )
19 121 19 1 gm2+m1
2m1m2 .
T=—""0 ceeeerrnnnnnn.. (vi)
m1+m2

From this expression it follows that in case of my = m,; T =myg = m,g and
the system will be in the state of equilibrium.

On the other hand, if m; > m, then Z; ~g and the acceleration is nearly the same
as in the state of free fall.

In spite of the fact that one particle is accelerated upwards and the other
downwards, the net system acceleration will be downwards, as long as the two
masses are unequal.

To see this we consider the acceleration of the c.m. Regarding the c.m. as a particle
of mass m,; + m,, with acceleration Z. we write its equation of motion as

21 —myg —myg = (my + my)Z,

2 ..
2 (225 ) < g = mag = (m + m)ze

mqi+m,

2
. mqi—m;
7e == (T
¢ g m1+m2

This shows that the acceleration of the system is always (m, # m,) downwards.
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Virial Theorem

This theorem has to do with time averaged behavior of an isolated system of N
particles. According to this theorem

(T) = == (% Fi. 7)

Here the quantity — % ¥, ﬁi. 7;) is called the Virial of the system. Where angle
brackets represent the average over time of the enclosed quantity.

Proof
Let us consider a scalar function s=yN, ﬁi. Ty e (1)

where P; and 7 denote the linear momentum and position vector of the i particle
of the system. Assume that system is bounded for all time. i.e. the system remains
confined with fixed boundaries.

ds =, =
(1) =>E = ZIL-V=1 (Pi.ri +Pi.ri) ............. (2)
Define the time average of a function ¥ (t) over an interval [0, T] as follows

P(t) = W(t)) = %forlp(t)dt then (2) in view of this definition becomes

ds , s(t)-S
= (S =1 (mde =220 3)

If the system is periodic and t issome multiple of the period p (i.e. 7 =np ;n € Z)
then (g) = 0. If the system is not periodic, then by the assumption of

boundedness, (3) becomes lim,_, , (%) =0

Therefore whether the system is periodic or not, we have

(Z{\Izl (ﬁlﬁ + ﬁlﬁ)) =0

> (O PRy =— (L PR @)
D =2 > > 1 N

Now Z?’zl P.1; = Zliv=1 m;v;.v; = 22?’:1 (Emiviz) = 2T

Where T is the total K.E. of the system, then

(4) = 2AT) = — (T, P.7) (4) = (T) = — (5, F,.7,) where P, = F
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The word "virial" derives from vis or viris, the Latin word for "force" or "energy",
and was given its technical definition by Clausius in 1870.

The significance of the virial theorem is that it allows the average total kinetic
energy to be calculated even for very complicated systems that defy an exact
solution, such as those considered in statistical mechanics; this average total
Kinetic energy is related to the temperature of the system by the equipartition
theorem.

However, the virial theorem does not depend on the notion of temperature and
holds even for systems that are not in thermal equilibrium. The virial theorem has
been generalized in various ways, most notably to a tensor form. Definitions of the
virial and its time derivative

Virial of the System

For a collection of N point particles, the scalar moment of inertia I about the origin
is defined by the equation I = YN, m;|#|? = ¥, m;r? where m; and r;
represent the mass and position of the k™ particle. r; = || is the position vector
magnitude.

The scalar virial G is defined by the equation G = YV, P,.# where P; is the
momentum vector of the k™ particle.

Assuming that the masses are constant, the virial G is one-half the time derivative
of this moment of inertia

1dl _ 1d opn > - 1N dri - 1N > > N § = _
S = 5 =1 T Ty = S Xjmy My Ty = 2 Ny M3 Ty = Njmg P73 = G
Virial Radius

In astronomy, the term virial radius is used to refer to the radius of a sphere,
centered on a galaxy or a galaxy cluster, within which virial equilibrium holds.
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CHAPTER

3 KINEMATICS

Kinematics is the branch of mechanics deals with the moving objects without
reference to the forces which cause the motion. In other words we can say those
kinematics are the features or properties of motion of concerned with system of
particles (rigid bodies).

Here some features of rigid body motion are

= Displacement

= Position

= Velocity

= Linear Velocity & Angular Velocity

= Linear Acceleration & Angular Acceleration

= Motion of a Rigid Body (Translation & Rotation)

From everyday experience, we all have some idea as to the meaning of each of the
following terms or concepts. However, we would certainly find it difficult to
formulate completely satisfactory definitions. We take them as undefined concepts.

Space. This is closely related to the concepts of point, position," direction and
displacement. Measurement in space involves the concepts of length or distance,
with which we assume familiarity. Units of length are feet, meters, miles, etc.
Time. This concept is derived from our experience of having one event taking
place after, before or simultaneous with another event. Measurement of time is
achieved, for example, by use of clocks. Units of time are seconds, hours, years,
etc.

Matter. Physical objects are composed of "small bits of matter" such as atoms and
molecules. From this we arrive at the concept of a material object called a particle
which can be considered as occupying a point in space and perhaps moving as time
goes by. A measure of the "quantity of matter" associated with a particle is called
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its mass. Units of mass are grams, kilograms, etc. Unless otherwise stated we shall
assume that the mass of a particle does not change with time.

Rectilinear Motion

When a moving particle remains on a single straight line, the motion is said to be
rectilinear. In this case, without loss of generality we can choose the x-axis as the
line of motion. The general equation of motion is then

F=mi= ﬁ(x,fc,jc') = m¥
Rectilinear Motion of Particles

® > &
x(1)

Rectilinear motion of a body is defined by considering the two point of a body
covered the same distance in the parallel direction. The figures below illustrate
rectilinear motion for a particle and body.

Rectilinear motion for a body

In the above figures, x(t) represents the position of the particles along the
direction of motion, as a function of time t. An example of linear motion is an
athlete running g along a straight track.

The rectilinear motion can be of two types:

i.  Uniform rectilinear motion
ii.  Non uniform rectilinear motion
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Uniform Rectilinear Motion

Uniform rectilinear motion is a type of motion in which the body moves with
uniform velocity or zero acceleration.

In contrast, Non uniform rectilinear motion is such type of motion with
variable velocity or non-zero acceleration.

Uniformly Accelerated Rectilinear Motion

Uniformly accelerated rectilinear motion is a special case of non-uniform
rectilinear motion along a line is that which arises when an object is subjected to
constant acceleration. This kind of motion is called uniformly accelerated motion.

Uniformly accelerated motion is a type of motion in which the velocity of an
object changes by an equal amount in every equal intervals of time. An example of
uniformly accelerated body is freely falling object in which the amount of

gravitational acceleration remains same. F = mg
Curvilinear Motion of Particle

The motion of a particle moving in a curved path is called curvilinear motion.
Example: A stone thrown into the air at an angle.

Importance/Purpose: Curvilinear motion describes the motion of a moving
particle that conforms to a known or fixed curve. The study of such motion
involves the use of two co-ordinate systems, the first being planar motion and the
latter being cylindrical motion.

Velocity of Curvilinear motion

If the tangential and normal unit vectors are &, and &, respectively, then the
- - - d? -

velocity will be v = — et

You have already learntthat v = |[9|T = vT

Acceleration of Curvilinear Motion

If the tangential and normal unit vectors are €, and é,, respectively, then the

2z (d_?)z
acceleration will be @ = — &, + ~4~¢,
dt? p

You have already learntthat @ = v'T + kv2N
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Example

= A stone thrown into the air at an angle.
= A cardriving along a curved road.
» Throwing paper airplanes or paper darts is an example of curvilinear motion.

Example

For the rectilinear motion of a particle moving with a velocity u /azx—zxz ata

distance x from a fixed point. Show that particle attracted towards the fixed point
with a force F(x) « 13
X

Solution
> a?—x? a?-x2 a?
V=u |— =>v2=u2( 2)=>~vz=uz(—2—1)
X X X
5 dv " —2a? dv —u?a?
DSLV—=U > UV— =
dx x3 dx x3
dv  —-mu2a?
= mvd— = T3 e (1)

Using the fact F = ma

dv dv dx
F=m—=m——

dt dx dt

dv
F=mv—

dx

(1) = F(x) x x—13 and —mu? is constant.
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Velocity

Suppose an object moves along a straight line according to an equation of motion
s = f(t), where s is the displacement (directed distance) of the object from the
origin at time t. The function f that describes the motion is called the position
function of the object. In the time interval fromt = a to t = a + h the change in
position is f(a + h) — f(a).

The average velocity over this time interval is

displacement _ f(a+h)-f(a)
time - h

average velocity =

which is the same as the slope of the secant line PQ in Figure.

& A

Qla + h. fla + h))

Pla, fla)) &

I 4

|
|
|
|
|
e a—+h f

__ fla = k) — fia)
Mg = h

average velocity
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Now suppose we compute the average velocities over shorter and shorter time
intervals[a, a + h]. In other words, we let h approach 0.

We define the velocity (or instantaneous velocity) v(a) at time t = a to be the
limit of these average velocities:

5(a) = limy o L&D @
This means that the velocity at time t = a is equal to the slope of the tangent line

at P.
Relative Velocity

If two particles P; and P, are moving with respective velocities v, and v,, then the
vector ¥ Ip,,p, = U, — ¥, is called the relative velocity of P, with respect to P; .

Acceleration

If s = s(t) is the position function of an object that moves in a straight line, we
know that its first derivative represents the velocity ¥(t) of the object as a function
of time. Then’

The instantaneous rate of change of velocity with respect to time is called the
acceleration a(t) of the object. Thus the acceleration function is the derivative of
the velocity function and is therefore the second derivative of the position function:

.

a(t) = ' () = 7'(t) = L1

dtz

Relative Acceleration

If two particles P; and P, are moving with respective accelerations a, and a,, then
the vector d 1p,,p, = d, — d is called the relative acceleration of P, with respect

to P,.
Cartesian Components of Velocity and Acceleration

Let 7 = xi + yj be a position vector of a particle then

S =Y =P Y 5(p) = &7 Exp A%y
v(t) =—=— +4 ]and at) =v'(t) =7 =—31 +dt2], Then

. dx . dy
v, = x — component of velocity = —» Uy =y — component of velocity = —

. d?x . d?y
a, = x — component of velocity = — @y =y — component of velocity = —3
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Cartesian Components of Velocity and Acceleration

Let 7 = xi + yj be a position vector of a particle then PQ = Ar

And therefore, velocity of a fluid particle denoted as V.

V = lim Ar _ dr and d = lim A
17 d A N dx . dx .
= = — — — -
V dt(xl+y]) dtl+dt]
- azr d? N ~ d’x , d?%y,
ﬁ = —-—= — — —_
a dt? dt? (xl T y]) dt? L+ dtzj
. dx
v, = x — component of velocity = —

. a
v, =y — component of velocity = d—Jt’
. d?x
a, = x — component of velocity = —
= y — component of velocity = 2
by =Y P Y=
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Tangential and Normal/Centripetal Components of Velocity

When we study the motion of a particle, it is often useful to resolve the
acceleration in two components, one in the direction of the tangent and the other in
the direction of the normal. If we write v = || for the speed of the particle, then

@) ) B
GG

Andso v =vT+ON withvy, =v and ¥y =0

T(t) = |

Question (Tangential and Normal/Centripetal Components of Acceleration)

Show that acceleration of a particle travels along a space curve with velocity v is
2

given by d = v'T + kv?N = %T + %N. We may use p instead R.

Solution
- - d‘l_j
Since a = —
dt
5> d d dv dT
= = — = — = - T e eiieeceeeae
a=— (lv|T) ” (vT) dtT tv— (1)
dT  dT ds 1dT dT dT ds
— =——= Nkv “N==—>>Nk=—=>Nk=—also—=v
dt ds dt K ds ds ds dt
dT 1
—=N-=
dt R

> dv 1 — _dv v? _ﬂ 2
(1):)a_ET+V'NE:>a_dtT+RN_dtT+KvN

Writing d; and d, for the tangential and normal components of acceleration, we

2
have d = d+T + dyN Where d-=v" and dy = kv? == = >
T N T N P P

Note

Although we have expressions for the tangential and normal components of
acceleration above, it’s desirable to have expressions that depend only on 7, 7', and

=1

7''. To this end we take the dot product of ¥ = vT with a:
v.d = vT.(W'T+ kv?N) = vv'T.T + kv3T.N = vv’

s _ o, _vd _ #FoFE
Therefore a; =v' = e T

Using the formula for curvature, we have
R 2 _ OO 122 _ [P OXF 0]
v =KV o Ol O]

radial and transverse components of velocity and acceleration.
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Circular Motion

Consider an object is revolving along a circular path with constant angular velocity
w. The position of the body revolving in a circle is given by:

7 =1rf
Suppose that the center of the circle is at origin O. Now the magnitude of 7

remains constant and the unit vector # rotates at a constant rate. A circular motion
Is an example of a motion in two dimension. i.e. in a plane. So # can be written as:

7 =-=CosOi + Sinbj

- =
7 = Coswtl + Sinwtj

Where w is the angular velocity (speed) which is constant.

Radial and Transversal Components of Velocity and Acceleration

In polar coordinates, the position of a particle is specified by a radius vector r and
the polar angle 6 which are related to x and y through the relations

x =rCosf and y = rSinf

Provided the two coordinate frames have the same origin and the x — axis and the
initial line coincide. The direction of radius vector is known as radial direction
and that perpendicular to it in the direction of the increasing 6 is called transverse
direction.

If+ =

I

= CosO1 + Sinfj then

w = angular speed (velocity) = % =0

: aze _
o= angular acceleration = 2 =0

. . d .
v, = radial component of velocity = d—: =r

. do :
vg = transversal component of velocity = r—= ro

- - dzT' ao 2 . A2
a,. = radial component of acceleration = ——rly) =7- ro

. dr (do aze . A X
ay = transversal component of acceleration = 2 = (—) tr— = 210 + 10

dt \dt
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Radial and Transversal Components of Velocity and Acceleration

In polar coordinates, the position of a particle is specified by a radius vector 7 and
the polar angle 8 which are related to x and y through the relations

x =rCosf and y = rSinf

Let # and $ be unit vectors in the radial and transverse directions respectively as
shown in figure. Then

= CosOi + Sinf]  .............. (1)
§ = Cos(90° + 0)i + Sin(90° + 6)] g
A cingn . . , ,
) Sinfi + CosOj  .............. (11) 8 p
=>Zr=—(C0561+Sm9])— ,
A n
=25 (iii) + o
2 = 2 (—Sindi + Cos6)) > T
— = infi + Cos6j . S
das _ﬁA .
” vk AR (iv)
We know that # = |mpI|es r=1rf
s5=C=( )—d—rf+ X _Bpyr Ly
dt dat  adt dt

. . d .
v, = radial component of velocity = d—: =7

: de :
vg = transversal component of velocity = r—= ro

Let a be the acceleration then

> av d [/dr . do d [dr . d do .
=T oL (S L) L (H) (00

dt dt dt dt dt \dt dt \' dt

dzr ~ . drdf de aze do
=>d=—F+——+— ( ) +—=rs§+— ( )r

dt2 dt dt dt dt2 dt \dt

{

d?r . do do d?e - do .\ [/dé
= a=—=T — ——1{—=)r
a dat? t % dt (dt S) t % dt (dt) + dt2 S+ ( dt ) (dt)

- d’r . de\? . de d2e
ﬁaz—r—r(z) +2—(—) +—718§

dt? dt dt?
5> |ad?r N
= 4= |30 ( ) ] [2 ( ) dt2 S
daz ae* _ .. 2 _ o dr(dé aze .5 -
U =— =T (E) =i —rf-and ay = 24 (dt) tr— =270 +7106
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Question

A particle moves so that its position vector is given by 7 = Coswti + Sinwtj
where w is constant. Then show that

I.  The velocity v of the particle is perpendicular to 7.
ii.  The acceleration a is directed toward the origin and has magnitude
proportional to the distance from the origin.
lii. 7 X v is constant vector.

Solution

7 = Coswti + Sinwtj

U= % = —wSinwt! + wCoswtj = d = % = —w?Coswti — w?Sinwtj

I. 7.0 = (Coswti + Sinwtj). (—wSinwti + wCoswtj) = 0
The velocity v of the particle is perpendicular to 7.

ii. d=—-w?Coswtl — w?Sinwt]j = —w?(Coswti + Sinwtj) = —w?#
The acceleration a is directed toward the origin and has magnitude
proportional to the distance from the origin.

iii. 7XvU = (Coswtl + Sinwtj) X (—wSinwti + wCoswtj)

i j k A
PXV=| Coswt Sinwt 0|=wk
—wSinwt wCoswt 0
7 X ¥ is constant vector.
Question

Given a space with position vector # = 3Cos2ti + 3Sin2tj + (8t — 4)k. Find
unit tangent vector to the curve. Also verify that v = vT.

Solution
7 = 3Cos2ti + 3Sin2tj + (8t — 4)k

_ O _ 33 sy A7
T(t) = o] 5SmZtL +2 Cos2tj + 5k

U = —6Sin2ti 4+ 6Cos2tj + 8k = v = |#]| = 10
Cearly v = vT. Proveitby L.H.S=R.H.S
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Free Vectors

Vectors which are specified by magnitude and direction only are called free
vectors. Few types of such vectors given as follows;

= Equal free Vectors: Any two free vectors are equal if they have the same
magnitude and direction.

>

{a) Equal free vectors

» Equal Sliding Vectors: Any two free vectors are equal sliding iff they have
the same magnitude, direction and line of action.

™

(&) Egqual sliding vectors
= Equal Bound Vectors: Any two free vectors are equal bound vectors iff they
have the same magnitude, direction and point of action. i.e identical.

>

{¢} Bound vector
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Uniform Force Field

A force field which has constant magnitude and direction is called a uniform or
constant force field. If the direction of this field is taken as the negative z direction

and the magnitude is the constant F,, then the force field will be F= Fok

1]

..Fo

o

Uniformly Accelerated Motion

If a particle of constant mass m moves in a uniform field, then its acceleration is
uniform or constant. The motion is then described as uniformly accelerated motion.

Its formula is given by d = %IQ

Accelerated due to Gravity

Near the earth’s surface an object fall with a vertical acceleration which is constant
provided that air resistance is negligible. This acceleration is denoted by g and
called the acceleration due to gravity or the gravitational acceleration. Its value is
given by g = 9.8ms™2.

Freely Falling Bodies

If an object moves so that the only force acting upon it is its weight, or force due to
gravity, then the object is often called a freely falling body. If 7 is the position

vector and m is the mass of the body, then using Newton’s 2™ Law and W = mg
assuming the motion in xy — plane we have

w da’# -mgk _ d*7 =~
F=misF=="dom—="5%"=_gk
g dt? g dt?

Equations shows that motion of freely falling body is independent of mass.
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Question

A particle of mass m moves along a straight line under the influence of a constant
force of magnitude F. If its initial speed is ¥, find the speed, the velocity and the
distance travelled after time t.

Solution

O

Assume that the straight line along which the particle P moves is the x — axis as
shown in figure. Suppose that at time t the particle is at a distance x from origin O.
If 7 is a unit vector in the direction OP and v is the speed at time t, then the velocity
is vi. Then we have

= - d ~ ~ dv dv F
F=ma=>ma(vl)=Fl=>mE=F=>———

= Lo aw="drsv=Lt+4
dt m m m

Initially using t = 0,v = vy we get A = v,. Thus v = %t + v,
F
> V=1vy+=t
m
To find velocity
Since we have v = v, + %t
. . FI > o F
=>vl=v01+—lt:>v=v0+—t
m m
To find distance

. F
Since we have v = v, + —t

d
=>—x=v0+5t:>dx=(v0+5t)dt=>x=v0t+it2+B
dt m m 2m

Initially using x = 0,t = 0we get B = 0.

Thus x = vyt + — t2
2m
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Trajectory

The curve traced by a moving particle is called the trajectory or path of the
particle.

Projectile Motion of a Particle

An object fired from a gun or dropped from a moving airplane is often called a
projectile. If a ball is thrown from one person to another or an object is dropped
from a moving plane, then their path of traveling/motion is often called a
projectile.

Position vector of Projectile at any time t

Consider a body of mass m projected with velocity v, at angle « with the
horizontal. Derive the expression for the P.V. of the projectile.

Ye R , ,

Solution

Since F = Fi + F,j = 01 + (-mg)j

=>Fx=O=>max=O=>m%=0=>m¢0,2—2=0:ovx=%=cl

=V, = % = vyCos x initially using t = 0, v, = vyCos %, c; = vyCos x
= dx = vyCos < dt = x = (vyCos X)t + ¢,

= x = (vyCos x)t initially usingt = 0,x = 0,¢c, =0
=>Fy=—mg=>may=—mg:%=—g=>vy=2—3t’=—gt+c3

= vy, = % = —gt + vSin « initially using t = 0, v, = v,Sin %, c3 = v4Sin <

> dy = —gtdt + vySin < dt =y = —~ gt + (v,Sin )t + ¢,
>y = —%gt2 + (vySin )t initially usingt =0,y =0,¢c, =0

=7 =xi+ yj = (vyCos X)ti + [(vOSin o)t — %gtz]j
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Range of Flight/ Range of Projectile/ Horizontal Range of Projectile

Consider a body of mass m projected with velocity v, at angle « with the
horizontal. Derive the expression for the range of flight.

Ye R , ,

Solution
Since F = F,i + F,j = 0i + (-mg)j

d?x d?x dx
=>Fx=0=>max—O:mﬁ—0=>m¢0——0=>vx=5=c1

dx . .
DUy == voCos « initially using t = 0, v, = vyCos %,c; = vyCos x

= dx = vyCos x dt = x = (vyCos x)t + c,

= x = (vyCos x)t initially usingt = 0,x = 0,¢c, =0

d?y dy
=>Fy=—mg=>may——mg=>d > ——g=>vy=E=—gt+c3
= v, = d—jt’ = —gt + veSin o« initially using t = 0,v, = v,Sin x, c; = voSin «

= dy = —gtdt + vySin < dt =y = —~ gt + (vSin )t + ¢,

>y= —%gtz + (vSin <)t initially using t = 0,y = 0,¢c, =0

=>y:—%g( ad )+(v05'moc)(

VgCoSsx

Using t =

Vo Cosoc) VgCoSsx

gx? gx? 2
=>y=——2( > )+xtanoc:,~y=xtanoc——25ec x

2v§5 \Cos“x 2vg

gRZ 2 .
=>0=Rtanoc—ﬁSec x Usingx =R,y =0
0
2v¢ tanx  2v% ..
= Rtan x= 2% Sec ox=—2 = 2Sin « Cos «
2v0 g Sec?x g

2
= R =%Sin2 x
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Time of Flight/ Time of Projectile/ The Time of flight back to Earth

Consider a body of mass m projected with velocity v, at angle « with the
horizontal. Derive the expression for the time of flight.

oo » da adi ¥

7

Solution

Since F = Fi + F,j = 01 + (-mg)j

d?x d?x dx

:»Fx=O=>max=0=>mﬁ=0=>m¢0,ﬁ=0=>vx=E=cl

d . ]
=> U, = d—’: = vyCos X initially using t = 0, v, = vy,Cos %, c; = vyCos X
= dx = vyCos < dt = x = (vyCos X)t + ¢,
= x = (vyCos x)t initially usingt = 0,x = 0,¢c, =0
= R = (vgCos x)T Usingx =R, t=T

R

=>T=

VgCoSxX

éSinZOC 2 5ci 2
ST =49 _ vg.25inxCosx R = V—OSiTlZ o

VoCosx V9gCosx g

2v .
=>T=7°Smoc

Remember that time of flight depends on v,Sin o which is the vertical
component of the velocity of the projection.
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Path of Projectile is a Parabola

Consider a body of mass m projected with velocity v, at angle « with the
horizontal.

aL
_ R _ _l 2 . .
We know that t = - andy = Sgte + (voSin )t then using both

equations we have

R

)2+(voSin OC)( )=>y=Rtan°<—iszsecz x

1
>y=-3g(
y Zg VoCoSsxX VoCosxX 2v4

Which is a Parabola.
Maximum Range of Projectile / Maximum Horizontal Range of Projectile

Consider a body of mass m projected with velocity 7, at angle « with the
horizontal.

2
We know that R = %Sinz x

The range of the projectile will be maximum, when Sin2 <=1
= 2 x= Sin"1(1) > x= 45°

Thus the projectile will have the maximum range when it will be projected at an
angle of 45°, therefore

Rt
g
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Question

An object of mass m is thrown vertically upward from the earth’s surface with
speed v, find the position at any time, the time taken to reach the highest point
and the maximum height reached.

Solution

Let the position vector of m at any time t be # = xi + yj + zk. Assume that the
object starts at # = 0 when t = 0. Since the force acting on the object is —mgk,
we have by Newton’s Law;

azr ~ dv o~ > o
e ——mgk=>E_—gk=>v——gtk+A

= F =-mgk=m
Using ¥ = vyk attime t = 0 we have A = v,k
=¥ =—gthk+ v,k =7 = (v, — gt)k

d_) 7 - 1 ~
=>d—:=(v0—gt)k=>r=(vot—zgtz)k+B
Using 7 = 0 at time t = 0 we have B = 0
=>1_~’=(v0t—%gtz)§
Orequivalently x=0; y=0; z=vot—%gt2

Vo

The highest point is reached when ¥ = (v, — gt)k = 0 that is at time t = r

Attimet = ’;7" the maximum height reached is from z = vyt — %gt2 as follows

_ %
=2
Maximum Height of Projectile Reached
A the highest point of the path the component of the velocity is zero thus using

(vySin <) — gt =0 and we get t = %Sin x
=y = (v,Sin )t — %gt2

. . . Vo - 1 Vo - 2
= Maximum Height Reached = y = (v,Sin x) (? Sin oc) -39 (Z Sin oc)

vESin?u

= Maximum Height Reached = 29
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Question

A projectile is launched with initial speed v, at an angle o with the horizontal
acting upon a force due to air resistance equal to —fSv where £ is constant. Find the
position and velocity vector at any time.

Solution

Body move downward, so frictional force = F, = —k'#% = —B% and W = —mg

{

F=W+E =—-mj— B9 =>md=—-mg — B
di}__—)_ E - d_ﬁ E > _ 2
~a==i- ()= + ()=

o8 (B 5elB) = —ie®) = £ (o)) = —golB)

dt dat
= ﬁe(%)t =—g/ e(%)t dt + A = 138(%)t = — (%) e(%)t + A
using initially t = 0, v = vycos | + vgsin < k
we get A = vycos X J + vysin X k +%
B B -
= ﬁe(ﬁ)t = - (%) e(ﬁ)t + vycos X J + vysin « k + %

£ £

>V = (vocos X j + vysin « E)e'(m)t + % (1 — e‘(m)t> required velocity
» ) ; B
= % = (vocos X J+ vysin « k)e_(a)t n % (1 B e_(ﬁ)t>

>7F=— (%) (vocos X J + vysin < E)e_(%)t + %(t + (%) e_(%)t> + B

~ 2
using initially t = 0,r = 0we get B = %(vocos X j+ vysin « k + ";29)

>7= (%) (cos x j + sin « k) (1 — e‘(%)t> — % (t + (%) e ()t — %)
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Projectile Motion (of a particle) with air Resistance

Consider a body of mass m projected with velocity v, at angle « with the
horizontal.

>

Body move downward, so frictional force = F, = —k'% and W = —mg

F=W+F =-mg— k't = md =—-mg — mk¥ where m, g, k are constants.

U
II

—g—kv=> x"1+y"))=—gf - k(x'T+y'])
=>x"t+y"f=—kx't+ (—g — ky")j

=>x" =—kx' o (D), y' ' =—g—ky ........(i0)
()=>x"=—kx' =2z = —kz usingx' =z, x"' =2
d
5% kzo [Zdz=—k[dt=Inz=—kt + A=z =e K+4 = g ktpA
dt z
Sz=ce M =z=uye* using initially t = 0,v = u; we getc¢; = u4
ax —kt —kt e
= =ue = [de=u,[e dt=>x=u—+B
ekt . S
=>x = +— using initially t = 0,x =0

— W4 _ -kt
= x = k(l e k)
(ii)=y"=—g—ky' ' =>s'"=—ks—g usingy' =s, y'' =

=> + ks = —g :> ekt + ksekt = —gekt using integrating factor

ekt

d
= E(sekt) = —ge’t = [d(se*t) = —g [ ektdt = sekt = —gS—+ D
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Svy=—2+D using initially t = 0,s = y' = v =1,

kt
=>D=v1+%then Sekt=—g%+v1+%=>5:_%+e—kt(v1+%)
dy g -k -k g
=>—=—_te t(vl ) [dy = f[——+e t(vl ;)]dt

-k
=>y=—%fdt+(v1+%)fe"“dt:>y=—%t+(v1 +%)e_kt+E

. . ey _ _ _ l g
using initially t = 0,t = 0we get E = P (v1 + k)

-kt
g g\ e 1 g
=>y=—;t—(v1+z) P +;(U1+;)

=Yy = —%t+%(v1+%) (1—e™)

Time of Flight/ Time of Projectile with Air Resistance

- - _9,41 9\ (1 — okt
Since we know that y = kt+k(v1+k)(1 e ")
Usingy =0,t =T

1 _ 1 -
=>0=—%T+E(v1+%)(1—ekT):%Tz;(v1+%)(1—ekT)

> gT = (") (1-e ) > T = ("”1+g) [1-(1-kT+ LS -]

k 3!
2m2 373
=>T:(kv1 )(kT_kT_I_kT_'_m)
gk 2! 3!
k k2 2
:Tz(v;,:g)k'r(l——+ r +neglectlng) k<1
22 22
:1:(@)(1___'_"T)=> g :1__+kT
g kv1+g
22 _ 22
=>k—T=1+kT— g :k_Tz(kv1+gg) k-T
6 kvi+ g 2 kvi+ g 6
KT _ kv, ) k212 —E( kv, szz) 2 k_Tz
= 2 _(kv1+g + 6 :T_k kv1+g+ 6 :T_kv1+g+ 3 (lll)
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For ideal condition friction is zeroso k = 0 then T = %

2vpsin«

=>T= — using v; = vysin «
= T, = 2« for small value of k using T = T,
=>T= kTE
(lll) T kv +g 3
2 2.2

Y (A

kvi+g 3\ g g(1+°2) 3\ g

g
-1 2,2

=>T=2ﬂ(1+k”1) +2k"1]:>T=2ﬂ(1—ﬁ+k"1+---)+2'“’1]

g 39 g g 3g
ST =2l kg neglecting + 2kv ] =2 [1 — (ﬁ — 2kﬂ)]

g L g 39
ST = 2v; '1 . (3kv1 2kv1)] ST = Zﬂ( kvl)

gl 9 39
Range of Projectile with Air Resistance
Since we know that x = % (1—e k)
=>R’=%(1—e"‘T) usingx =R, t =T

r 22 373

>R =2[1-(1-kT+5 -+ )]

kL 3!

p_ il _ k*T? k3T3_m]

zR—kl 1+ kT T3
S RI=% kT_k2T2 +k3T3 _ ]

k 2! 3!

using T = %(1 —';—’;1)

2
po g (Zv (g kv kA (2va (g R ,
=R = . [k(g ( 3g)> . (g (1 3g)> + neglecting
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S R =% [Zkvl (1 _ ﬂ) _ 2%k%v3 ( _ ﬂ)z- Ideal condition

k| g 39 2g? 3g/ |

2kv kv 2k%v? 2k%v? k=0

>R =22 (-2 (g 20 )| |

kL g 39 g2 992 V) = VySin

u; 2kv kv kv —
=>R’=—1.—1[(1——1)——1 1+ neglectin ] Uy = Vpcos

. g ) "5 ( g 9)

2uqvq
SR = 2Uq v, [1 kvy ﬂ] S R = 2Uq V1 [1 . kv1+3kv1] = g
g 39 g 3g

" Ak Ak P = VpSin2 «
> R =2 -] 5 R = R[1-22 g
>R =R-2%p R' < R (Due to friction)

= v
4;‘;112 = R — R’ = decrease in Range = AR = R — R’ = %R
— AR = 4k (vgsine) vysin2« — AR = 4kv%sin02csin20<
39 g 39
Question
Show that x = u,t if force of friction is zero.
Solution
Letx = %(1 — ekt
242 3+3
sx="21-(1-kt+S- -+ )
242 3+3 242 3+3
sx=21-1+kt -+ =R ke -+ ]
2 24+3 2 243
' —ulk[t_kL_Fkt ...]:}x_ul[t_kL_l_kt_...]
2! 3!

When force of friction is zero it means k =0
>x=u[t—0+0—-]

:>x=u1t
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CHAPTER

RESISTED MOTION AND
4 DAMPED FORCE
OSCILLATOR

Motion in a Resisting Medium

In practice an object is acted upon not only by is weight but by other forces as
well. An important class of forces are those which tend to oppose the motion of an
object and reduce the magnitude of successive oscillations about the equilibrium
position. Such forces, which generally arises because of motion in some medium
such as air or water, are often called resisting, damping or dissipative force and
the corresponding medium is said to be a resisting, damping or dissipative
medium. A useful approximated damping force is given as follows;

Fy=-po=—pvi=—-—%;

dt
Where the descript D stands for the damping force and £ is the positive constant
called the damping coefficient. Note the ﬁD and v are in opposite direction.

Friction Force

Friction forces play an important role in damping or retarding motion initiated by
other forces friction force between two bodies results from the interaction between
the surface molecules of the two bodies and involves a very large number of such
iteration. The phenomenon is therefore complex and depends on factor such as the
condition and nature of the surfaces and their relative velocity.
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Some Useful Definitions

Simple Harmonic Motion and Simple Harmonic Oscillator: SHM occur
when the net force is directly proportional to the displacement from the mean
position and is always directed towards the mean position. The body
executing SHM is called Simple Harmonic Oscillator. The motion of simple
pendulum and the motion of mass spring system is SHM.

Simple Harmonic Motion is an oscillatory motion that occurs whenever a
force acts on a body in the opposite direction to its displacement from its
equilibrium position , with the magnitude of the force , proportional to the

magnitude of the displacement. i.e. Fo—x or F=—kx

Where k is the constant of proportionality often called the spring constant,
elastic constant, stiffness factor or modulus of elasticity

Restoring Force: A force that always pushes of pulls the object performing
oscillatory motion towards the mean position.

Vibration: One complete round trip of a vibrating body about its mean
position is called one vibration.

Time Period: The time taken by a vibrating body to complete one vibration
is called time period.

Frequency: The number of vibrations or cycles of a vibrating body in one
second is called its frequency. It is reciprocal of time period.

Amplitude: The maximum displacement of a vibrating body on either side
from its mean position is called its amplitude.

Oscillations/Vibrations: A body is said to be vibrating (oscillating) if it
moves back and forth or to and fro about a point.

Damped forced oscillations/ Damped oscillations: The oscillations of a
system in the presence of some resistive force.

Linear frequency: The amount of vibrations completed in unit time is
called linear frequency. Its Sl unit is called hertz (Hz).

Angular frequency: The amount of rotations completed in unit time is called
linear frequency. The linear frequency f and the angular frequency w are

related as f = =



visit us @ Youtube | Learning with Usman Hamid

Equation of Motion of Simple Harmonic Oscillator

Consider a block of mass m is attached with one end of a string. The other end of
spring is fixed to a support. The block is free to move to and fro over a frictionless
horizontal surface as shown in figure.

Mean position

x=0

e X == Xm X = Xm Extreme
m o ) . position (A)

Extreme

position (I3)

The point x = 0 when block is at rest is called mean position because spring is not
exerting any force on the block. The block attached with spring having constant k
takes to and fro motion under restoring force F given as

F=—kx oo, (1)
- dzx s nd
ma=m-—— (2) by Newton’s 2™ Law

T
I

Comparing (1) and (2) we have

d?x
a = Tl
mi+kx=0  Or X+%x=0

This is called equation of motion of simple harmonic oscillator or linear Harmonic
Oscillator. This type of motion is often called Simple Harmonic Motion.
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Damped Harmonic Oscillator

The oscillator which moves in a resistive medium under a restoring force is called

the Damped Harmonic Oscillator and equation of motion of the harmonic

oscillator is given as
d?x

dx
mﬁ——kx—ﬂz or m

d?x

dx
dt2+'BE+kx_0

We may write it as follows;

d’x | Bdx  k

dt?  madt

X+ 2yx + w?x =0 using£=2y'£=w2
m "'m

Remark

= Damped Harmonic Oscillation ¥ + 2yx + w?x = 0 represent over damped
motion if y? > w?.i.e. B2 > 4km and in this case equation
¥ + 2yx + w?x = 0 has the general solution of the following form
x =e V' (de*t + Be ™) where x=,/y2 — w?
And A,B are arbitrary constants can be found from the initial conditions.

= Damped Harmonic Oscillation % + 2yx + w?x = 0 represent critically
damped motion if y? = w?.i.e. B2 = 4km and in this case equation
¥ + 2yx + w?x = 0 has the general solution of the following form
x=e V' (A+ Bt)
And A,B are arbitrary constants can be found from the initial conditions.

= Damped Harmonic Oscillation ¥ + 2yx + w?x = 0 represent under
damped or damped oscillatory motion if y? < w?.i.e. 2 < 4km and in
this case equation ¥ + 2yx + w?x = 0 has the general solution of the
following form

x = e V' (AsinAt + BcosAt) = Ce Y'cos(At — @) where x= /w2 — y2

And where C = v A? + B? called the amplitude, and ¢ called the phase
angle or epoch, can be determined from the initial conditions.
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Equation of Motion of Damped Harmonic Oscillator

Consider a block of mass m is attached with one end of a string. The other end is
connected with a mass less vane. The block is free to move to and fro over a
frictionless horizontal surface as shown in figure.

Fr=— Kkx

i “Yane

1 Fd = — h\

Now displace the block towards right through some displacement and release. The
block attached with spring having constant k takes to and fro motion under
restoring force F given as

-

E. = —kx

The damping force experienced by vane when it moves in resistive medium is

Fd - _,31_7)

NetForce = F = F. 4+ F; = —kx — BT vvvveeeeee. (1)

= > d?x ’ nd
F=ma= M- (2) by Newton’s 2" Law

Comparing (1) and (2) we have

d?x dx
mﬁ——kx—ﬂa or dt2+ﬁ +kx 0

We may write it as follows;

d’x = B dx
F-I___-I_; =0

. . 2 _ - ﬁ_ E_ 2
X+2yx+w’x =0 usmgm—Zy,m—w

This is called equation of motion of damped harmonic oscillator . This type of
motion is often called damped Harmonic Motion.
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Simple Pendulum

The metallic bob suspended by a weightless inextensible string is called simple
pendulum. The distance between point of suspension and center of bob is called
length of simple pendulum. The bob at rest when no resultant force acts on it is
called mean position or equilibrium position.

Equation of motion of a Simple Pendulum

Consider a bob of mass m attached with a string. The string is hanged vertically
from a support as shown in figure;

)
.t
.
"""
.
ae
.t

.
o,
‘e
.....
L

mean position
weSingd A 4 mgCosé
mg

Pull the pendulum from mean position to position A such that string makes a small
angle 6 with vertical. The bob starts moving toward mean position under restoring
force when released. It gets maximum velocity at mean position and does not stop
due to inertia but continues to move towards extreme position B. The velocity of
bob becomes zero at position B due to restoring force.

The path followed by bob when it moves from mean position to position A
is called an arc of circle having radius . The arc length S and chord length x are
approximately equal for small angle.

The forces acting on bob when it is at position A are

= Weight of bob acting vertically downward
= Tension acting along the string
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Resolving weight force into components we get F= —mgsiné

The negative sign means direction of Fis opposite to direction of increasing 6
and for small amplitude we have sinf ~ 6

F=-mgd .l (1)

-

F=ma . (2) by Newton’s 2" Law
Comparing (1) and (2) we have
md = —mgl = d = —g0o

The relation s = r@ for circular path gives x = 16 then

= 5(3) 2a=- ()= 25 0):

X+g G) =0 (Equation of motion of a Simple Pendulum)

Resonance / Resonance Frequency

Resonant frequency is the oscillation of a system at its natural or unforced
resonance. Resonance occurs when a system is able to store and easily transfer
energy between different storage modes, such as Kinetic energy or Potential
energy as you would find with a simple pendulum. A familiar example is a
playground swing, which acts as a pendulum.

Forced Vibrations

Forced vibration occurs when motion is sustained or driven by an applied periodic
force in either damped or undamped systems. Vibration of vehicles during the
running on uneven roads, vibration of air compressors and musical instruments etc.
are some of the examples for forced vibrations.
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Question

Determine the motion of simple pendulum of length [ and mass m assuming small
vibrations and no resisting force.

Solution
Let the position of m at any time be determined by s,
the arc length measured from the equilibrium position O.

Let 8 be the angle made by the pendulum string with the

vertical. If T is a unit tangent vector to the circular path of

the pendulum bob m, then by Newton’s second law S~
= - dZS g
F:ma:mﬁT ................... (1) —-mﬂsingr

Resolving force into components we get F= —mgsinf

The negative sign means direction of Fis opposite to direction of increasing 6
and for small amplitude we have sinf ~ 6

F= -mgl (2)
Comparing (1) and (2) we have

d?s = d%s da? _ L
rrZLFT——mgHzF——gQ:F(IH)— g0 s s =10
% _ _ 9,20 g
az = 102t 0=0

Which has solution 8 = Acos\/%t + Bsin\/%t

Using initial conditions 8 = 90;% =Qatt=0wegetA=6,B=0

=0 = Hocos\[% t. Here is time period 2m./1/g

Energy of a Simple Harmonic Oscillator

If T is the kinetic energy, V the potential energy and E =T + V the total energy of
a simple harmonic oscillator then we have

E=T+V=%mvz+%kx2
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Question

Prove that the force F = —kxi acting on a simple harmonic oscillator is
conservative.

Solution:  Given that ¥ = —kxi then

R
VxF=|92 92 2|=0. Thustheforce F = 4 x# is conservative.
dox Jox Ox
—kx 0 O
Question

Find the potential energy of a simple harmonic oscillator.

Solution

In this case the potential or potential energy is given as F=-pv

> —kxi=-VW=0=kei=>Zi+27+ 2k = ki
ox ady 0z
av av av
ﬁa—kx ...... (1), 5—0 ...... (2), 6_2_0 ...... (3)

=>V=%kx2 usingV = 0forx =0wegetc =0

Question

Express in symbol the principal of conservation of energy for a simple harmonic
oscillator.

Solution

d?x
We know that m — = —kx
dt

SE=T+V = %mv2 + %kx2 after integration



visit us @ Youtube

Learning with Usman Hamid

CHAPTER

CENTRAL FORCES AND
PLANETARY MOTION

Central Force Fields
Suppose that a force acting on a particle of mass m is such that

. It is always directed from m toward or away from fixed point.
. Its magnitude depends only on the distance from fixed point.

Then we call the force a central force or central force field. Mathematically it can
be written as F = f) ; The central force is one of the attraction towards origin if
f(r) < 0 or repulsion from origin if f(r) > 0.

Or If a particle is moving in an orbit under the influence of a force whose line
of action passes through some fixed point, then such a force is called a central
force or central force field and the fixed point is called its centre. The central force
may be attractive or repulsive.

Properties of a Central Force Fields
If a particle moves in a central force field, then the following properties are valid;

. The path or orbit of the particle must be a plane curve. i.e. particle moves in
a plane.

ii.  The angular momentum of the particle is conserved. i.e. constant.

ii.  The particle moves in such a way that the position vector or radius vector
drawn from Origin to the particle sweeps out equal areas in equal times. In
other words, the time rate of change in area is constant. This is sometime
called the law of areas.
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Property

The path or orbit of the particle must be a plane curve. i.e. particle moves in a
plane.

Proof

Let F = f (r)§ be the central force field then

5 S ar
Nowvxv=0=>zxv=0

1

>—=—xv=0 ... (ii)

2|5

Adding (i) And (ii) we get

av  dr _, -
rX—+—Xv=0
ac ' dt

d - >N
:a(rXU)—O

SPEXD=h where 7 is a constant vector.
7 (FxP)=fh=7h=0 wd. (@xb) =0
>71h

This shows that the position vector of the particle at any time is perpendicular to

the fixed constant vector & and Thus the path or orbit of the particle must be a
plane curve. i.e. particle moves in a plane.
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Property
The angular momentum of the particle is conserved. i.e. constant.

Or  Prove that for a particle moving in a central force field the angular
momentum is conserved.

Proof

Let F = f (r)§ be the central force field then

- = - 7 - av
r><F=r><f(r)—=O=>r><md—:=0
5 dv
= d__O ............... (1)
- ar _
Nowvxv=0=>zxv=0
ar _
:Exv—o ............... (11)

Adding (i) And (ii) we get

dv  dP
rX—+—xv=0
dt dt

=S>rXv=~h where h is a constant vector.

- -

>mFEXvV)=mh=>7Xmv=mh=>7XP=mh
= L =mh

This shows that the angular momentum of the particle is conserved. i.e. constant.
That is always constant in magnitude and direction.
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Equation of motion for a particle in a Central Force Fields

Since we know that the path or orbit of the particle must be a plane curve. i.e.
particle moves in a plane. Choose this plane to be the xy and the coordinates
describing the position of the particle at any time t to be polar coordinates (r, 9).

We have d = (# — r0?)7, + (r8 — 27-0)0; then
F=md=F= m[(# — r02)7, + (r6 — 270)06,]

m[ (i — r62)7, + (r6 — 276)6,] = F(r) = = F()
Thus the required equations of motion are
m(# —r8%) = f(r) and m(rf — 270) =0
Property (many questions covered)

The particle moves in such a way that the position vector or radius vector drawn
from Origin to the particle sweeps out equal areas in equal times. In other words,
the time rate of change in area is constant. This is sometime called the law of areas.

Or  Prove that for a particle in central force field the areal velocity is constant.
Or  Show that r?6 = h, a constant. Or  Show that 26 = 2A.
Proof

From equations of motion awe have m(rd — 276) = 0
== (r?6-2ri6) = 0= ~— r29) = 0 = r?0 = h, a constant.

Also we know that AA = % |7 x A7| for a parallelogram

. A1, A7 L1 1 5, : ;
= limy;,0— = - lim Fx—|=>A=—|F><13|=—r29:r29=2A
At~ 2 At—0 At 2 2

A= %h combining above both equations.

This proves that for a particle in central force field the areal velocity is constant.
Here A = Ak is called areal velocity.
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Useful Definitions

Aphelign

Earth Orhit

Orbits: The path of planet or satellite is called its orbit. An orbit is a regular,
repeating path that one object in space takes around another one. An object
in an orbit is called a satellite. Orbit comes from the Latin orbita, “course,”
or “track.”

Solar System: A Solar System is composed of a star and objects called
planets which revolve around it.

Satellites: The star is an object which emits its own light, while the planets
are the objects that do not emit light but can reflect it. And the objects
revolving about the planets are called satellites.

Aphelion and Perihelion: The largest and smallest distances of a planet
from the sun about which it revolves are called the Aphelion and Perihelion
respectively.

Apogee and Perigee: The largest and smallest distances of a satellite around
a planet about which it revolves are called the Apogee and Perigee
respectively.

Period/Sidereal Period: The time for one complete revolution of a body in
an orbit is called its period. Sometime it is called sidereal period to
distinguish it from other periods such as the period of earth’s motion about
its axis, etc.

Perihelon

Apoges

Moon Orbit
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Determination of the Orbit from the Central Force

If the central force is prescribed. i.e. if f£(r) is given, it is possible to determine the
orbit or path of the particle. This orbit can be obtained in the form r = r(6) or
r =r(t); 8 = 6(t) which are parametric equations in terms of time parameter.

Determination of Central Force from the Orbit

If we know the orbit or path of the particle, it is possible to determine the central
force of the orbit. If the orbit is given by r = r(6) or u = u(0) where u = % then
the central force can be found by using the following equations;

R o O | RO RS i

r

Kepler’s Law of Planetary Motion
Kepler’s Three Laws of Planetary Motion are as follows;

1. Every planet moves in an orbit which is an ellipse with the sun at one focus.

2. The radius vector drawn from the sun to any planet sweeps out equal areas
in equal time. (the law of areas)

3. The square of the periods of revolution of the planets are proportional to the
cubes of the semi major axes of their orbits.

Planet

4o \

Sun

Remember

= Equation of Conics iS% = €(1 + cos0O) or g = €(1 + cos0O)

= If e = 0 we have x? + y? = [? acircle. If e = 1 we have x? + y% = (I — x)?
or y? =12 — 2Ix a parabola. If e < 1 or ¢ > 1 we have x? + y? = (I — ex)?
or (1 —e?)x?+y? =12+ 2Ix whichisanellipseif e <1l andisa
hyperbola if e > 1.
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Question (Inverse Square Law of Attraction)

Prove that if a planet is to revolve around the sun in an elliptical path with the sun
at a focus, then the central force necessary varies inversely as the square of the
distance of the planet from the sun.

Solution

Consider a fixed point O and a fixed line AB distance D from O. Suppose that a
point P in the plane of O and AB moves so that the ratio of its distance from point
O to its distance from line AB is always equal to the positive constant e, then the

- - 3 p
rv ri P Isgiven by r = :
curve described by S give by 1+€ecosO
To-lde T e
S
-
o s
Fowrirm o A
o P = -
-
-
-
-~
/’/4, o
o ¥

Similarly if the path is an ellipse with the sun at a focus, then calling r the distance
from the sun, we have

1 €
r=—2Fr or u=-==4-cosb
1+€ecosf P D

Where € < 1. Then the central force is given by

l - _ 2 z{dz_u }__mhzuz
f(u)— mh-u d92+u = >

2
f(r)=- =—= replacing u by%
Proved that if a planet is to revolve around the sun in an elliptical path with the

sun at a focus, then the central force necessary varies inversely as the square of the
distance of the planet from the sun.
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Kepler’s First Law of Planetary Motion/Law of Orbit
Every planet moves in an elliptical orbit with the sun at one focus.

Proof

To derive the first law we will assume that the force of atiraction be-
tween the planet and the sun is not only central but also obeys New-
ton’s law of gravitation. For an inversé square law f(r}-= —k/r® and
V[r) =— [ fir)dr =—k/r where k =GmM - for the gravitational force;
and with a similar expression for electrical force. Moreoverkis positive for
an attractive force and negative for a repulsive force.

The equation of the orbit can be obtained from the conservation laws. for

energy F and angula.r momentum L. The total energy E of the pIanet. is
given by : .

-

1 e -
FE= —z-mr + W +Wr) or ‘r= \/-— (E-V —L Eg’(ﬂmrz}} (3.3: 2}
and for ﬂ.ngu].ﬂ.r mmnenl:um we have ~
d¢ L ‘Ldt |
il ‘.g_ —3 + constant (3.3.3)
‘From (3.3.2) |
dr -

T VI B T

Also df = (L/mr?)dt. On substituting the value of dt in this relatmn,
writingl” ——.ﬁ:_.fr, and integrating we obtain

0—0 o — f __ Lar _
mrw" Efm}(mkm "L *f{mﬂrf}'

_ ‘/' 3 Ldr :
rz\fﬂmE+ ﬂmk,"r)—L Efr_*

Withu= 1/rwe can express the last equatmn in the form .

0=0 o — L I (3:3.4
up 1; mEJL? + 2mku/L? —4 2 _ 3:4)
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To perform the integration ' I
integoand as follows gr on the right side of (3. 3.4), we simplify the

2mE - ' .

-+ 2 ,I,;.;“_ —u? = _ 2 2mku 2mFE

L2 L ) — —
L2 F

|2  2mku mE\2]  /mk\? 2mE
[ z " F)J"' ﬁ) tz
_( mk\?  2mE  m?%?

Iz *

wlze.reA 2 =m 2K2/ LY + EmEsz Therefnre (3.3.2) now becomes
d(u—mnk/L ?)

Vu—mk/L 2 —AZ
 d(u—mk/L 2)

Ju—mk]L 2 —A?

f_ﬁ_—__ﬁ' é¢=u—mk/L *

—(6—8 o) =

Il

& . LT -
cos™ o
Hence we can write
| : u—mk/L ? 2 _ omE. m2k?
_cus{ﬁ"-—ﬂ o) = —a A T2 + =7
(L/mkr)—1/L
A1 4 204 /mk?
wherefrom we obtain - - |
L1 ) %
— 7 E+g‘"1 + 2L /mk? cos(8—8 o)
Comparing this equation with the equation of the ellipse
-f- = 1-+EECIE§§—-E o) {E.S.Ej

we find thaté=L 2/(mk), e= +/1+ 2L3/mk? are respectively the latus-
rectum and eccentricity of the elliptical orbit.
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Kepler’s Second Law of Planetary Motion/ Law of Areas

The radius vector drawn from the sun to any planet sweeps out equal areas in equal
time. In other words areal velocity of radius vector is a constant of motion.

Proof

From equations of motion awe have m(rd — 276) = 0
=2 (r26 — 2r#6) = 0 > 22 (+26) = 0 = r26 = h, a constant.
T r dt

Also we know that AA = % |7 x A7| for a parallelogram

. AA 1, A7 ; 1 1 : : .
= limp,,0— = = lim Fx—| S A=-|Fx¥|=-r?0=>1r20 =24
At 2 At—0 At 2 2

A= %h combining above both equations.

This proves that for a particle in central force field the areal velocity is constant.
Here A = Ak is called areal velocity.

The particle moves in such a way that the position vector or radius vector drawn
from sun to the particle sweeps out equal areas in equal times. In other words, the
time rate of change in area is constant. This is sometime called the law of areas.

Kepler’s Third Law of Planetary Motion/ Law of Periods

The square of the periods of revolution of the planets are proportional to the cubes
of the semi major axes of their orbits.

Proof

If a and b are the lengths of the semi — major and semi — minor axes, then the area
of the ellipse is mab. Since the areal velocity has the magnitude % the time taken to
sweep over area wab, the period, is

nab  2mab 2mm1/2q3/2 . mh?
= — = = == = — 2 — — £2) —
P v - P 172 usingb =avl—e€?,p=a(l —e€*) P
an’mad
= P? =
K

Hence the square of the periods of revolution of the planets are proportional to the
cubes of the semi major axes of their orbits.
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Apsides and Apsidal Angles for Nearly Circular Orbits

Apsides, Also called: apse. either of two points lying at the extremities of an
eccentric orbit of a planet, satellite, etc, such as the aphelion and perihelion of a
planet or the apogee and perigee of the moon. An apsis is the farthest or nearest
point in the orbit of a planetary body about its primary body. The line of apsides is
the line connecting the two extreme values.In physics Angle through which the
radius vector rotates in going between two consecutive apsides is called the apsidal
angle.

Motion in an Inverse Square Field

As we have seen, the planets revolve in elliptical orbits about the sun which is at
one focus of the ellipse. In a similar manner, satellite (natural or man made) may
revolve around planets in elliptical orbits. However, the motion of an object in an
inverse square field of attraction need not always be elliptical but may be parabolic
or hyperbolic. In such cases the object, such as a comet or meteorite, would enter
the solar system and then leave but never return again.

Question

Prove that the speed v of the particle moving in an elliptical path in an inverse

square field is given by v? = LS (3 — 1) where a is the semi major axis.
m \r a
Solution
2 2

From theory (Spiegel book) we have p = % =a(l—€?)=a (— ZE;;h ) where
E=-— % And by conservation of energy using V = — g we have
Smvi=E-V=——-2%
2 2a r

2 _K(z2_1
vt = m (T‘ a)

imi 2 _ K2, 1
Similarly we can show for a hyperbola Ve =— (T + a)
While for a parabola p2 = 2K

mr
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Example

Suppose a particle is subject to an inverse cube att i .

: . ractive force. Celeulate
:he time taken by the particle to move from & distancedto the centre of
orece. ' '
Solution
We choose the X-axis along the line of force, and the c—ﬁgin at the centre

of force. Then the equation of moticn cen be written as

d*z mk? _ L
maEsm = W

oo dx dPmY de 1 S
f(zﬁ_d?) dt = zk?fd—t_zadt .

2. pam 1 o
f % (‘;_‘:) Tl = 27 j—f %dﬁ+ constant
&) =[5
L _ - .
= @z 7T

qud#f dt= 0 wheas=d, therefore
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Escape velocity / Gravitational Escape

This is an application of energy conservation method, as an illustration of energy
conservation methods, we consider the problem of the gravitational escape of a
particle from the earth. The gravitational potential energy due to earth’s attraction
on a particle of mass m at a distance r > r,, (earth’s radius) from the earth’s center
with mass of earth M is

oo GMm
Vir)=-[ —-dr
GM . . g- .
V(r) = —Tm after simplification
. . 1 2 GMm
According to the law of conservation of energy Smvt———=c¢ (Constant)
. .- 1 GM
Using initial r = 7, , v = v, we have ~mv§ ——= = ¢ then
e
1 2 GMm 1 2 GMm 1 5, GM _ 1 5, GM
2 r 2 Te 2 r 2 Te
GM GM GM
= p? =v§+2——2—=>v=\/v§+2——2
T Te r
1 1 2GM
=>v=\/v§+ZGM(———)=>O= Vg — whenr — o, v - 0
T Te Te
2 _2GM __ 2GM
= vy == Vo= [— e (1)
e e

Now weight of a particle is equal to the gravitational force exerted on it by the
earth. Therefore 222 = mg which gives GM = gr? then

2
Te

The particle will escape to infinity and ¥, = \/2gr, is called escape velocity of the
particle.

Remember the magnitude of the escape velocity of an object from the earth’s
surface using g = 9.80ms 2,7, = 6.38 X 10°m is about 11kms~1.
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CHAPTER

PLANER MOTION
OF RIGID BODIES

Rigid Body

A rigid body is defined as a collection of particles such that distance between every
pair of its constituent particles remains unchanged whatever the forces acting on it.
This is a body which cannot be deformed by the external force acting on it.

= When a force is applied to an object/ system of particles, and if the object
maintains its overall shape, then the object is called a rigid body.

=  Gap between two fixed points on the rigid body remains same regardless of
external forces exerted on it.

= \We can neglect the deformation of such bodies.

» Arigid body usually has continuous distribution of mass.

Rigid Body — I: Those bodies in which angular momentum and angular velocities
have different directions are called rigid bodies of type I.

Rigid Body — I1: Those bodies in which angular momentum and angular velocities
have same directions are called rigid bodies of type II.

Elastic Bodies

A body that regains its original dimension and shape when the externally applied
force is removed is an Elastic body.

When a force is applied to a system of particles, it changes the distance be
individual particles. Such systems are often called deformable or elastic bodies.

Examples

= A spring and rubber band are some common examples of elastic bodies.
= A wheel is a common example of rigid body.
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Properties of Rigid Bodies
Following are some of the properties of the rigid bodies.
Degree of freedom

The number of coordinates required to specify the position of a system of one or
more particles is called the number of degrees of freedom of the system. For
example a particle moving freely in space requires 3 coordinates, e.g. (X, Y, z), to
specify its position. Thus the number of degrees of freedom is 3.

Similarly, a system consisting of N particles moving freely in space requires 3N
coordinates to specify its position. Thus the number of degrees of freedom is 3N.

Translations/ Translational Motion of Rigid Body

Motion of a rigid body in a straight or curved line on the smooth or rough surface.
A displacement of a rigid body is a direct change of position of its particles.
Translational motion is the displacement of all particles of the body by the same
amount and the line segment joining the initial and the final position of the
particles represented by parallel vectors. Examples of translational motion are
particles freely falling down to earth and the motion of a bullet fired from a gun.

Rotations/ Rotational Motion of Rigid Body

Motion of a rigid body about a fixed line or fixed point (centre of mass) in the
space. Circular motion of a body about a fixed point or axis is called rotation. If
during a displacement the points of the rigid body on some line remains fixed and
all other are displaced through the same angle, then this displacement is called
rotation. A rigid performs rotations around an imaginary line called a rotation axis.
If the axis of rotation passes through the center of mass of the rigid body then body
Is said to spin or rotate upon itself. If a body rotates about some external fixed
point is called revolution orbital motion of the rigid body. The example of
revolution is the rotation of earth around sun and motion of moon around sun.
Rotational motion concerns only with rigid bodies. The reverse rotation of a body
(inverse rotation) is also a rotation. A wheel is common examples of rotation.
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Introduction to General Plane Motion
The general plane motion of a rigid body can be considered as:

Translational motion along the given fixed plane and rotational motion about a
suitable axis perpendicular to the plane.

This fixed axis is specifically chosen to pass through the center of mass of the rigid
body.

Instantaneous Axis of Rotation

The axis about which the rigid body rotates is called instantaneous axis of rotation,
where this axis is perpendicular to the plane. The line referred to is called the
Instantaneous axis of rotation. Rotations can be considered as finite or
infinitesimal. Finite rotations cannot be represented by vectors since the
commutative law fails. However, infinitesimal rotations can be represented by
vectors.

Instantaneous Centre of Rotation

The point where instantaneous axis meets the fixed plane along which the body
performs translation motion is described as the instantaneous centre of rotation.

The Centre of Mass (c.m.) / Centroid of System

The centre of mass (c.m.) or centroid of system of particles is a hypothetical
particle such that if the entire mass of the system were concentrated there, the
mechanical properties would remain the same. In particular expression of linear
momentum, angular momentum and Kinetic energy assume simpler or more
convenient forms when referred to the coordinated of this hypothetical particle and
the equation of motion can be reduced to simpler equation of a single particle.
Centre of Mass is a point where an applied force causes the system to move

_ XErim

without any rotation. Its formula is 7., = S
1 l
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The Centre of Gravity

Centre of Gravity is a point where the whole weight of the system acts in the
downward direction.

"7

Motion of Centre of Mass
Motion of centre of mass can be examined by considering the following points:

1. If a system experiences no external force, the center-of-mass of the system
will remain at rest, or will move at constant velocity if it is already moving.

2. If there is an external force, the center of mass accelerates according to
F = ma.

3. Basically, the centre-of-mass of a system can be treated as a point mass,
following Newton's Laws.

4. If an object is thrown into the air, different parts of the object can follow
quite complicated paths, but the centre-of-mass will follow a parabola.

/ AN

5. If an object explodes, the different pieces of the object will follow seemingly
independent paths after the explosion. The centre of mass, however, will
keep doing what it was doing before the explosion. This is because an
explosion involves only internal forces.
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Example

Find the center of mass of 3 particles having masses 2,4 and 3 grams are placed at
points with position vectors i, 2§ — J, 31 + 4] — k respectively.

Solution

. Y3rm; rm;t+romy,+r;mg 19 1 12 7

T, = = = —1 — — —_—
m TN, m, + my + ms 9'79/ 77

Center of Mass when body is uniformly (continuous) distributed

When a body of mass M is uniformly distributed then it c.m is

Jxdam _ [xdm

= Along X —axis = X

M o Z?ml
. .. & _ Jydm _ [ydm
Alongy —axis=Y = M s
= Alongz-axis=Z7 = [zam _ ffldm
M 21m; —_
* Ay
Example I )
T L T
Find the center of mass of rod of length L.
Solution
Y. = f(fxdm _ fOprdx _ foLx%dx _ fOLxdx _L T
cm f(f dm fOLpdx f:%dx fOL dx 2 /x
Example ,é—* i— y
Find the center of mass of hollow right circular cone. T
Solution 3
y -
h h h 5
Jo xdm [ xp2nxCosxdx [ x*dx 2h |
cm = = =3

~ T h ~ T h ~ T h 3
Jo dm [ p2nxCosxdx [ xdx
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Euler’s Theorem

A rotation of a rigid body about a fixed point of the body is equivalent to a rotation
about a line which passes through the (fixed) point.

Proof

Let O be the fixed point in the body, which we take as a sphere S. Further, we take
O at the center of the sphere. Let A, B be two distinct points on the sphere. As the
body moves, the point O (on the axis) remains foxed and A and B suffer
displacement.

Let A" and B’ be the new locations of the points A and B after an infinitesimal time
interval &t respectively. We join (A, B) and (4’, B') by great circular areas. Also
we join (4, B') and (B, B") by mean of great circular arcs. Let A” and B"' draw axes
at right angles, which meat at the point C on the sphere. We join C with A, B, A’, B’
by means of great circular arcs.

Consider the spherical triangles ACA’A" and ACAA"'. Obviously

I. m< CA"A = CA"A each angle is right angle

ii. AA"=A"A A'"is the midpoint of AA’

iii. CA" is common to triangle.

iv. ACA"A = ACA"A’ (S.A.S) Postulate

V. CA = CA corresponding sides of congruent triangles
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Similarly Consider the spherical triangles ACB"'B and ACB"'B’. Obviously

I. m < CB"B = CB"'B’ each angle is right angle
ii. BB" =B"B’ B'"" is the midpoint of BB’
iii.  CB" is common to triangle.
iv. ACB""B = ACB"B’ (S.A.S) Postulate
V. CB = CB’ corresponding sides of congruent triangles
........................ )
And AB = A'B’' distance between the fixed point on the sphere remain fixed
........................ (3)
From (1), (2) and (3) we have
AB = A'B’
CA=CA
CB = CB’
Then ACAB = ACA'B’

The portion of rigid body lying in ACAB has moved to ACA'B’.

In this process the point O and C have remained fixed, although the later was at
rest only instantaneously. Therefore the body has under gone a rotation about the
axis OC.

Hence A rotation of a rigid body about a fixed point of the body is equivalent to a
rotation about a line which passes through the (fixed) point.



visit us @ Youtube | Learning with Usman Hamid

Chasle’s Theorem/ Mozzi - Chasle’s Theorem

The most general rigid body displacement can be produced by a translation along a
line (called its screw axis/ mozzi axis) followed (or preceded) by a rotation about

that line.

Or  The most general motion of a rigid body is that of translation and rotation.

Or  The most general motion of a rigid body is composed of pure translation
followed by a rotation about some base point (fixed point).

Or Let 7 be a position vector of a base point A and @ is angular velocity of any
rigid body then motion v of rigid body is composed of pure translation
followed by a rotation about some base point.i.e. v = v, + @ X 7

Explanation:

A rigid body has six degrees of freedom.

By Euler’s theorem, three of these are associated with pure rotation.

The remaining three must be associated with translation.

To describe the general motion of a rigid body, think of the general motion
as translation of a fixed point O in the body to a point O’ followed by the
rotation about an axis through O’

.Proof

Let 7 be a position vector of B from a base point A and @ is angular velocity of
rigid body then

it

>
r

g€

<

_ -
= Ttranslation + Trotation

__dTrq dTrot

dt dt

:1_7)A+6)X1_")
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Question (Equation of Axis of Rotation in Screw Motion such that v || w)

Explain the term Screw Motion, also show that the general motion of a rigid body
IS screw motion.

Solution

The motion which consists of translation and rotation about a line along the
translation is called Screw Motion. Or the motion of an object in which linear and
angular velocities are in the same direction (or Parallel) is called Screw Motion. In
this motion linear velocity of each particle on the axis of rotation is parallel (or
antiparallel) to the angular velocity. In case of screw motion we have 7 = d + Aw.
To prove this consider a rigid body in general motion.

Let 7 be a position vector of B from a base point A and @ is angular velocity of
rigid body then linear velocity of B is as follows

Vp =T, +WXT (1)

In general ¥ and « are not parallel, that we can choose B such that the linear
velocity ¥z of B is parallel to the angular velocity w of the rigid body.

SOXUg=wXVU;+0X(®WXT) taking cross product of w with (1)

50=wWXV,+® X (WXT) since w || g

> W = B x B, + @@ > = D
— — — . - WXV ._>
>7F=d+ 1w putting @ = =2, A:(Brz)w
w w

This is called the Equation of Axis of Rotation in Screw Motion such that v || @
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Question

A particle moves in a plane with constant angular speed (velocity). Show that its
acceleration is perpendicular to its velocity.

Solution

Rt

v d av d
V=wXTo>—=—(0X7) D> —=wX—>>d=w XV
at  dt dt dt

This shows that in rotational motion acceleration is perpendicular to the velocity.
Question

A particle moves in a plane elliptical orbit by the position vector

7 = 2bsinwté, + bcoswté,, then Find velocity and acceleration.

Solution

-

. ~ A ar - A , A
7 = 2bsinwté, + bcoswté, = V= 2bwcoswté; — bwsinwté,

dv . A A
=— = d = —2bw?sinwté; — bw?coswté,

Question  Calculate angular speed of the Earth.
Solution
Time of Earth relation = 24 hour = 24 x 60 x 60 sec = 84600 sec

Rotating angle = 6 = 2n

Angular speed = w = %= 2%~ 0.000073 rad/sec
t 84600

Question  Calculate angular speed of the second hand of a watch.
Solution

Time = 60 sec ; Rotating angle = 6 = 2n

Angular speed = w = % = Z—’; = 0.105 rad/sec
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Varignon’s Theorem

The moment of a force about any point is equal to the algebraic sum of the
moments of its components about that point.

Or  The moment of the resultant of a number of forces about any point is equal
to the algebraic sum of the moments of all the forces of the system about the same
point.

Or  Torque acting on the system of particle is equal to the sum of all torque
acting on each particle.ie. t=Y{t, =11+ 1, + -+ 1,

This property was originally established by the French mathematician Varignon
(1654-1722) long before the introduction of vector algebra, is known as
Varignon’s theorem.

Proof

-EH

Fig. shows two forces F; and F, acting at point O. These forces are represented in
magnitude and direction by OA and OB. Their resultant R is represented in
magnitude and direction by OC which is the diagonal of parallelogram OACB. Let
O’ is the point in the plane about which moments of F;, F,and R are to be
determined. From point O, draw perpendiculars on OA,0C and OB.

Let r,= Perpendicular distance between F; and O’
d = Perpendicular distance between R and 0.

r, = Perpendicular distance between F,and O'.
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Then according to Varignon’s principle;

Moment of R about O’ must be equal to algebraic sum of moments of F, and F,
about 0.

Rxd=F;xr +F, xn,

Now refer to Fig. (b). Join 00’ and produce it to D. From points C, A and B draw
perpendiculars on OD meeting at D,E and F respectively. From A and B also draw
perpendiculars on CD meeting the line CD at G and H respectively.

Let 6; = Angle made by F; with OD, 6 = Angle made by R with OD, and
0, = Angle made by F, with OD.

In Fig.(b), OA = BC and also OA parallel to BC, hence the projection of OA and
BC on the same vertical line CD will be equal i.e., GD = CH as GD is the
projection of OA on CD and CH is the projection of BC on CD.

Then from Fig. (b), we have
P;sin; = AE=GD =CH
Ficos6; = OE

F,sin6; = BF =HD
F,cos6, = OF =ED

(OB = AC and also OB || AC. Hence projections of OB and AC on the same
horizontal line OD will be equal i.e., OF = ED)

Rsin 6 =CD

Rcos 6 =0OD

Let the length 00'= x.
Then

Xsin0; = ry, xsinO = d and xsin 6, = 1,
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Now

Moment of R about O’ = R x (distance between 0’ and R)

=R xd=R x xsin6 ( d = xsinf) = (R sin 0) x x

=CD x x

= (CH +HD)x x (R sin § = CD) = (CH +HD)x x

= (FysinB; + F,sinB,) x X (CH = Fsin 6; and HD = F;,sin 0,)
= F1 xXsinf; + F, X X sin0,

=Fixrn+F,Xrn, (x sinB; =ry and x sinb, =r1,)

= Moment of F, about O’ + Moment of F,about O'.

Hence moment of R about any point in the algebraic sum of moments of its
components F, and F, about the same point.

Hence Varignon’s principle is proved.

The principle of moments (or Varignon’s principle) is not restricted to only two
concurrent forces but is also applicable to any coplanar force system, i.e.,
concurrent or non-concurrent or parallel force system.
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The Moment of Inertia

The moment of inertia of a rigid body is a property which depends upon its mass
and shape, (i.e. the mass distribution of the body) and determines its behavior in
rotational motion. In rotational motion, the moment of inertia plays the same role
as the mass in linear motion.

Formally the moment of inertia I of the particle of mass m about a line is defined
by I = md? where d is the perpendicular distance between the particle and the line
(called the axis).

Moment of Inertia of System of particles

The moment of inertia of a system of particles, with masses m,, m,, ms, ..., m,
about the axis AB is defined as I = Y., m;d? and for continuous mass
distribution (sum of partition of a function) we may use itas I = [ r? dm where r
Is the perpendicular distance between the particle and the line (called the axis).

In dimensions, the moment of inertia can be expressed as [I] = [M][L?]
Examples of the Moment of Inertia

= The moments of inertia of a ring of radius a about an axis through center is
Ma?

= The moment of inertia of a hoop of mass M and radius a about an axis
passing through its center is Ma?

= The moment of inertia of the sphere is %Ma2

= Calculate the moment of inertia of a right circular cone about its axis of
symmetry is 13—0M a’

= The moment of inertia of a uniform rod of length [ about an axis
perpendicular to the rod and passing through an end point is §Ma2

= The moment of inertia of a uniform triangular lamina of mass M about one
of its sides is %Mh2
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Moment of Inertia in Coordinate System

The moment of inertia of a particle of mass m with coordinates (x, y, z) relative to
the orthogonal Cartesian coordinate system OXYZ about X, Y, Z axes will be

Lex = [(? + 28)dm = m(y* + 2%)
L, = [(x* +z*)dm = m(x? + z?)
Iz = [(x* + y?)dm = m(x* + y?)
Product of Inertia

The product of inertia for the same particle w.r.to the pair of coordinate axes are
defined as

Ly = [xydm = mxy; I,, = [ yzdm = myz; I,, = [ zxdm = mzx

It may be positive, may be negative or may be zero, depending on coordinate
axes. These definitions can be easily generalized to a system of particle and a rigid
body.

Parallel Axis Theorem

The rotational inertia about an axis is equal to the inertia about parallel axis
through centre of mass plus mass time the square of the distance between two
parallel axis.

ie. I=1I+ Md?
Perpendicular Axis Theorem

The moment of inertia of a plane rigid body about an axis perpendicular to the
body is equal to the sum of the moment of inertia about two mutually
perpendicular axes lying in the plane of the body and meeting at the common point
with the given axis.

. Ly = Ly + 1,
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Question

Find moment of inertia of a thin rod of mass M of length 2a about a line through its
centre and perpendicular to its length.

Or  Calculate the moment of inertia of a uniform (rigid) rod of length [ about an
axis perpendicular to the rod and passing through an end point.

o=

V7
Q —ﬂ F—'iﬁc
Solution
A

y

A(-a,0) . X y dx B(a0)

= TP R Ol......... .. .............. X
N 2a >

_yv

Consider a rod of length 2a along x — axis. Centre of their rod is origin as shown in
figure.

Moment of inertia about y — axis for total length =1 = f_aa xidm .o (1)

Consider a small portion of the rod whose mass is dm and length dx, then linear
. dam .
mass density is p = —— e dm = pdx

O =>1=p[" x?dx=1=2pa® ... (ii)
For whole mass of the rod p = % Then

(i)=>1 =

wIlN

M 1
—.a3=>1==-Ma?>
2a 3
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Question

Show that moment of inertia of a uniform rectangular plate of sides 2a,2b about a

corner are %MaZEMbZ. Also find same quantities at the centre.
Solution

We know that for a thin rod or strip, dI = %lzdm

=>dl = é(Za)de =>dl = gazdm

Moment of inertia of plate about y — axis = I,, = gfom’ a’dm .......

dy |20

Now by using area mass density p = %. I.e. dm = pdA = dm = p2ady

. 4 r2b 16 ..
=1, = §fo a® (p2ady) = I, = ?pba3 ................. (ii)
For whole mass of the plate p = P =™ Then

A 2a.2b 4ab

.. 16 M 4
(i)=>1,=—=.—.b.a®=> I, = -Ma?
y 3 "4ab y 3

Moment of inertia of plate about x —axis = I, = gfoza b2dm .......

Now by using area mass density p = Z—YZ. I.e.dm = pdA = dm = p2bdx

For whole mass of the plate p = % = Zfzb = %. Then

16

. M
(w) = Ix —?.E. .

Now by using perpendicular axis theorem
[=1,,+Md?>=1I,,=1—Md>

=>1=§Ma2—Ma2=>1=§Ma2
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Question

Find moment of inertia of a uniform rectangular plate of mass M and edges of
lengths 2a,2b about a line passing through its centre, parallel to sides 2a,2b and
perpendicular to its plane.

Solution
n
B fh,o)

'l'lll’,"’l’lll.'J"ll}‘fl"l".i’"’lllll-.: V"r"-!l‘;’:" dn’

:L£L —hi

r , T h L B

/ é‘“ A=t

2z

We know that for a thin rod or strip, I = éMa2

Moment of inertia of a strip of thickness dy at a distance y to the origin is given by

1 b .
loy =3/, aldm ................. (i)

Now by using area mass density p = Z—YZ. I.e.dm = pdA = dm = p2ady

()= I,y = if_bb a? (p2ady) =1 = %pbag‘ ................. (ii)
For whole mass of the plate p = P2 - ™ Then
A 2a.2b 4ab
i _4 M 3 — 1 ya?
(i) = Iy, = 3.4ab.b.a = Ioy = 3Ma

Moment of inertia of a strip of thickness dx at a distance x to the origin is given by
1 ra
l,, = gf_ab2 dm ................ (iii)

Now by using area mass density p = Z—’Z. i.e.dm = pdA = dm = p2bdx

(iii) = Ipy =5 [* b2 (p2bdx) = 1 =Zpab® ............. (iv)
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M

For whole mass of the plate p = % == %. Then

a.b3 = I, ==~Mb?

(iv) =>1,, =- 3

4 M
3 4ab’
Now by using perpendicular axis theorem

Moment of inertia perpendicular to the plane = I, = I, + Iy

= I, = zMb? + S Ma? = I, = ; M(a® + b?)

Question

Find moment of inertia of a square plate of mass M and length of each edge is 2a
perpendicular to its plane.

Solution

Since we know that for a rectangular plate we have moment of inertia along x,y,z
axes as follows;

lox = 2Mb?; Iy, = =Ma?; I,, = -M(a? + b?)

Thenusinga = b in1,, we have 1,, = éM(a2 +a®)=>1,, = %Ma2
Question
Find the M.I. of a uniform rod AB of length a at the end of its extreme points.

Solution

Consider a uniform rod of length a along x — axis as shown in figure

=
= 1

M.l. abouty —axis = I,, = [x* + z*dm = [x*dm  ~ z = 0inxy - plane

a 1
= Iy = [, x* pdx = I, = Ma?
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Question

Calculate the moment of inertia of a uniform (rigid) rod of length [ about an axis
perpendicular to the rod and passing through a mid-point.

Solution A
y
A(-a,0) <« X 5 dx  B(a0)
. QP Of.......... l ....... X
2a g
v

Consider a rod of length [ along x — axis. Centre of their rod is origin as shown in
figure.

Moment of inertia about y — axis for total length = I = f_aa xtdm ... (1)
=>I=pf_aax2dx=>1=§pa3=§Ma2 usingp=%

M.I. passing through mid — point

Using parallel axis theorem I = I, + Md?

> Iy =1—Md? = I, = Ma? — ;Ma? = I = - Ma?

Question

Calculate the moment of inertia of a uniform (rigid) rod of length [ about an axis
passing through center without using parallel axis theorem.

Solution

l
Moment of inertia about y — axis for total length = I = [?, x*dm ................. (i)

2

Consider a small portion of the rod whose mass is dm and length dx, then linear
mass density is p = %. i.e.dm = pdx

l
O =1=pfx?de=>1=—M>? ... (if) using p = =
2
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Question

Find the moment of inertia of diameters through centre and perpendicular to the
centre for semicircular lamina of mass m and radius a.

Solution

Consider a ring of radius r and thickness dr

M.I. of ring about its diameter = dI = %rzdm
M.1. of semi disk about x —axis = I = %foarz dm ................. (i)
Now by using area mass density p = Z—YZ. I.e.dm = pdA = dm = pnrdr

()=>1= %foarz.pnrdr =3 =%f0ar3 dr

=>I=%Ma2 usingp =2 =

1
A ~ma?
27'[(1
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Question

Find the moment of inertia of diameters through centre and perpendicular to the

centre for semi elliptical lamina of mass M and semi axes a, b
Solution

About X — axis
— (Y (%r.,2 2

Lix=p f_yy foayz dxdy = L = 2p foa foyyz dydx

_ M ary o2 _E M a_ 3
:»I,C,C—Z.%mb.f0 % dydx=>1xx—3.%nab.f0y dx
_2 M afb s’
=>Ixx_3'1nab'f0 [a a x] dx

Using x = aSinf,dx = aCos0d0o

For ellipse

x2 y2
2 =1

y=g [a2 — x2

If x - 0,a then & - 0,= using all these assumptions we have I, = 2 Mb?
2 4

About y — axis
b rx 2 2
L, = fo f_x(x +z%)dm

=1, =2p fob Jy x? dxdy

M

_ b rx 2 _2
:Iyy—z.%nab.fo Jy x dxdy:lyy—g-%nab o X7 ay
_2 M (bl r ]
=1, —3.%nab.f0 [b\/b X ] dy

Using x = bSin6,dx = bCos6do

If x - 0,bthen 6 — 0,% using all these assumptions we have

=1 -1

17,2
yy—4Ma

For ellipse

2 2
X
LY
a b?

_a
=y

1

bZ_xZ
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Question

Find the moment of inertia about an axis through centre and perpendicular to the
plane of the lamina.

Solution

We know that for semi elliptical lamina we have

L, = %sz and L, = %Ma2 (if long Q then find separately)

Using perpendicular axis theorem

1 1 1
l,, =1, + Iyy =1, = ZMbZ +ZM(12 =1, = Z(az + bz)
Question

Find the moment of inertia of a uniform spherical shell of mass M and radius a
about any diameter.

Solution

s or. - - Y.

Spherical shells consist of circular rings of different radii but same thickness.

Moment of inertia of one ring about x — axis diameter = dI,, = y?dm

M.1 of spherical shell about its x — axis diameter = I, = fonyz dm
Using p = C;—T:. i.e.dm = pdA = p(2my)ds = 2np(aSinf)(add)

I, = 2mp fon(aSiru9)2 (aSinB)(ad8)

2 .
=, = gMa2 using p = —
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Question

Find the moment of inertia of a uniform square plate about any axis through its
centre and lying in the plane of the plate.

Or  Prove that the moment of inertia about all lines through the centre of mass of
a uniform square lamina and lying in its plane are equal.

Solution

Square plate consists of parallel plates (strips) with thickness dy with length [.

M.I. of one strip about y axis = dI = %lzdm

M.I. of square plate about an axis = I = ;fol 2dm ................. (1)
Now by using area mass density p = Z—Y:. I.e. dm = pdA = dm = pldy
()= 1=2[ 2.pldy=1=L[1>dy

_ 1.2 ' _M_M
=I=-Ml usingp = — =3
Using parallel axis theorem
I =1+ Md>

I, =1—Md?
1 1\2
lem = 3 M1” = M (3)

> oy = — M



visit us @ Youtube | Learning with Usman Hamid

Question
. Find the M.I of a uniform elliptical plﬂ.té with semi-major and semi-minor

axesa,b(respectively) about (i) a major axis (ii) & minor axis (iii) about
~an axis through the centre and perpendicular to the plate. .

Sdlutiup
We take the plate asz 2/a® +y2/6* = 1. Then
Iz = f{ﬁm]yz = pdSy®
) plate ' _
@ Vi b
p f ( f ydy)dz, 1y = -Va?-z?
=a o= .

2 [ _
;j—’ {y%fa:udm

- 2 3{5 2]3;2&:]:-

3
i T

withz=asinf, this integral becomes

lipﬁs' =2 : -
L = 3.cos?f g
3&3/[; a” -cos - #{acosfdd)
4 xf2
= praﬂ cosfdf(acosfds)
. 0 _
4 1x3 s
= - ba —_
3 %oa %32
= %pab‘?'qr ]
1 3 o m. 1,9
| = 4?1'{1& x:rm.b_EMﬁ
Similarly
Ii.l'll" = _Mﬂz: IIz:ziM{ﬂ-E 'i‘-ﬁz}
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Question

Calculate the moment of inertia of a uniform triangular lamina about one of its
edges (sides).

Solution
3
Jg 9 _ 3
N« SN
_.’. h—-:; o A o ®

Consider a uniform triangular lamina AOB. Let OB = h, 0A = a. Consider a strip
of length x and thickness dy at a distance of r = h — y.

M.I. of strip about X —axis = I, = [r*dm = [(h—y)*dm ................. (i)
. . . . dam am
For uniform triangular lamina using p = = xay = dm = pxdy

(i) = L = [, (h = y)?dm = ['(h — y)? pxdy

h ..

S L =pfy(h=y)Pxdy .. (i)
Since AAOB and AQPB are similar, so 24 = 194l X _a_, , @
PB| 0Bl _y & n

(i) = L = p [y (= )25 dy

2 4 3
> Ly =22 [T y(h? +y? — 2hy).dy =2 h2 %+ %= 2h |

__pa (h* 1 3
= Ly _T(E):I“_Eah p

f . M M
For whole triangle using p = — = -
—-a
2

=1 =iah3.%:>lxx:%Mh2

XX 12
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Question

Ua]cu]ate the inertia matrix of a uniform solid re::t.angular box ( paral-
lelepiped or cuboid) at one of its corners.

Solution

Let the lengths of t'hn edges I::ea; ‘b, cand let the axes be ﬂhﬂsen along the
. edges as shown in the figure. By deﬁmtmn

fﬁ =Ly = jp[r}{y“ +2 E]:ﬂ-’-

Smce the box is made of umfurm material, the denmtypmual; be constant..

Therefore | .
P f [ [oemenss
= ff +zdydzjdm“ '
= o [ffydydz-f—fj *dady]
'=ﬂ l,.-m.(nE +a°;) —pib—'f(ﬁ” )= S )
Sirailarly

. u |
Ipp= %{n“ -I-cz]_. I3y = E‘fﬂﬂ +b%)
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For the products of inertia we have

fpmde ——pf / f:rydﬂfydﬂ |
—pf dzf zds;f ydy

@ B a*Bc M _ Meb

Il

ip

Il

2 2 4 qbc
Similarlyl g3 :—'M befd, I3 =—Mcafd.

Corollary
For a cube of sideg, (takingb=a, c=a)

M

G

a? 4+a%) = gMag

Because of symmetry

.2
- n=ly= EME'E

o

; Similarly ‘
R
I]_g =I 23 =1r 3] == EMﬂ.E

The iner;ia matrix for the cube can bé displayed as

[ 2Ma?/3 -Ma?/4  -Ma%/4 | 1 8 -3 3]
()= | -Md®/4  2Ma*/3 -Md*/4 | = Ma® | -3 8 -3
| -Ma®/d. -Ma?/4  2Ma%/3 -3 -3 8
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Question

Calculate the moment of inertia of a hoop (circular disk, ring) of mass M and
radius r about an axis passing through its center.

Solution

]

dr

v
Consider a hoop of radius a and mass M.

Moment of inertia of the small portion of the hoop of mass dm about an axis
through center and perpendicular to the plane of the ring equals

We consider this hoop to be composed of small masses (dm) each of length ds.

M M dm M
— = = =>dm =—ds
A 2nrdr drds 21T

=
(D)=1=[r? (Z%ds)

M M
=>I=Er2fds=2—1:fds

Mr
=] =—.2nr
2T

= I = Mr?
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Question

Find moment of inertia of a uniform circular plate or disk about its any diameter.

Solution

Disk consists of circular rings. Consider one ring of radius r and thickness dr.
Moment of inertia of a rings about its any diameter is dI = %rzdm
M.1. of a disk about its x — axis diameter = I,, = %foarz dm

_dm _ dm
p= dA o 2nrdr

= dm = p2nrdr

>, = gfoarz (2nrdr)

M
=1, = %foarz (2rmrdr)

1. 9 . . 1. 9
=1, =_Ma similarly I, = Ma
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Question

Calculate the moment of inertia of annular disk of mass M. The inner radius of the
annulus is R, and the outer radius is R, about an axis passing through its center.
Solution

@

Subdivide the annular disk into concentric rings one of which is shown in the fig.
Let the mass of the ring is dm, and the radius be r, then the moment of inertia of
the ring will be:

The Surface area of the ring is; Area = (2nr)dr = 2nrdr

Since the surface area of the annulus is m(R5 — R%)

d_m_ 2nrdr =>dm— 2rdr
M m(R}-R?) ~ (R3-R)

()=>1=[r? ((RZ%T_C:%)M> =] =

Thus the total M.I of the annulur disk will be

Therefore, we can have M

2M
s rdr
Ry —Rjy

_2M (R, g3
=1 =——[Z ridr
R5—R7 1

= I =2M(R} + R3)
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Question

Find the moment of inertia of a uniform circular disk of radius a, and mass M
about the (axis of the disk) line through its centre and perpendicular to its plane.

Solution

Consider a uniform circular disk of radius a and mass M. Consider a ring on
circular disk. Thickness of ring is dr and the distance from the origin is .

Moment of inertia about z — axis = I, = foarz dm ................. (1)
Now by using area mass density p = Z—YZ. I.e.dm = pdA = dm = p2nrdr
()=>1,= foarz (p2mrdr) = 1, = %pna‘* ................. (i) +A=mr?

M M
For whole mass p = —=— Then

.. 1 M 1
(ll) =1, =E.$.T[a4 =1, =5Ma2

In case of circular disk I, = I, then by using perpendicular axis theorem
L=L+L=>1,=L+I =2l

1 1 1
s> =-1,=>1,= ZMa2 also I, = ZMa2

T2
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Question

Calculate the moment of inertia of a right circular cone of height h and radius
about its axis.

Solution

Let M be the mass, a the radius and h the height of right circular cone. We regard
the cone as composed of elementary circular cylindrical discs of small thickness
each parallel to the base of the cone. We choose the z-axis along the axis of

symmetry, and consider a typical disc of radius r and width dz at a distance z from
the base.

Moment of inertia of disc = I = %npha4

Moment of inertia of disc = I = %npdzr“ ................. (i) for our disc

. h—z r h-z
Fromfigure —=-=r =a (—)
h a h

)=>1= %npdz (a (%))4

4
Moment of inertia for whole cone about z axis = I = %”Zf fzhzo(h —2)*dz
=>I=%npa4h usingh —z=uwithu - h,0asz—- 0,h
M M
For whole mass of the cone p = — = ———. Then
%4 Enazh
=1 =—ma* .h=1=—Ma?
10 Enaz
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Question
Calculate the moment of inertia of a right circular cone about its axis of symmetry.

Solution

'3

Let M be the mass, y the radius and h the height of right circular cone. We regard
the cone as composed of elementary circular discs of small thickness each parallel
to the base of the cone. We choose the z-axis along the axis of symmetry, and
consider a typical disc of radius r and width dz at a distance z from the base.

Moment of inertia about z axis = I, = %fohyz dm ................. (i)

Now by using volume mass density p = Z—r;. i.e.dm = pdV = dm = ny?pdz

' y_r Tz

From figure =Py =

. 1 ch 1 ch 4 1 .
(i)=>1,= Efo ytnpdz = 1, = Efo (%) mpdz = 1, = Enrzph ........... (ii)
For whole mass of the cone p = Y= T " Then

4 gﬂrzh

‘s 1 2 M 3 2

(i) = I, = -mr?.s h=l,=_Mr LY E o1l

“mr2h’
3
If 6 be the semi vertical angle of the cone then tanf = % = r = htanf then

= I,, = — Mh*tan?@
10

In this I, = I, then by using perpendicular axis theorem
I; = Ly +'[yy = Iy = Ly + Ly = 215y

> Ly = 21, = Iy, = - Mh*tan?@ also I,, = — Mh2tan?@
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Question

Prove that the moment of inertia of a uniform right circular cone using parallel axis
theorem of mass m, height h and semi vertical angle « about a diameter of its base

is %Mhz(?)tanz x +2) = %(&z2 + 2h2)

Solution
7z
B
m
a
A = 0 > v

X

In the case of M.I about its diameter, we consider the elementary disc of mass ém
whose moment of inertia about a diameter will be §1, = %rchm.

We note that the diameter passes through the center (which is also the centroid) of
the elementary disc. Hence by parallel axis theorem, the M.I. 81 of the elementary
disc about a parallel axis (parallel diameter) at the base is given by

851 = 61y + (6m)z? = irz&n + 6mz? = 6m Grz + 22) = nr?pbz Grz + 22)
51 = pmt Gr4 + rzzz) 5z
From the similar triangles, we have

r h—z h—z
-= orr:a(—)
a h h

Therefore

st = pn(3e ()] +[a ()] #7) 52
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— a* _ N4 a_z — 2,2
51—pn[m(h Z) +h4(h Z)Z]SZ
51 = pm [a—4 (h—2z)*+ @ (h?z% — 2hz3 + Z4)] 5z
4h* h?
Therefore M.I of complete right circular cone about a diameter is given by

h 4 2
I =pm |, [4617 (h—2)*+ %(hzz2 —2hz3 + 24)] 5z

a* 5 a? h5]

’=P”[m?+ﬁ5

a*h . a’h3
I'=pm [X T, ]
Since we know that p = 7 M2 therefore
~ta“h

3
_M 2 2
I——20(3a + 2h*)

Since the semi vertical angle of the right circular cone is o, So by right triangle

AOB, we have tan o=~ = a = htan « then A

[ = % (3(htan <)% + 2h?)

I= %Mhz(Stanz % +2)

Question
Calculate the moraent of inertia of a right circular cone about its axis. of
symmetry and about any diameter of the base.
Solution

Let M be the mass, 'z the radius and h the height of the right circular
‘cone. We régard the cone as composed of elementary circular discs of small
thickness each parallel to the base of the cone. We choose theZ-axis along
the axis of symmetry, and consider a typical disc of radi.usmnd widthdz
at a distancezfrom the base, (see figure). ' E

Mass of the disc is given by dm=pmr 28z.
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_.H.z

rad

From the similar triangles we have

Therefi ore

T
o

h—z - h—z

or rea
h

| h—z \*?
-dm=pr |a i bz

Ifﬁ)" denotes the M.I. of the elcmenta.ry disc about the axis of symmetry, -
then (by mcarnpfe 3) :

dl= % Smre

On substituting fnrﬁmandr the M. I of the cone about its axis of sym- -

metry will hE

JTEEI.

L—

1 sk ( h—z )2 ('h—z-)z
-—f o la bz {a )

_ lp?ra f f [-FL'—E} ds .

where we have used the result

p= density of the cone =

2 at

lpma*h (2—h) 3

2 ht . 5 o

Lpma'h A% 3 2

5 a5 — pMe
M

(1/3)ra’h
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M.L of the cone about %1 'diamgterl

In this case the M.I, of the elementary dise of massdmabout a diameter will
bedl g = (1/4)r*ém. We note that the diameter passes through the centre
[w]nuh is also the centroid ) of the elementary dise. Hence by parallel axis
thEﬂI’Em the M.LGI of the elementary disc about a paralle] axis (parallel
diameter) at the base i Is given b}r

61 = 8+ (6m)2*
= {1/4)r*dm4 {6m]zg—ém(r 2}4 +2 )
= px(r 4;':1+r 2Vdz

¢ o) 44

Fﬂ'.&g

p _
hﬂ{ ~Dhz +2fz.2 2]} 8z

-Therefore moment of inertia about a diameter is given by

o= ‘Wf {wz‘ } |
+ p:rr] {_{ ~2hz " + 241 2}}d
|72
SRR IR Y-
f”“(txm . 72 ﬁﬂ)
M
%

where we have substituted the value nfp.'

—

302 +2R%)
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Question

To find the moment of inertia of a solid circular cylinder of radius a, mass M and
the height of the cylinder h about the axis of the cylinder.

Or Calculate the moment of inertia of a uniform circular cylinder of height h and
radius a with respect to its longitudinal axis.

Solution

i

Consider a cylinder of radius a, mass M and the height of the cylinder is h.
Consider a small disk of cylinder of thickness dz and z length from the origin.

Moment of inertia about z axis = I, = %fh a’dm ................ (i)

Now by using volume mass density p = ‘Z—Y;. i.e.dm = pdV = dm = wa’pdz

4
() =L, =3[ a*npdz = I,, ="2= ["dz = I,, = ~ma*ph ......... (i)
For whole mass of the cylinder p = 2= MZ . Then
%4 Ta<h

. 1y
(ii)y=>1,, = Smat. ——.

1
=1, = EMa2
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Question

Use the parallel axis theorem to find the moment of inertia of a solid circular
cylinder about a line on the surface of the cylinder and parallel to axis of cylinder.

Solution

Suppose the cross section of cylinder as in figure. Then the axis of the cylinder is
passing through the point C, while the line on the surface of cylinder is passing
through A. So, we have to find out M.I of circular cylinder about a line passing
through the point A whose radius is a (radius of circular cylinder) and mass is M.

By parallel axis theorem I, = I + Ma?  .............. (1)

Since I which is the moment of inertia of a solid circular cylinder about an axis
passing from the center of mass is defined by I = %Ma2 where a is the radius of
a solid circular cylinder. Then

OEINE %Ma2 + Ma?

3
ﬁIA =5Ma2
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Question

Find the moment of inertia of a uniform circular cylinder of length h and radius a
about an axis through the center and perpendicular to the central axis, namely I, or
Iy,

Or Calculate the moment of inertia of a uniform circular cylinder of height h and
radius a about an axis through its centre of mass and perpendicular to its axis.

Solution

»n

Consider a cylinder of radius a, mass M and the height of the cylinder is h.
Consider a small disk of cylinder of thickness dz and z length from the origin.

Moment of inertia about z axis = I, = %foh atdm ................. (1)

Now by using volume mass density p = Z—r;. i.e.dm = pdV = dm = wa’pdz

4
(=1, = %foh a*mpdz > 1, = %foh dz=1,, = %na“ph ........... (ii)
For whole mass of the cylinder p = ¥ = Mz . Then
%4 ma“h
(ii) = I, = sma*.— . h = I,, = ; Ma?

In this I, = I,,,, then by using perpendicular axis theorem
I, = L + Iyy = Iy = Ly + Lex = 21

1 1 1
= Loy =S 1pp = Ly = ZMa2 also I, = ZMa2
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Let c be the centre of mass of the cylinder if the disc considered in the distance z
fromc.

=2

A

r c ‘)8’
%
Lo &

K%

Then moment of inertia about cy’ is (by parallel axis theorem)

= Iy = Ioy + Md?

= Iy = %Ma2 +Mz? = 1, =%fdma2 + [ dm z?
2 1

>y = [3(3a2 +22)dm (iii)
2

By using volume mass density p = Z_T;' i.e.dm = pdV = dm = na’pdz

h
(iid) = Iy = [% (5 0% + 22) ma?pdz
2

h h
_ 2 (2 (1,2 2 _ 2 (1 2 1 3|2
= 1., = pra f_ﬁ(za +z)dz-pna Ja’z+3z°,
2

1

= Iy = Epnazh(3a2 + h?)

For whole mass of the cylinder p = = = MZ . Then
%4 mTa“h

=1, = %.nfzh.nazh(Saz + h?)

= Iy = —(3a? + h?)
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Question

- Find the moment of inertia of a umfﬂrm hemlsphere of massM and radius
aabout

(i} Its a.x:is ﬂf symmetry.

(u} An axis perpandlcular to the = a:us of symmetry and passmg thruugh
the centre of the base.

' Splutin:rn '

We will use spherical pﬂ]a.r--::uurdm;ites (r, 8, ¢). Their use makes com-
putational work 51mp]er Their range of variation for the hemisphere will
bhe
El_'f_i_r <a, 0=60<w/2, 0<gd<2nw

r = rsinf cos¢, y = rsinf sing, =z = rcosg

We choose the coordinate axes as shown in the ﬁg.ure.
-M.LI. about the axis of symmetry

Obviously theZ-axis is the axis of symmetry. Hence.

e = [oe) @ v =p [ 4yhay
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ﬂﬂw in terms of spherical pnla_a..r coordinates
72 +y? = -.r"alfsin2 8 cos®¢ + sin?d gin? @)
= r?sin®@cos? ¢+ sin ? @) =r Zsin® 4
and the element of velume in spherical polar coordinates -‘? given by

dV = dr{rd8) (rsinfde) =r ?sinddrd0dg

Therefore

' w2 2
I = ﬂ‘fa f f risin @ dr do dip
: o Jo o '
. a3 - :rfﬂ - o
o= pf ridr f - sin® 6 dO de
0 0 o

5 '.rrfﬂ
= 2wp 2 f sin3 @ dff
) 9 Jo

w2 ) ' /2 9 cifl ot -
f- Sn30df = /’“ 3 sind—sin 36 46
0 ) (IR i 4

1 ( 3sinf—sin 36 2 |
— —— . dﬂ= - 1
(P Je- o
On substitution we obtain .
| | 16ma®p 2 2
Imr = 40 = g Mao

where we have used the relation M = (2/3)wa’p between the mass and
volume of a hemisphere. - ' |

ML.I1. about a diameter through the base
Our X-axis is an axis through the base. By definition

e = [o®) @2 +23V = [ +27av
In spherical polar coordinates (v, @, &),

Yt o 2t = rsmﬂsmﬂ-:ﬁ+rmsﬂ'
' - = r*(sin®fsin 2¢ + cos?H)
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anddV =r 2 sinf dr 6 d¢. Therefore.

m -pmf2 pa - :
L. = p f f f r*(sin®fsin 2 ¢ + cos®O)r ?sind dr df de
o Je i)

Il

T /2 Eﬁ
0 / ") (sin®0sin 2¢ + sindeos 26)T- dodg
i} 0 '
ﬂ5p T pwf2 ' :
- 22 f f [sin® dsin 2$ddg + sin0d0 dg)
0 Jo

5- .
= G+ B

| ) L T | w2 C
. f;:f f sin3 6 df do
o ] _
. - 2 pmf2 . .
- I = f f sin® Gsin 26 df dop
) L1s 1]

To evaluate these integrals, we use the results

where

and

yid - emf2 9 i o
f do= 2%, . f sin® § df= -, f sin? ¢ di=m
0 B 3 o S
and at'ter_ substi_tut.inn obtain ’
f‘l =, I 2= 21'1'{3
Therefore |

a’p 2w 2w, dwa® M
rr =\ = 1=

5 '3 T3)= 15 (2ma?/3)

2
— z
—EMG ,

Because of symmetry, the M.L. of the hemisphere about any other diameter
or axis through the centre of the base will be the same. Hence

2. 09
IW=EME
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Question

Find the moments and products uf-iﬁettia for a uniform sphere of radiusa
w.r.t. axes through its centre.-

Solution

We usc the same notation as in example 7. The difference here is that now
Bwill vary over 0 tow. : '

Because of symmetry we expect that] zr =TI : yu =4 zz. Similarly we expect
thatl oy ==F gz =1 ;». It is more convenient to calculatef == rather thanl ..

orf ,,. Therefore
M

Y

Figure 6.9: A sphere with origin chosen at the centre.

I, = Ig3 = p/'/f (2 + y2)dV
splhere N .

- where . ) : : :
7?4y 2 =r 2(sin? fcos 2 ¢ + Eing fsin 2 ¢) =r 2 sin® 4@
" We have . )
oL 'j-n __—_—. pf f f rzsm o2 mﬂdrdﬁdiﬁ

I

zﬂrpf ridr f sin® 8 do
On making the substitutions

. fo gD " '
/ rldr= "2 f sinddo= &
A 9 0 .3

.9
=§Mﬂ-2

we obtain

Tz =In =
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Corollary

: f . 2V = f YRV = f zZdV
aphera sphere a-phm-a

_ 1 a s
= x4 dV = a
2 _/,;_,hm{ i ) 15

A

Question

Find muﬁﬂgts and products of inertia for the ellipsoid -

2 2
w.r.t. its axes of E:,rnimet.r}r. |
Solution |
. Wg refer to thu ﬁgum.fur.e':-:umple.
In = p * +z%)av

_ ellipasid
We putz/a=x " yfb=y ', i,";:::: !. Then | |

. do=adz ', dy=bdy ', de=cdz '
and dV = dadydz = abeds dy o', |

Nmr.r under the above transfmma,ﬁmn the given ellipsoid is tmnafﬂrmﬁﬂ into
the unit sphere Siz 2 4222 = 1, The ml;egra-.tinn is now over the region
enclosed b:,r a unit sphere. ' o

b

f (0% +c z'z}ﬂbr:dm dy' dz’

Now hecause of s:r,rmmetry

- [ - f 24y’
s 5

i.
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and each integral equals

%L{y.-z z2)dV’ = i_g' ' (as shown in the corollary a.bmré)
Therefore on substitution
Iy = pabe (bzx‘:—s+ Ex%)

Similarly Iy :
Igg = 10 I:EE +a 2], I3z = EE-EGE +b 2:'l

(ii} Products of Inertia

I = —pf oy dV =—p [ui’bb'{aﬁcdﬂ'dy’dz’}
.' llipsoid ' b

—pa?blc fffn: d::’dydz

Uamg the pular coordinate (r, 0 ¢:~} we have.

2t
Iia = Hpa bﬂ f f f rsmﬂﬂusq.’r(mmﬁsinqb]r smﬁ" drdfdg-= 0

Ei.mﬂ&.ﬂjf -

faa—-ﬂ—fall

These results should not be surprising because the symmetry axes nf an
ellipsoid are also its principal axes, (see the section on principal axes).
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Question

Find the moment of inertia of a solid homogeneous sphere with respect to any
geometrical axis.

Or Find the moment of inertia of a uniform solid sphere of radius a and mass M
about an axis (thez-axis) passing through the center.

Solution

Y e mmm mE— = = et = = = =

—_

.

Consider a sphere of radius a, mass M. Consider a circular disk of thickness dz and
z length from the origin. Radius of circular disk is y as shown in figure.

Moment of inertia about z axis = I, = %f_aayz dm ................. (1)
Now by using volume mass density p = Z—r;. i.e.dm = pdV = dm = ny?pdz

. 1
D) = Iy =5 [0 y?*ny*pdz = I, =2 [ y*dz

=1, = 772_pf_aa(a2 —z%)2%dz = %f_aa(a4 + z* — 2a%z%)dz

=1, =—

M
4 .
a3
3

Then

For whole mass of the sphere p = % =

.. 8
(iiy=1,, = = ra g—

For a uniform solid sphere, due to symmetry, we have I,, = I, = I, = EMa2
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Question

A thin uniform hollow sphere has a radius R and mass M. Calculate its moment of
inertia about any axis through its center.

Solution

In order to calculate the moment of inertia of the hollow sphere, we split the
hollow sphere into thin hoops (rings), as shown in Figure. We have already derived
the expression for the moment of inertia of a representative hoop of radius X, which
is] = dmx? of an elementary ring of mass dm and the radius X.

The volume of the elementary ring is dV = 2nxRd6dR

and dm = pdV = dm = p2nxRd6dR

Moment of inertia of the small ring of radius x = I,;,, = dmx* = p2nx>Rd6OdR

1

Moment of inertia for the whole hollow sphere = I = [ I,;,, = [* p2mx*RdOdR

2
= | = 4pnRdR [2 x*d6
To solve the integral, we need to write x in terms of 6.
From fig we have x = Rcos# then the integral becomes,
= | = 4pnRdR [2(Rcos8)*d6 = 4pmR*dR [? cos*0d6

= | = 4pnR*dR [? cosf.cos*6d6 = 4pnR*dR [? cosf(1 — sin’6)d0

= [ = ZmpR*dR

M

For whole mass of the sphere p = ¥ = .Thenl =37 —Z

. .R*dR
1%4 4TR2dR 3 4mR2dR

=>1=§MR2
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Question

Find the moment and product of inertia about the concurrent edges OX,0Y,0Z of
a uniform regular block with dimensions 0 < x < 24,0 <y < 2b,0 <z < 2c.

Solution

e :; -
B | )

Consider a uniform rectangular block of length 2a, width 2b and height 2c as
shown in figure. Consider a small portion in this cuboid of mass dm and volume
dV = dxdydz then

Moment of inertia about x axis = L, = [, (y* + z?)dm
. . . 2c r2b
Moment of inertia about x axis = I, = [ [ [

Now by using volume mass density p = ‘;—1;. I.e.dm = pdV = dm = pdxdydz

. 2c 2b (2
O =ha=J, [y Jy 0% +2%) pdxdydz

= [, = 32‘3”” (b2 +C2)p oo (ii)
For whole mass of the sphere p = P2 =™ Then
%4 2a2b2c 8abc
‘s 32ab M 4
(i) = I, = ;‘ “(b% + €. 2 Ly = M(B* + %)

Similarly, we have I,,, = 2 M(a? + c2) ,I,, = ; M(a? + b?)

Now for product of inertia consider I, = foydm
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Now by using volume mass density p = 2—7;. I.e.dm = pdV = dm = pdxdydz

(iii) = I,y = fozc fOZb f02a xy pdxdydz

= I, = 8a*b?cp ........... (iv)

M

M M
For whole mass of the sphere p = — = = . Then
%4 2a2b2c 8abc

. M
(iv) > Ly = 8a2bzc.ﬁ = I,, = Mab

Similarly, we have I,,, = Mbc,1,, = Mca

Moment of Inertia of Rigid Body about any Line through the Origin/ in Space

Consider a rigid body of mass M rotates along line OL o= T
as shown in figure. Let P;(x;, y;, z;) be any pointon - // f\ " : —_—
¥ ' O =
> ..‘“‘b' —_E__"-\

1_‘1' = Xl'i + yl]A + Zﬂ?

o

Let 1 represents the direction of line OL as follows

g ey

the rigid body then a position vector of OP is ' f -1

]
=

A =1+mj+nk

-

Where I, m, n are direction cosines with 12 + m? + n> = 1 ; || = 1 then
Moment of inertia about line OL = I = [P?dm ............. ()
where P; is perpendicular distance of line.

From figure P; = r;sinf; = riAsing = |7, x |

~

. it j k .
P =|Ax1|= x; y; z| =My, —mz)i+ (lz; — nx;)j + (mx; — ly)k
[l m n

P? = (ny; —mz;)? + (Iz; — nx;)? + (mx; — ly;)?

= I = [[(ny; — mz;)* + (Iz; — nx;)? + (mx; — ly;)?] dm

= I = [[n?y? + m?z} — 2nmy;z; + 1?27 + n?x} — 2Inx;z; + m2x} + 12y}

2lmx;y;] dm

—
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> 1= 12 [(y} +27)dm+m? [(x] +27) dm +n? [(xf +y7) dm
2lm [ x;y; dm — 2mn [ y;z; dm — 2In [ x;z; dm

= I = Pl + m?l,, + n?l,, — 2lml,, — 2mnl,, — 2Inl,,

This is the required expression for the Moment of Inertia of a Rigid Body about
any Line through the Origin (in space)

Question

Find moment of inertia of a rectangular block about a diagonal. Dimensions of
rectangular block are 2a,2b,2c respectively.

Solution
Consider a rectangular block of length 2a,width 2b and o | B
height 2c as shown in figure. Now by using expression _ - ') -
=L L
of M.1 about any line OP. i.e. ‘ K
NS ot
= I = Pl + m?l,, + n?l,, — 2lml,, — 2mnl,, — 2inl,, e —

Since we know that M.l and P.I of a rectangular bloc are

Lix = ZM(b? + c2), Iy, ==

Ly = 3M(a2 +¢?),1,, = EM(a2 + b?)

Iy, = Mab,I,, = Mbc,1,, = Mca

For direction cosines [, m, n we have a position vector of line 0(0,0,0) to
P(2a,2b,2c) as# = 2ai + 2bj + 2ck then

17| =/ (2a)% + (2b)2 + (2¢)? = 2Va? + b? + c2

Now direction cosines will become

2

X 2a a 2 a
l = - = = = =
r  2Va?+b2+c?  Va?+b2+c? a?+b?+c?
m=2= 2b _ b > m2 = b?
T r 2VaZ¥bZ+c? VaZ+bZ+c? T a?+b2+c?
n=2%= 2c . c o2 = c?
r  2Va?+b%+c?  Va?+b2+c? a?+b?+c?

Using all above values we have
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=>]= lz.gM(b2 +c?) + mZEM(a2 +c?) + nZEM(a2 + b?) — 2lm.Mab —
2mn.Mbc — 2In. Mca

=] = %1\/[[[2(1)2 + ¢2) + m?(a? + ¢2) + n?(a? + b?)] — 2M[lmab + mnbc +
Inca]

o= 4M [az(b2+c2) b?(a?+c?) . c?(a?+b?) oM [ a b ab +
3 a?+b%2+c2 = a?+b%2+c2 = a?+b%+c? Vaz+bZ+c2VaZ+b2+c?’
b c c a
.bc + .ca
vaZ2+b2+c2Va2+b2+c? va2+b2+c?2Va2+b2+4c?
o] = 4 [az(b2+c2) b%(a?+c?) . c?(a®?+b?) _ (ab)(ab) (bc)(bc)
3 a?+b%+c?2 = a?+b%?+c? = a?+b%+c? a?+b%+c? = a?+b%+c?
(ca)(ca) ]
a?+b?+c?
4 Ta?b?+a?c?+b%a?+b%c%+c2a?+c2p? a?b%+4b2c?+c2q?
>[=-M —2M
3 | a2+b2+c2 a2+b2%+4c2
o] = 4M '2a2b2+2b262+2c2a2] oM [a2b2+b2c2+c2a2]
3 | a2+b2+c2 a2+b2%+c2
] =2M '4a2b2+4b202+4cza2—3a2b2—3b202—3cza2]
| 3(a%2+b2+c?)
o= ZM [a2b2+bzcz+cza2]
3 a+b2+c2
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Position Vector of Center of Mass of the System of Particles

Let 74,7y, T, ..., Ty = 2=y 7; b€ the position vectors of a system of n particles of
masses M = my, m,, m, ..., m, = .-, m; respectively [see Fig.].

The center of mass or centroid of the system of particles is defined as that point C

having position vector R. And 77 is a position vector of each particle about centre
of mass C. then by varignon’s theorem

Torque acting on the system of particle is equal to the sum of all torque acting on
each particle.ie.t=Y11, =17, + 17, + - + 1,

SRXF =% XF +% XF, +- 4%, xF,

> RXMd=7% Xmd+7, Xmyd+ -+, Xxm,d
= MR xd =m#f Xd+myfy Xd+ - +myt, xd
= MR x d = (my#y, + my%y + -+ m,7) X d
=>M§=m1?1+mzfz+---+mn?n =y, m7;
S
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Question: Show that Y m;7; = 0

Solution

Solution

For this we will use the position vector of the system of particles

R=f =2 (1)

xim;

By using Head to Tail rule 7, =7. + 7}

N my(7e+7,
= T'C Zl L( c L)
M
- > ! - > ! > !
- Cimpre+Y;mir; - M, Xim;ri Yimr;
ﬁ rc — l L' c l | z ,rc — C + l [ : FC — FC + L 'l
M M M M
> mit; ' ' '
Mt . 5 .
S>=—L=0=)m7r, =0 or romr = ) . o

Note that ). L myR =0orY~,m#; =0

=Y > !
Then X ,m;7/ =0 or XX, ma; =0

Uniqueness of the c.m. 0

Let7. = ZLZ‘ Land 7 ZLM‘S‘ be p.v. of C and C’ respectively, then from figure

CC'=C0+00+0C =>CC=-+d+7 =CC = —Z—izi’”i+a+—zl’$i5"

= CC, — Zimi(si_ri)
M

+d=CC"=-d+d=CC =0= Cisthe same pointas C’
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Parallel Axis Theorem / Huygens Steiner Theorem / Steiner Theorem

The rotational inertia about an axis is equal to the inertia about parallel axis
through centre of mass plus mass time the square of the distance between two
parallel axis.i.e. I=1+ Md?

This theorem also known as Huygens Steiner Theorem or just Steiner Theorem,
named after Christian Huygens and Jakob Steiner.

Importance

This theorem helps us in calculating moment of inertia matrix of a rigid body at
any point in terms of information about the same body at some other point. This
theorem is used to find rotation of Earth about its own axis and sun axis.

J
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Proof

Consider a rigid body of mass M. Let I denotes the moment of inertia of body
about I. Let us take its i particle of mass m; at a distance of d; from the central
axis then

I=Ymd? (1)

Now using d; = 1;Sin0; = |&;||7;|Sin0; = |é; x ;| and 7; = 7. + 7
=>d; =X +7)| =16 X7, + & x|

(D =>1=Ym|é; X7+ & x7/|?

=1 =Y m|(é x7.)% + (& X 7)) + 2(&; X 7). (& x 7))

=1 =3m|é X 7|7 + Xmylé x 7|2 + 2[é; X T.]. & X Xmy |7 |
=>1=Ym(é; X7)2+Ym(é; x 7))+ 2(&; x1.).é; x Y m;#/

=1 =Y md? 4+ Ymd’ +2(6 x.).6; x (0)

=>1=Md*+1T
I =1+ Md? proved
E d‘. E
—
0 e
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Parallel Axis Theorem (another Proof)

The rotational inertia about an axis is equal to the inertia about parallel axis
through centre of mass plus mass time the square of the distance between two
parallel axis.i.e. I=1+ Md?

Importance

This theorem helps us in calculating moment of inertia matrix of a rigid body at
any point in terms of information about the same body at some other point. This
theorem is used to find rotation of Earth about its own axis and sun axis.

—

$ Axis ‘F

I'=1ly+ Md?
Given line  Axis through Centroid

G and parallel to the

given axis

Proof

Consider a rigid body of mass M. Let I’ denotes the inertia of body about its
central axis. Let us take its i"" particle of mass m; at a distance of x; from the
central axis then I' = Y m;x?

Now consider a parallel axis at a distance d from the central axis. The rotational
inertia about this parallel axis is given by

I=Ym(d+x)?=Ym(d?*+x? +2dx;) = (X m)d? + X mx? + 2d Y myx;
I =Md?+1'+ 2d(0)

I =1+ Md? proved
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Parallel Axis Theorem (another Proof)

The rotational inertia about an axis is equal to the inertia about parallel axis
through centre of mass plus mass time the square of the distance between two
parallel axis.i.e. I =1+ Md?

Importance

This theorem helps us in calculating moment of inertia matrix of a rigid body at
any point in terms of information about the same body at some other point. This
theorem is used to find rotation of Earth about its own axis and sun axis.

(%> %> 2:)

A Axis 4]

: =1+ Md?
~Given line  Axis through Centroid
i ' G and parallel to the

given axis
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Proof

Consider a body whose centre of mass is located at the origin O’ of the prime
coordinate system that is at point (x,, ¥, Zo) relative to the unprimed system.
Consider an infinitesimal particle of mass dm which is located at P; (x;, y;, z;)
relative to the unprime system and P; (x;, y;, z;) relative to the prime system as
shown in figure. Then

Moment of inertia about X — axis = I, = [(y? +z2)dm ... (1)
By using head to tail rule =T+

= (Y 21) = (Ko Ve 20) + (0, ¥, 21) = (% + %, Ve + yis 2 + 2)

SX =X+X, Vi =Y.+ Y, z2i =2, + 7

(D) = L = [IGe +y)? + (2 + 2))*]dm

= L = [[y2 + yi’z + 2y.y{ + z2 + zi’z + 2z.z{|dm

= L = [[02 ++22) + (vi" + 2{°) + 2y.y{ + 2z.2{]dm

= Ly, = [(Y2 + +2z2)dm + f(yl-'z + zl-’z)dm + 2y, [yidm + 2z, [ z]dm

= Ly = [2 + +22)dm + [(yi* + 2/%)dm + 2y,(0) + 22.(0)
= Ly = W2+ +22) [dm + f(yi’z + zi’z)dm

= Ly = (ycz + +ch)M + Ix’x'

= Ly =1L + (92 ++2z2)M result of parallel axis theorem about x — axis
Similarly

= Ly, =1, + (x¢ + +22)M result of parallel axis theorem about y — axis
=1, =1, + (2 ++y)M result of parallel axis theorem about z — axis

Respectively.
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Now consider

Product of inertia about x,y — axis = I,,, = [(x;y)dm ... (2)
By using head to tail rule T, =1 +7

= (Y 2i) = (e Ve 20) + (0, ¥, 21) = (% + %, Ve + Vi, 2 + 7))

Sx =X+ X, Vi=Ye+Yi, zi =2 +7

(2) = Ly = [ (e + XD e + y))dm = Ly, = [(xeye + xy] + %y + x{y{)dm
= Ly = [(eyddm + [(xey)dm + [ (xiy)dm + [ (x{y{)dm

= Ly = xcye [ dm +x. [())dm +y, [(c))dm + [ (xjy])dm

= Iy = xcYe [ dm +x.(0) +:(0) + [(xjy))dm  ~ Xmr; =0, [r/dm =0
= Ly = [(xjy)dm + x.y. [ dm

= Iy = Ix/y/ + x.y.M

Similarly I, = Ly +YezeM 5 Ly =1y + 2.2 M

In vector form we know that I = [ r*dm

=>1=[F.7)dm= [ +7).GF +7)dm

=1 = [(ff + P d) + .7+ 7.7 dm = [(72 + 7% + 27.7)dm

> 1 =72 [dm+ [#*dm+ 27%. [# dm

=1 =7*M+1' + 27.(0)

=>1=1+ Md?
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Parallel Axis Theorem (For discrete mass distribution)

The moment of inertia of a rigid body in the form of discrete mass distribution (set
of particles) about a given axis is equal to the sum of moment of inertia of the same
body about a parallel axis (to the given axis) through the centre of mass of the
body and moment of inertia due to total mass of the body placed at is centre of
mass, about the given axis. i.e. I, =1, + Md?

YT

Proof: Consider a rigid body of mass M. Let I denotes the moment of inertia
of body about [. Let us take its i particle of mass m; at a distance of d; from the
central axisthen [ =Ym;d? ... (1)

-

Now USing di = T'iSiTlel' = |él||ﬁ|5ln91 = Iél X Fll and Fi = + Fi,

a

=>d; =g xF+7)| =16 X7, + & x|

(D) =>1=Ym|é; X7+ & x7/|?

=1 =Ym|(& X7,)% + (& x 7/)* + 2(&; X 7). (&; X 7})|

=1 =3mlé X 7[* + Xmylé x 7|2 + 2[é; X 7.].&; X Xmy |7 |
=>1=Ymi(é; x7.)>+YXm(é; x1{)* +2(&; X1.).é X ym;t}
=1 =Ymd2+Ymd’ +2(6 x7.).6;, x (0)=>1=Md?+1I'

=1=1+ Md? proved
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Parallel Axis Theorem (For Continuous mass distribution)

The moment of inertia of a rigid body in the form of continuous mass distribution
about a given axis is equal to the sum of moment of inertia of the same body about
a parallel axis (to the given axis) through the centre of mass of the body and
moment of inertia due to total mass of the body placed at is centre of mass, about
the given axis. i.e. I, = I}, + Md?

A
Afe i B g
g /.../" C
/"/r‘:"
oll—" ~ ,
¢
D —
zZ
Proof: Consider a rigid body of mass M = [ dm. Let I denotes the moment
of inertia of body about I. Let us take its i" particle of mass m; at a distance of d;
from the central axisthen I = [d?dm  .................. (1)

Now using d; = 7Sin6; = |&;||7|Sin6; = |é; X 7| and ¥ = 7. + 7/
=>d; = x (T +7)| =18 X7, + & x7{|

(D) =1=[|é X7, +é X7/ |*dm

=>1=[|(éx7)*+ (& x7)*+2(&; x1.).(é x7{)|dm

=1 = [|é; x7|2dm + [|é; X #/|1>dm + 2|é; X .|.&; X [|#/|dm
=>1=[(éx7)2dm+ [(é; x7)2dm +2(é; x7.).é; x [(#)dm

>1=[dmd2+ [dmd/® +2(& x7.).8;x (0)=> 1 =Md? + I



visit us @ Youtube | Learning with Usman Hamid

Perpendicular Axis Theorem/ Perpendicular Axis Theorem (for a particle)
/Plane Figure Theorem

The moment of inertia of a plane rigid body about an axis perpendicular to the
body is equal to the sum of the moment of inertia about two mutually
perpendicular axes lying in the plane of the body and meeting at the common point
with the given axis. i.e. I,; = L, + 1,

Or  The moment of inertia of a plane rigid body about a perpendicular axis is
equal to the sum of the moment of inertias about the orthogonal axes of the plane.
i€ L, =Ly +1,

Importance: This theorem helps us in calculating moment of inertia matrix
of a rigid body at any point in terms of information about the same body at some
other point.

Proof

Let us consider a rectangular frame of reference OXYZ. If there is a distribution of
matter in Xy — plane. i.e. z =0, then

Moment of inertia about X — axis = I, = [(y? + z®)dm = [y?dm ........ (1)
Moment of inertia about y — axis = I, = [(x* + z*)dm = [x*dm ....... (2)
Moment of inertia about z — axis = I,, = [(x* + y®)dm ... (3)

Adding (1) and (2)
Ly + 1)y = [y?dm+ [ x?dm = [(x* + y*)dm

I,, =1+ 1,, similarlywe maywrite I, = I,y +1,;, I,, = I,y + 1,
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Perpendicular Axis Theorem (for discrete mass distribution)

The moment of inertia of a plane rigid body in the form of discrete mass
distribution (set of particles) about an axis perpendicular to the body is equal to the
sum of the moment of inertia about two mutually perpendicular axes lying in the
plane of the body and meeting at the common point with the given axis. i.e.

Iz = Lx + 1y

¥a

Proof

Let us consider a rectangular frame of reference OXYZ. If there is a distribution of
matter in Xy — plane. i.e. z =0, then

Moment of inertia about X — axis = I, = Y m;(y? + z2) = Y myy?  ........ (1)
Moment of inertia about y — axis = I,,, = ¥ m;(x? + z7) = Y mix? ... (2)
Moment of inertia about z — axis = I, = Y m;(x? +y?) ... (3)

Adding (1) and (2)

Lx + Iy = Ymy? + Y mxf = Ymy(x? + y7)
I, =1,+1,,

Similarly we may write

L = Ly + 1,

Iy, =1+ 1,
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Perpendicular Axis Theorem (for continuous mass distribution)

The moment of inertia of a plane rigid body in the form of continuous mass
distribution about an axis perpendicular to the body is equal to the sum of the
moment of inertia about two mutually perpendicular axes lying in the plane of the
body and meeting at the common point with the given axis. i.e. I, = L, + I,

¥
x, Pz, v)
. '\“
Ty
. x-:]‘
A,
Kb ¥;
. o - : - : C .

Proof

Let us consider a rectangular frame of reference OXYZ. If there is a distribution of
matter in Xy — plane. i.e. z =0, then

Moment of inertia about X — axis = I, = [(y? + z2)dm; = [ yidm; ........ (1)
Moment of inertia about y — axis = I,,, = [(x? + z?)dm; = [ x?dm; ....... 2)
Moment of inertia about z — axis = I, = [(x? + y?)dm; .. (3)

Adding (1) and (2)

Ly + Ly = [yfdm; + [ xfdm; = [(x? + y})dm;
I, =1+ 1,,

Similarly we may write

L = Ly + 1,

Iy, =1+ 1,
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Linear and Angular Variables in Scalar Form

When a body moves along a straight line, then we use linear variables. i.e.

— >
Linear displacement (S), Linear Velocity (v) and Linear Acceleration (a)

When a body moves along a circular path, then we use angular variables. i.e.

Angular displacement (8), Angular Velocity (w) and Angular Acceleration («)

Linear and Angular Velocity of a Rigid Body about a Fixed Axis/ Linear and
Angular Velocity (Speed) in Scalar Form.

>
<}

Let a body moves along a circular path, moving in a circle with constant radius
OA = r from point A to B length of arc will be s. i.e. AB = s and angle between
two radii is 6. i.e. £ZAOB = 6 then we know that

s=1r6
ds ag
—_—=r—
dt dt
SVUV=TwW
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Linear and Angular Acceleration of a Rigid Body about a Fixed Axis/ Linear
and Angular Acceleration in Scalar Form. -

Let a body moves along a circular path, moving in a circle with
constant radius OA = r from pointﬂo B length of arc will be s.
I.e. AB = s and angle between two radii is 6. i.e. ZAOB = 0
then we know that

w
g

a

ds de dv dw
S=1r0=>—=r—=v=ro>—=r—=a=ra
dt dt dt dt

Total Acceleration produced by a body with moves with Angular Speed.

In case of circular motion body moves with a centripetal acceleration a,. which is

2 2
towards the centre. We know that F. = ma, also F. = mUT therefore ma, = mUT

since body moves with angular speed therefore v = rw

_ (rw)? r2w?

_ — 402
A =—— DA =—— >0 =TW

=

If a; is a tangential acceleration and since a; L a. then by Pythagoras Theorem

az = a% + a?

=>aR=\/Cl%+ag

This is expression of resultant acceleration in case of circular motion.
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Linear and Angular Variables in Vector Form
Since v = rw = (radius)w therefore

from figure radius = MP = rsinf

v=rw = (rsind)w

= v = wrsinf

= v =|w X7| byRight Hand Rule

X

= v = |w X 7|A

SUV=0XT7

Kinetic Energy of Rotation
A rigid body consists of n — particles, each of
mass m;; i = 1,2,3, ..., n with position vector of

each is 7;. Then total kinetic energy of body is
1

K.E =-¥i mv]

Since rotation is angular so v; = r;w

We use angular velocity as w because it remains same for all particles of a rigid
body. Then

—1lymn 2,2 _1 29n 2
K'E_E i=1 T W7 = S 0% Dy T,

By using I = Y™, m;r? which is called rotational inertia of a body or moment of
inertia of a body w.r.to axes of rotation. It plays same role in angular motion as
mass in linear motion. So,

K.E:%Iwz
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Result Prove that I = mr?
Proof
In linear motion momentum of force is = 1t =1rF =r(ma)

In rotational motion momentum of forceis =1 =Ia

. d d
=>Ia=r(ma)=>l(%)=r(ma) usmgv=rw=>d—:=rd—(:=>a=ra

= I = mr?
Angular Momentum of System of Particles

Since we know that moment of linear momentum of a system of particles is called
angular momentum, therefore

L= Yisi T X
SL=Y" AxmB>2L=YrAxmn=>L= ’l-“;lml-(ﬁx?i)
>L=Y" m [(ﬁ+ﬁ-’)x(§+?{)] using #; = R+ #/,#, = R + 7/

—

=L = Z"lml[RxR+§xrl+rlxl_?)+rl><rl]
X(Z 1ml)R+R><Z L om; T ﬁ’+(2 Lmy r)xR+Zl P xmyT

Using Y™, m; = M,R = Bep, X1y m; 7 = 0, X%, m; 7% = 0

=>L=RXMDy+0+0+Y%, # xm
Z=I'_€ ﬁ(,‘m-l_z:l 1F,Xﬁi,$z:ZO+z,i

Hence total angular momentum L of a system of particles is equal to the sum

of angular momentum Zo about origin and angular momentum f; about
centre of mass of a system of particle.
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Question

A rigid body is pivoted at a pointOand is rotating at the rate of 90 radian

per second about a fixed line in the direction of the vector {1, 2,. 2:; to an
. observer looking in the direction of this vector. The sense of rotation of the

lb?%y is clockwise. Find the velocity of Pwith position vector (1/3, 2/3, —

| Solution

_The djrectiun_ of the axis of rotation along the vector—i+ 2j+ ﬂ: is given
by the unit vectore= (—i+ 2j+ 2k)/3, which also gives the direction of
the angular velocityd. ' ' SR

. . %0, |
=tie= | FS—[:-HI, 2, 2) radian/sec

This will be the sdme I'::-_J.;_ all ]}Dii’_ltb; c:-f the rotating bady.

' _F't;lﬁil.iun vector of P= {1/3, E,f_E,-' —1/3)=r.

-

Ifv P danotes the linear velogity nfﬁ, then

v =@xr=30(=1, 0 2, 2)x(1/3, 2/8,° —1/3)

or .
. _ _ i . T . T
vp=10) —~1 2 |2 | =10{—48, 1, —4d)
-l 1 2 -1 '
Question

A rigid body is rotating about .'-3: fixed -origin 0. The pointsAand Bhave
position wctmgﬂ{ﬂ, —1, 2) andB(2, 0, 0) respectively. Find the angular
velocity of the body. (The units are in metres and seconds).

Solution

Position vector ofA=r 4= (0, -1, 2).

Linear vector of A viz. wv4 = (7, —2, —1) is rolated to the angular
velocity of the body by w4 =idxr 4. Hence ) ’
i 0§k
Va4 =] uwh gtz
o0 —1 2 .
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which can also be written as
(7, =2, -1)=(2wstws —2wi, —-wi)
Gnmparin.g cnéfﬁcients ofi, jand k, we obtain - ,
2wy 4wy =7 and 2w =2, —w;=—1 | - {1)
Eutll of these give the same solution,viz.,, w; = 1.
Pasition ;l._reptnr ofB=r p5=(2, 0, 0)

Linear velocity offi=v p = (0, 6, —4) is related to angular velocity by

i j ok
Ve = | W wz Wy

2 0 0
‘which gives

(0, E,. —4) = 0)—j(0-2w 1) +k{—2wq)

Comparing coefficients ofi, jiandkon both sides, we obtain 0 — 0, 2wy=
6 ie ' wy=13. : ' ' '

and 2wq = 4:5 wy = 2.

Substituting for wy andw 3 in equation (1), we obtain 2w 4wy = Tie. 7 =
7, which shows that the system is consistent, Hence

& = wyitw ajtw sk = i+ 2j+ 3k

Question
The instantaneous velocities of particle at points
'I:ﬂ-,ﬂ,n:l,' {'D: ﬂ‘.l';""ﬁ'- U}: {nl D'I'- Zﬂ;]

of a rigid body are (u, 0, 0), (u, 0, v), (utv, - 'ﬁw‘,.w' 2) reque:ctiv?!y
‘w.r.t. arectangular coordinate system. Find the magnitude and direction
of spin of the body and the point at which the central axis cuts the XZ-

plane.
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Solution

bl

LetA, B, Cbe the given points. Then .
ra=(a, 0, 0), rp=1(0, a/V3, 0), rc=I(0, 0, 2a)

-The. corresponding velﬂcit.i_ﬂs are given by
va = (u, 0, 0}, } v-g'; ={u, 0, v),. vg= (u+w, — V3w, v/2)
‘We takeAas a reference point. Then '
r = pdsitiun vector of Bw.ort. A = rg-r4 = Q—a, af+/3, 0)

ra = position vector {.:rf Cwrt. A = ro-14 = (—a, 0, 2a)

vi = velocity of Bwrt. A = vg—v, = fD, 0, wv)

and

vz = velocity of C wrt A = vo—v s = (v, — 3y, v/2)

%I;:ifﬁhe _the angular. velocity of the rigid hndy w.r.t. any reference point.
on .
V) =wxr i, Vg. =Xy o

Therefcrn.'-: using the formulav=dixr, we obtain the fuﬂuwing equations.

3 i J Kk
(0,0, v) = Wi Wy g
—a a}",ﬁ 0
and )
: ' B i j k
(v, —V3u, v/2) = | w w toy
- —a 0 2a

which are equivalent to

. . o _
0,0, v) = —-;,.3—, -t 3;1 -J,_-:_;:- +ﬂw3)
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and : ) .
' (’u. — 3w, 'U,.-"E) = (2awws, —aw 3+ 26wy, aws)

From these equations we obtain

-

el
V3

On solving forw o, wy we obtainw 3 =0, andw 3 =v/(2a).

F T-'I: w

To findw 5, we have

= tty - =
v3 2z T

which gives w; = 3u/(2a). Therefore

- Ju 7

“wo= 20 ' Z2a’ U)
and

— vV,

Question

Show that equal and opposite rotations of a rigid body about dlstmct ﬂxes
are equivalent to a translatmn of the body. .

Solution

" Let a.rigid body be subjected to rotation with angular velocities @ and
—& about parallel axes passing through pointsO 1 andO ;. LetPbe any
particle of the body with such that its. position vectors w.r.t. O andO
are r; and rz and the directed line segment ;02 is represented by the
vectors. Ifv p'denotes the velocity of the particleP, then

v

-vP = (@xr 1)+ (—@xr. ) = @x(r 1-r3) or vp =@ixs

which is independent ofP, i.e. this result is true for all particles of the rigid
body. Hence the rigid hud:,r undergoes a translation.
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Question

The points (a,2a,—a), (—a, =a, a), (a, o, a) of a rigid body have
mstanta.neuus velocities : ' -

{V’-ﬁu 0, v”—;’ﬁ} (v—va"— 0, —u,f {E], (0, —uf',,’ V3, u_,:"ﬂ.f"ﬁ]

—

respectively w.r.t. a rectangular coordinate system. Show that the body
has line through the origin having direction cosines (1, —1, —1)/+3 as
instantaneous axis of rotation a.nrl that the magnitude of angu]m: velocity

isvf2a.

Solution . |
Letﬁ, BandC be_the.th.ree points en the. rigi.cl Eud},r théu
‘T4 - (a, 2a, —a), rp= l:—-ﬂ.-, ‘—a, 6}, re=(a, a, a)
with veluéitiés __ o _ | B _
v‘ﬂ_k(ﬁu o ﬁﬂ); -v5=_( | j)' V{:=(D, —v _1_,-)
2 2 V31T V3 | V3 V3

.LetAbe taken as the reference point,. Then

r; = position vector of Bw.r.t. 4 = rg' —r 4 =(—2a, —3a, 2a}
and | |
'rz = position vector of € wrt. A = ro—r 4= (0, —a, —2a)

Siinila.rl}r_ the relative velocitiesv | andv 3 are given by

: S Su av
Vi = ¥Yg—Vvy = -ﬂz——-ﬁ,ﬂ, _Eﬁ

and : : .
Vo = Ve —v a4 = Vv v v
| o J‘i - 2 1 v{jr ﬂﬁ-
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Letdibe the angular velocity of the rigid body w.r.t. any point. Then
V1 =ixr i, Vg =GIXE g

These relations can also be written as

i i k
vi=| @  ws ws (1)
| =22 32 2a :
and _
i§ ok |
Ve = w; wy w3 (2)
0 —n —2a

Eqﬁating the coefficients ofi,jandkon both sides of (1), we obtain the
equations - ' '

o & ' o
e 3 : 3
573 aws + 3aws : | _If )
0 = —-ﬂa{w3+w 1) (4}

" and 5
" i

—_ =3 -3 5
23 acJy s | _ {(5)

From (4)w 3 =—w 1, and on substituting in (3) and (5) they become identi-
cal. Therefore all the components of angular velocity cannot be calculated

from relation (1}. Therefore we now use relation (2) and equate the coeffi-

cients ofi,jandkon both sides of (2). This gives

: “Y = wmtass ()
—25 = —2au (1)

aﬂd._ v '
' “—m =, Tawy - (8)

Here equations (7) and (8) are the same and give w; = v/(2v/3a). On
substituting this in (6) or (3), we obtain wp = ~v/(2v3a). Hence the
angular velocity vector is given by : :

e ( v v )
' 23" 23z’ 23
The angular speed is giwsﬁ by - '

Gl= yJuf +uF +wE = /3 A
: 17 t™s 12¢2  2g
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The direction cosines of the axis i -
_ of rofation are the component it
vector along the angular velocity and are given by pefise of e unk
W -
S (& -k -1
w V3 V3
Question

Masses of 1,2and 3kg are located at positions i + j + k, 4f + k, 21 + 2k
respectively. If their velocities are 71, —6j, —31. Find the position and velocity of
centre of mass. Also find the angular momentum of the system with respect to the
origin.

Solution

Given that m; = 1kg,m, = 2kg,ms = 3kg

{

=i+ j+ k7 =4 +k i =204+ 2k and ¥, = 71, ¥, = —6], U3 = =31

H . . - 3_ m-,‘-’
Radius vector of centre of mass is givenby R = —21—13 L
M=3;_,m;
S B = MaFy+myfytmsty _ 7149]+13K
m1+m2+m3 6
i is ai > Yo mivi
Velocity of centre of mass is given by v,,,, = ~55—
M=3;_;m;
- v+ Uo+ v —i—67
= Vo = miV1+MyV+M3V3 — i—6]
m1+m2+m3 3

Angular momentum of system of particles is given by L= Y3 HXP

=> L= Zi3:1 Fi X miﬁi = Zi3:1 mi(ﬁ- X 1_7)1)

-

= L=my(# XU;) +my,(#, X U,) + m3(75 X U3)

=> L=+ +kx71)+ ) (4 + k x—6§) + (3)(21 + 2k x —31)

=L =36i—11j — 7k
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Question

Masses of 4,3and 1kg moves under a force such that their position vectors at time t
are 7, = 3] + 2t%k, 7, = 3ti — k, 75 = 4ti + t?j respectively. Find the position
vector and velocity of the centre of mass and angular momentum of the system
with respect to the origin at t = 2s.

Solution
Given that m; = 4kg,m, = 3kg,m; = 1kg

7 = 3] + 2t2%k, 7, = 3t — k, 75 = 4t1 + t?]

H . . - 3_ m-,‘-’
Radius vector of centre of mass is givenby R = —21—13 L
M=3;_,m;
] Fitmaa+mats  26i+16—29k
>R = myr1+moty+msrs — i At =2s
m1+m2+m3 8
i i i >4 Z?=1mlvl
Velocity of centre of mass is given by v, = -
M=¥;_;m;
> V1+myV,+mav 131+4j+32k
= 'Ucm — mqV1+TMyVU+M3V3 — l ] at t — ZS

mq+my+ms 8
Angular momentum of system of particles is given by L= Y3 HXP
>L= Y T xmv; = X m(7; X Up)
>L= my (7y X V1) + my (7, X U,) + m3(73 X ¥3)

= L =960+ 9] + 16k att =2s
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Question

Particle of Masses 1,2and 4kg moves under a force such that their position vectors
attime tare 7, = 2i + 4t2k, 7, = 4ti — k, 75 = cosmti + sinmt] respectively.
Find the angular momentum of the system with respect to the origin at t = 1s.

Solution  Giventhat m; = 1kg,m, = 2kg, m5; = 4kg

7 = 20 + 4t%k, 7, = 4ti — k, 7 = cosmti + sinmt]

[
<
=
[l
o
o~
=
<
N
Il
N
K
A=
w
Il

—msinmtl + mcosmntj

Angular momentum of system of particles is given by L= >3 7 xXP
=L =357 xmb; = T, m@ x %)

=L =my(# X By) +my(Fy X By) + ma(Ps X #3) = —24f + 4wk att = 1s
Question

The position vectors and velocities of Masses 2,3and 4kg are respectively 21 — 3j,
i+ j+k,4f + 3k. If their velocities are —3i, —6, 21 + 3k. Find the position and
velocity of centre of mass. Also find the total angular momentum of the system
with respect to the origin.

Solution  Given that m; = 2kg,m, = 3kg, m5; = 4kg

7 =20-3F=1+]j+k i =4]+3k =0, = =318, = -6, 0, = 2{ + 3k
i is qi 5 Xing Mt
Radius vector of centre of mass is givenby R = =5=——
M=Zi=1mi
= }_e) — m1?1+m2f')2+m3F3 — 7i+13j+15k
m1+m2+m3 9
. . S 3 omiv;  —18j+12k
Velocity of centre of mass is given by &, = =t"% — ~18J
M=Zi=1mi 9

Angular momentum of system of particles is given by L = Y3 X P

= [ = 481+ 24] — 18k
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Kinetic Energy of System of Particles

From figure by Head to Tail rule

= ar;
Fl :R+Fl, = dtl

_dﬁ dﬁ" S 4 =/
_E-l_ n =V, = Vg T V;

(1) = K.E = 3% my X (o + 5. (Fem + 5))

= K.E =31y my X om- Vom + Pem- B + 3. e + 7. 7)
> K.E =30, my X (vEy + 20om. 5] + v]°

= K.E = ;(Z?zlmi)vczm + %2170,,1.2?:1 m; U; + %Z{;l m; v{z

=>K.E = %Mvczm + %Zﬁcm. (0) + %Z?ﬂmi v’ > K.E = %Mvczm + %Z’;lmi vi?
ST = 70 + Ti’

Hence total K.E. T of a system of particles is equal to the sum of K.E. T, of

centre of mass w.r.to origin and K.E. 7; of i" particle w.r.to centre of mass of
a system of particle.
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Remark

» Translational Motion: Motion of a body in a straight line on the plane or
rough surface.
= Rotational Motion: Motion of a body about a fixed axis in the space.

Kinetic Energy of a Rigid Body in General (Konig Theorem)

For a system of particles K.E=T= %f vidm .l (1)

From figure by Head to Tail rule

ar! =S
dtlz)ﬁi:R-l_ﬁ,

Fi=R+?-,=> -

dR
=—+
dt

Q
~

Now v? = ;. %; = (§+ﬁ’).(§+ﬁ') = R2+7/° +2R.7
(1)=>T=1fv-2dm=lf[R2+f~-’2+2f€ F"]dm
2 l 2 l 2
=>T=%R2fdm+%ff"i’2dm+§.ffi’dm
ST =-R2M+-[#°dm+R.(0)=>T =-MR*+=[#/*dm
2 2 2 2
=>T=T0+f,

— — =
=>T= Ttranslational + Trotational
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Kinetic Energy of a Rigid Body Rotating about a Fixed Point

Consider a rigid body rotate about a fixed point O. Consider a
point P;(x;, y;, z;) which rotate with the motion of rigid body

then K.E = T = -~ Mv?
Kinetic Energy for single particle at P; of mass dm is given by

dT = %vzdm

For whole body we get [ dT = %fvzdm

= Tror = %f vidm (i)

In case of rotation v = w X ¥ where @ = constant is angular velocity

=¥ = (w,d+ wyf + wzlAc) X (xi+yj+zlAc)

A
>V =|w, w, w,
X y z

= 7 = (zwy, — yw, )+ (xw, — zw,)] + (Yo, — xwy )k

> v2 = (zw, —yw,)" + (xw, — zw,)? + (Yo, — x0,)"

D) = Troe = [ (20, = y0,)" + (2w, — 20,)* + (yor — xw,)"| dm
= Tror =

L 2wy + y*w; — 2yzo,w, + x*w; + 2 w; — 2xz20,w, + Y w} p
2 +xlwy — 2xyw,w,

= Tror =

N | =

wz [* +z2)dm + w) [(x® + z2)dm + wf [(x* + y*)dm
—2w,wy [ xydm — 2wyw, [ yzdm — 2w,w, [ zxdm

_ 11 2 2 2
= Trot =3 |w2l,y + w31y, + wil,, — 20,1,y — 20,0,1,, — 20,0,1,,
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Ixz W,
In terms of matrix we have = Tror = %lwy] =1, I,, -1, [wy]
yA4q IZZ

Special Case: When the body rotates about the principle axis then
Product of inertias = I, = I,,, = I, = 0 then

1 . .
= Trot =3 |w2l,, + wil,, + wil,,| required expression

Question

Find the K.E of homogeneous circular cylinder of mass m and radius a rolling on a
plane with linear velocity.

Solution

Since we know that T = Ttranslational + T rotational
4 1 2 1 2 .

=>T=5Mv +51w ................... (1)

. . . 1
In case of cylinder moment of inertia =1 = EMaZ

2
(l)=>T——Mv +——MZZ since v =rw

=>7=§Mv2 +in2 = Tz%Mvz

Kinetic Energy in terms of Rotational and Angular Momentum

Consider a rigid body rotating about an axis passing through a fixed point in it with
an angular velocity w consisting of n — particles of mass m; where position vector
is 7; moving with velocity v;. Then expressing of kinetic energy is given by

K.E=T=-%L mpv?
1 =2 B r
=>KE—— i=1m (V. v i)ZE ?:1mi(wxri-vi)=_wzl 1Ty XM,

> K.E=_8.50 7 XP>KE="T,=56.L
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Radius of Gyration of VVarious Bodies

Radius of gyration of a body is defined as the distance from the reference axis
at which the given area is assumed to be compressed and kept as a thin strip,
such that there is no change in its moment of inertia. It specifies the distribution
of the elements of body around the axis in terms of the mass moment of inertia, As
it is the perpendicular distance from the axis of rotation to a point mass m that
gives an equivalent inertia to the original object m The nature of the object does
not affect the concept, which applies equally to a surface bulk mass.

Mathematically the radius of gyration is the root mean square distance of the
object's parts from either its center of mass or the given axis, depending on the
relevant application.

Let I = ¥ m;d? be the moment of inertia of a system of particles about AB, and
M = ), m; be the total mass of the system. Then the quantity K such that

Z_L_Zmidiz _ i_ Zmidiz
K M Ym; OrK_\/;_\J xm;

Is called the radius of gyration of the system AB.

Example

Find the radius of gyration, K, of the triangular lamina of mass M and moment of
inertial = %Mhz.

Solution

Since formula for radius of gyration is given by

1
[ zMh? 1
K?===%—or K = f—hz
M M 6
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The Compound Pendulum

g}i:d ::c:n.upﬂund ‘pendu!un'i' Provides a simple example of motion about a
e ma,] By fixed axis we mean that the direction of the axis of rotation
a wa.lys ong the same line; the axis itself may move along this line. For
ie::amp € a car whe:al attached to an axle undergoes fixed axis rotation as
ong as the car drives straight ahead. If the car turns. ihe wheel must
mf:a.te about a vertical axis while simultaneously spi.uninig on the axle. In
this case the motion is not a rotation about a fixed axis. e

For simplification, the axis of 'r_ntation may be chosen along any of the
coordinate axes. If we chooseZ-axis as the axis of rotation, then

. L=l k=l ,w. k=l gk
i.e.. | | |
. Lz = Izz [-“_’z
For a simple pendulum of massmand length|, (suépended by a massless
string), the period of oscillation is given byr= 27 \/l/g.

As an example of a rigid body rhobi_on about -:;L- fixed axis, we consider a
compound pendulum. The pendulum is free to rotate about a horizontal
axis through a pointO. The symbols are defined in the diagram. Taking
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moments. aboﬁt the p_clini; of suspension O, and denoting the torque of
external forces about Oby o, we have | :

Go =.j_-;[| ZI[}W:I nL;J=I ué (8,2.1)
Since the only force acting in this case ism gacting downwards, we have
: Go =—mgl . sind - (8:2.2)
From (8.2.1) and (8.2.2)°
| | § = — %ﬂ’i sind .
For ﬁ_mtiuﬁ with small angular displacement, the last ec{uation reduces to -
G+ 289 =0 | (8.23)
1o -

Gepera}. so_lutifm of (8.2.3) can be written as § =8 cos(wp ¢+ o) where
9 is the amplitude of the motion andw g denotes the natural angular (or

circular ) frequency given by

g‘he natural cyclic frequency g and the time iﬁtervai'r o are therefore given
Y " - |

1. /mgl | -
S rg (8.2.5a)

27 Iy

7‘0=i-2?r__‘(“_- y

Now if we putl o/m=K ? whereKis the radius of gyration, then

and

_ . 2
T =-2?1' -}-'(—
gl .
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By comparing this result with the corresponding result for the simple har- _
monic motion, viz. 7o' = 27 4/I/g, we find that the period of a physical -
pendulum is equal to that of a simple pendulum of lengthl ' =K 2/I. _“ _

Next we want to investigate whether there exists other axes of suspension
of the physical pendulum corresponding to which the period is the same as
given by (9.2.5 b). Ifl / denotes the distance of the other point of suspension
from the centroid C, then : T ' _ |

I I Y Y7 o
| 27 4 mal = 27 m'gut' - (8.2.6)

Now applying the pa.rallel-axié theorem, we obtain

fo = Iem+mi® = mK2, +mi®> = (8.27a)
Io = Ien+ml” = mK23, +ml” - (8.2.75)

‘where K, is the radlus of gyration about the centroid and is given by
Iem =mK &, wherel ., is the moment of inertia about the centroid. On
substitution from (8 a, b)'into (8.2. 6), we have o

KZm 2 K2, 417
_ 1 T i
or. ' ' o _ o

w o= K2, - ~ (8.2.8)

The result (8.2.8) shows that the alternative axis of rotation is located at
a distancel ' =K 2, /lfrom the mass centre. This axis passes through the
pointO ' in the figure. The pointO / is calledcentre of oscillationorcentre
of suspensionw.r.t. - O. SimilarlyOis the centre of suspension w.r.t. O’

Case of uniform rod

For a ur;ifur‘xﬁ rod of lengtlﬂ susi)ended at one 'e'nd',. I.=ml? /12. Also
U'=l/2, l'=K2?_ =l/6, - ' '

The location of the centre of oscillationO / is thereforel/_ 2+1/6 = 21/3 from.
O, the point of support. This is identical with the location of the centre of
percussion. o ' - ' ' '
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Question
Difference between simple and compound pendulums.
Answer

= The metallic bob suspended by a weightless inextensible string is called
simple pendulum. The distance between point of suspension and center of
bob is called length of simple pendulum. The bob at rest when no resultant
force acts on it is called mean position or equilibrium position. But a
physical or compound pendulum is a rigid body that oscillates due to its
own weight about a horizontal axis that does not pass through the center of
mass of the body.

= |In simple pendulum we have point mass/single mass particle but in
compound pendulum we have not a point mass, we have distribution of
mass. In compound pendulum we first define center of gravity, we define all
particles distribution by centre of mass.

Question
Obtain the equation of motion of compound pendulums.

Answer
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K.E. of rotation = T = %Ioa)2 = %109'2
: W, V. W
P.E.ofrotatlon—V—az+51+ak— Mgj

P.E. of rotation in component form =V = —MglCos6

By the principal of conservation of energy T + V = Constant
%Ioéz — MglCosf = C = %10(299) + MglSin66 = 0

=6+ MI—ngine =0 after simplification
0

Question
Show that length of simple pendulum is equivalent to compound pendulum.

Answer

By equation of motion of simple pendulum we have 6 + %Sin@ =0
For small vibration Sinf = @ then 6 + %9 =0

é:—%e ................. (1)

By equation of motion of compound pendulum we have 6 + MI—‘nginH =0
0

For small vibration Sinf = 6 then 6 + Ml—gle =0
0
6=-"%y )
Ip
Comparing (1) and (2) we have —%8 = - Ml—gle
0
g _ Mgl
1 I
=2 which is equal to compound pendulum.



visit us @ Youtube

Learning with Usman Hamid

CHAPTER

MOTION OF RIGID BODIES
7 IN THREE DIMENSIONS AND
MOMEMNT OF INERTIA

OF RIGID BODIES

Relation b/w Angular Momentum and Moment of Inertia
Or Angular Momentum in Terms of Moment of Inertia

Consider a rigid body consisting of n — particles of m;; i = 1,2,3, ..., n which rotate
and translate then angular momentum about origin is

L= Yiz1Ti X
ﬁL Zl 1Fl><mvl=>z= ?=1mi(17i><1_7)i)

In case of rotation ¥; = w; X 7; Since angular velocity

remains same for each

=1 = Z?=1 mi(?i X (51- X 7‘21,)) particle of a rigid body

= L Z 1ml[(rl rl)wl (Flal)?l]

= L Z 1ml[r (,()l (77151)771] ................. (1)

Consider position vector for each particle is
=xi+yj+zk=>rF=x2+yt+z2 and & = 0l + wyf + w,k

i = Xjwy + Y0y + Zjw, and L= Lyt + Lyj+ L,k

S
gl

() = Lyl + Lyj + Lk =Ty my[(x? + yZ + z2)(wel + wyf + w,k) —
(xla)x + yiwy, + lez)(xll + y;j + Zlk)]
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= L,i+Lyj+ Lk =
{(x? + ¥ + z8)wy — (xi0y + Y0y + z;w,)x; 0
Lomg | HGF + v+ Ziz)wy — (xj00, + Yiwy + ziw,)yi}f
+H{(x? + yF + 22w, — (xjwy + yiwy, + Zia)z)zi}fc

= L,i+Lyj+ Lk =
{(x? +y? + 28wy — xPwy — X V0 — X;Z;w, ]
n 2 2 2 2 A
i=1 M +{(xi +yi + 2z )wy — XYWy — Y Wy — )’iziwz}]

Hx? +yf + 2w, — xiziwx + yiziwy + 2E 0, Yk

= Lol + Lyj + Lk =
XiWyx T YWy T Z;y Wy — Xy Wy — X;YiWy — XijZjWy gl
nom | Hxw, + yiw, + 2Fw, — xiyi0 — Yo, — yiziw,}f
i=1 M4 i Wy T Y Wy i Wy iYiWx — Vi Wy — ViZiWgj]

+{xi2wz + yizwz + Zizwz — XiZjwy t YiZjwy, + Ziza)z}k

oy + 22w, — x1y10, — x;2;0, )1
= in + Lyj + Lk = Z?:l m; +{xi2wy + Zizwy — XiYiWyx — yiziwz}j

+Hx?w, + yFw, — xiz;w, + yiziwy}f(
= L+ L,j+ Lk =

{Z?=1 mi(yiz + Ziz)wx + (=2t mixiyi)wy + (=Xt mixizi)wz}i
{Trhimi(x? + 27wy + (= Ty mixy)wy, + (= Xy miyiz) w, }
{Z?=1 ml(xlz + yiz)wz + (_ Z?:l mixizi)wx + (Z?:lmiyizi)wy}k

{Ixxwx + Ixywy + Ixzwz}i Product of inertia may
= Ll + Lyj + Lk = [{Iy0, + Iy0, + 1,0, }f be positive, may be

~ negative or zero.
_{Izza)z + I,,0, + Iyza)y}k_

{Lxwy + Lywy + Ly, )]
= Lyl + Lyj + Lk = [({Lywy + Lyw, + L0, }f
_{Ixza)x + I, 0, + IZZwZ}E_
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On comparing we have

Ly = Lixwy + Lyywy + I, 00,
%=w%+m%+%%
L,=1,w, + Iyzwy +1,,w,

Inertia Matrix

-Lx Ixx Ixy Ixz W,
In matrix formwe have |Ly|=|Lx L, I, [wy] >L=Iw
_Lz sz zy 2z | L@z

Ixx Ixy Ixz-
Here I = |L,x L,y L,|iscalled inertia matrix.
I,

x Izy zZ |
Results

= M.l about x — axis then w = (w,, 0,0) and

Ly = wylyy ; Ly = a)xlxy s Ly = wylyy,
= M.l abouty - axis then & = (0, w,, 0) and
Ly = wylyy 5 Ly = wylyy, 5 L, = wyly,

= M.l about z — axis then w = (0,0, w,) and
Ly = wylyy ; Ly = wzlyz s Ly = wyly,
L is not parallel to w

Rotational Kinetic Energy in terms of Inertia Matrix
Since we know that T, = %5. L but L = I then
Tror =5 @.16 = 5 1(8.8) = Tyo = 5 I0?

Principal Axes: The axes along which angular momentum and angular velocities
are parallel (coincident) vectors are called principal axes. Or axis relative to which
products of inertia are equal to zero known as principal axes.
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Principal Axes and Principal Moments of Inertia

In Inertia Matrix form we have

&

L, Lyx Ixy xz | [Wy
Lyl=Lx Ly 1L, lwy]:uzla’
L | Wy

x zy zz

Ixx Ixy Ixz
Here I = |Lyx 1Ly, I,,|is called inertia matrix.
sz Izy Izz
Ixx Ixy Ixz
Inl = (L, 1,y I,;|the off diagonal elements are zero. i.e.
sz Izy zz
Ly =L, =1L, =1y, = I,y =1, =0

Then we get principle axes.
1% Principle axes (x —axes) L, =
2™ Principle axes (y —axes) I, =1,

3" Principle axes (z — axes) I, =1

L 0 0
Then the matrix I = [0 I, 0] is called Principal Moments of Inertia Matrix.
0 0 I

Keep in mind: When a rigid body is rotating about a fixed point O, the angular

velocity vector & and the angular momentum vector L (about O) are not in general
in the same direction. However it can be proved that at each point in the body there
exists distinct directions, which are fixed relative to the body, along which the two
vectors are aligned i.e. coincident. Such directions are called principal directions
and the axes along them are referred to as principal axes of inertia. The
corresponding moments of inertia are called principal moments of inertia. Or
inertia relative to the principal axis is called principal moments of inertia.
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Remarks

= |nertia matrix is symmetric.
= Axes of this coordinate system are called Principal Axes.
= The origin of the Principle Axis is called Principal Point.
= The three coordinate planes each passes through the two principal axes is
called Principal Plane.
= Why we use I, I, I3 instead of I, I, I,,? Single subscript use in I, I, I
Is used to distinguish the moment of inertia about arbitrary axis.
= Orthogonality of Principal Axes
If the principal axes at each point of the body exist, then their orthogonality
can be proved by stating that axes relative to which product of inertia are
zero are the principal axes.
» Why I4, I,, I; do not change with time? If Principal axes are attached to the
rigid body then I, I,, I3 do not change with time. So they are treated as a
constant.

Angular Momentum in Terms of Inertia using Principal Axes
In case of Principal Axes system we have
L=1Le,+Lye;+Lses oo, (1)

For M.l about x — axis we have @ = (w{,0,0) then L; = w,
For M.I about y — axis we have @ = (0, w,,0) then L, = Lw,
For M.l about z — axis we have @ = (0,0, w3) then L; = ;w4
(D)=L =Lwe, + Lwye, + 30383  woveeeeeeeeeeeann . )
Equating (1) and (2) we have

Lie; + Lye, + Lie; = [Lwieq + Lw,e, + [3wses

In Inertia Matrix form we have

L, I, 0 07[w;

[L2]=[o L 0”w2]=>i=lai
Ly 0 0 Lllws
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Theorem

Show that Products of Inertia for Principal Axis are equal to zero.

Proof

We know that L=1&

Also L=Y",#xP,

=6 =Y xmy; = e = Y-, mi(F; X V)

=>Ilw =X, mi(Fi X (@ X ?i))
=16 =YL, m[(7. 7)o — (7. d)7]

—

= l6 = =1 mi[riz5 - (o] =1 = ?:1 miri25 - Z?:l m; (7. )7

!

= Z?=1mi (Fl a)Fl = Z?:l miriza —lw

el

= Y, m (7. @) = [, mirf — 1]
Consider 7 = x;i + y;j + z;k = r? = x? + y? + 7}
and & = w, i+ w,f + wk then 7. & = x;0, + Y0y + 70,
(D) = X, mi(xo, + yiwy, + zw,) (x0T + yif + zik)
=[S, my(x? + ¥y + 27) — I](wyl + w,f + w,k)

= [Zomi(fox + xiyl oy + xiztw,) [T+ (B mi(xiyiox + yiwy +

viziw, )| + [ my(xiziw, + Viziw, + zFw,)]k

= [ 1i1:1mi(xi2 +3’i2 + le) - I]a)xi + [ ?:1mi(xi2 + yiz + ZLZ) - I]“’yf"’
X, m(? +y2+22) —Twk )

Comparing coefficients of in (2)
ey (xf oy + xiyioy + xiztw,) = [Eymi (el + y7 +27) — T

Comparing coefficients of w,; w, ; w,
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mamx? = X mx? +Z?:1mi(3’i2 +Zi2) —I=Ly=1= ?=1mi(yi2 +Zi2)
And I, =YL mix;y; =0 Also I, =X ,mx;z; =0
Comparing coefficients of jin (2)

ami (i, + yiwy + yiziw,) = [Ty mi(x? + y2 + 27) — 1w,
Comparing coefficients of w,; w, ; w,

mamyd =Xk my? + Xk, mi(xi2 + le) —I=1,=1=%", mi(xi2 + Zzz)
And [, =¥ myz; =0
Hence prove Iy =1,,=1,,=0

Theorem

Show that in matrix notation [Z] = [@ x L] + [1][@] where I is the inertia matrix.

Proof
We know that L] = [1][&]
AISO Z = Z?:l Fi X ﬁi

= L = Z?:l 771' X miﬁi =L = Z?:l mi(ﬁ' X 1_7)1) > L= ?:1 mi(ﬁ' X (a_f X Fl))

= [[@] = X, m(7 x (& x 7))

> [[[a6] =Tk, mf x (8X7) (1)

Now [=Y".7%xP

=L = Yieq Ty X My = L= Yieami(F X U) = Z—f = %[ 1= M (7 X ;)]

—

- S - - dv; > - - - d — -
= L =Z?=1mi(nxvi+ri><d—tl) >L=Y"m (vixvi+ri XE(eri)>

=>Z=Z?:1mi(0+ﬁ><(5x5i+$xFi))
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ST =Y mi X (@ X ) + X0, mifs X (& x 7)

SL=Yl, m@x@x3) +[1[@] e (2) using (1)
Now

= iy mt; X (@B X 1) = Xy myt X (& x (& x 7))

= YicimyTi X (@ X 7)) = YLy mty X [(d.7) 6 — (& D)7 ]

= YLy mit; X (6 X ¥p) = YLy mty X [(W0.7)d — &*7]

=3, mit X (0 X 7)) =2, mi(@0.7)(# X @) — Y-, m;w?(#; X 1;)

= Yamhy X (B X v) =¥y my(d. 7))@ x @) (3)
Similarly Lom@ X (7 X 0) =Y ma x (7 X (8 X 7))
= Yinymd X (7 X 7)) = Xy mydd X [(7. 1) & — (7. &)7]

> Y md X (7 X V) =Y, me X [FPe — (7. @)7]

= iy m@d X (F; X 9) = Ll mit? (@ X &) — Tiny my(7. &) (& X 7)
= Ve md X (7 X ¥p) = — XL, m (7. &) (6 X 7)

=yt mo X @ xv;) =Y m(7.o)(7; X o)

B)=23E m# X (X 1) =Y1 mo X (7 X V;)

= Yy mts X (@ X 0) = B X X, (7 xmyty) = @ X Xy (Fix P) =d X L



visit us @ Youtube | Learning with Usman Hamid

Theorem: For a rigid body, there exist a set of three mutually orthogonal
axes called principal axes relative to which the product of inertia are zero and
angular velocities and angular momentum are oriented along the same direction.

Or  Prove that there are three principal moments of inertia (eigenvalues)

relative to the principal axis.

Proof: Since we know that =1w
Ly
= [Ly]| = yy [ ]
L,
Lx = xxwx I(,Ux ] y yywy Iwy ,' LZ = IZZwZ = I(,l)z .......... (1)

Also from general theory of angular momentum  L; = }};[;;w;
L, = L,w, + Ixywy + 0,

Ly, = Lyw, + L 0, + 1,0, (2)
L, = L,wy + [0, + [;;0,

Comparing (1) and (2)

Ly = Lixwy + Iyywy + I,0, = lwy

Lywy + Lywy, + 1,0, = lw,

L,y + I,y + 1,0, = lw,

After rearranging we have

(L = Doy + Lywy, + L,w, =0

Ly wy + (Iyy — I)a)y + I,,0, =0

Loy + L0, + (I, —Dw, =0

This is the homogeneous system of equations which have the non — trivial solution

Ixx —1 Ixy Ixz
So| Iyx L,—1 1,, | =0 whichiscubicin I gives three principal M.l.
Iy Izy I, =1
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Determination of Principal Axes by Diagonalizing the Inertia Matrix
How to find the Principal Axes

Since we know that

L, = L,w, + Ixywy + w0,

Ly = Lywy + 1,0, + [,,0,

L,=1,w, + Iyzwy +1,,w,

And for Principal Axes we have Ly=hwy ; Ly, =hLw,; L, =lw,
Then

L,w, + Ixywy +L,0, = Lw,

Lyywy + Ly0y, + 1,0, = Lo,

L,y + Iy,0y + 1,0, = [0,

After rearranging we have

(Lex — Dy + Lyywy + L0, =0

Lywy + (Iy — L)wy, + 1,0, =

L wyx + Iy,wy + (I, — 3)w, =

This is the homogeneous system of equations which have the non — trivial solution

Ixx - 11 Ixy Ixz
So| Iy Ly, =1, I,, | =0 thisis the required result to find the
sz Izy Izz - 13
Ixx - 11 Ixy Ixz
Principal Axes and the matrix | Iyx Iy — I I, |is called
sz Izy Izz - 13

diagonalizable inertia matrix.
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Determination of Principal Axes by Diagonalizing the Inertia Matrix
(another way)

Suppose a rigid body has no axis of symmetry. Even so, the tensor that represents
the moment of inertia of such a body is characterized by a real, symmetric 3 x 3
matrix that can be diagonalized. The resulting diagonal elements are the values of
the principal moments of inertia of the rigid body.

The axes of the coordinate system, in which this matrix is diagonal, are the
principal axes of the body, because all products of inertia have vanished. Thus,
finding the principal axes and corresponding moments of inertia of any rigid body,
symmetric or not, is virtually the same as to diagonalizing its moment of inertia
matrix.

Explanation

There are a number of ways to diagonalize a real, symmetric matrix. We present
here a way that is quite standard.

First, suppose that we have found the coordinate system (principal axes) in which
all products of inertia vanish and the resulting moment of inertia tensor is now
represented by a diagonal matrix whose diagonal elements are the principal
moments of inertia.

Let e; be the unit vectors that represent this coordinate system, that is, they point
along the direction along the three principal axes of the rigid body. If the moment
of inertia tensor is "dotted" with one of these unit vectors, the result is equivalent to
a simple multiplication of the unit vector by a scalar quantity, i.e.

le; = Ase; (1)

The quantities A; are just the principal M.l about their respective principal axes.
The problem of finding the principal axes is one of finding those vectors e; that
satisfy the condition

(I—2)e; =0 (2)

In general this condition is not satisfied for any arbitrary set of orthonormal unit
vectors e;. It is satisfied only by a set of unit vectors aligned with the principal axes

of the rigid body.
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Any arbitrary xyz coordinate system can always be rotated such that the coordinate
axes line up with the principal axes. The unit vectors specifying these coordinate
axes then satisfy the condition in equation (2). This condition is equivalent to
vanishing of the following determinant

1=l =0 3)

Explicitly, this equation reads

lr11 —1I 112 Jr13
Iy Iy, —1 I3 |=0
I34 I3, I35 — 1
It is a cubic in A, namely, — B+ AV +BAB+C=0 (4)

In which A,B, and C are functions of the I's. The three roots A,, 4, and 45 are the
three principal moments of inertia.

We now have the principal moments of inertia, but the task of specifying the
components of the unit vectors representing the principal axes in terms of our
initial coordinate system remains to be solved.

Here we can make use of the fact that when the rigid body rotates about one of its
principal axes; the angular momentum vector is in the same direction as the
angular velocity vector.

Let the angles of one of the principal axes relative to the initial xyz coordinate
system be «, f and y and let the body rotate about this axis. Therefore, a unit
vector pointing in the direction of this principal axis has components

(cosa, cosf, cosy).

Using equation (1), le; = A4

where 4,, the first principal moment of the three (1,, 1,, 13), is obtained by solving
eq (4).
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In matrix form

11— A I17 s |rcosa
I, I — A4 I3 cosf| =0
COS
Iy Ly laz— 2,107

= The direction cosines may be found by solving the above equations.
» The solutions are not independent. They are subject to the constraint
cos?a + cos?p + cos?y =1
= |n other words the resultant vector e, specified by these components is a unit
vector.

Question

Find the moment of inertia and product of inertia of a homogeneous cube of side a
and for an origin at corner with axes directly along the edges and write down the
inertia matrix. 3

Solution
Since inertias of cube of side a are

IXX" Iyyi

M.1. about X axis = I, = [, (y? + z)dm = [ [ ["(y? +z2)dm ... (i)

Izz: Ixyr Iyz: sz

t -

Now by using volume mass density p = ‘;—Y;. I.e.dm = pdV = dm = pdxdydz

. 2 4
(D) = Lee = [y Jy ;' 0% + 2%) pdxdydz = L, = pa (%)
M M M
For whole mass of the cube p= 7 " aaa ;' Then When mass is not given then use

integration in solution

M 2a* 2 2
> 1, = ;.a(T) > I, =-Ma

For cubical shape (with equal length and edges), I, = I, = I, = §Ma2
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Product of inertia = I, = [, xydm = [* [Fxydm ... (ii)

Now by using volume mass density p = Z—’;. i.e.dm = pdV = dm = pdxdydz

a

.. a ra 5
(i) = Iy, = |, [, xypdxdydz = I, = p (—)

4
M M

= —. Then

aaa a3

For whole mass of the cube p = % =

M a’ 1 2
= Ixy = E(Z) = Ixy = ZMa

For cubical shape (with equal length and edges), I, = I, = I,, = ~Ma?

Ixx Ixy Ixz
Now inertia matrix will be writtenas I = |lyx Ly, Iy,
sz Izy Izz
[%MOL2 z 1
=] = %Ma2 %Ma2 — MaZ!
[lMa2 I Ma? EMaZJ
4 4 3
Question

Four particles of masses m,2m,3m,4m are located at
(a,a,a),(a,—a,—a),(—a,a,—a) and (—a, —a, a) respectively. Calculate its
principal moment of inertia.

Solution

Given masses are m; = m,m, = 2m, my = 3m,m, = 4m. Given points for each
masses A(a, a,a),B(a, —a, —a),C(—a,a,—a) and D(—a, —a, a) and Required
Principal moment of inertia are I, I, I5. First of all we find all moment of inertia.

M.1. about X axis = L, = X, m;(y? + z7)

= Ly = my(yf +27) + my(y3 +25) + my(y5 + 23) + my(vi + z5)
= I, = m(a? + a?) + 2m(a? + a?) + 3m(a? + a?) + 4m(a® + a?)
= I,, = 20ma?

And in this case I, = I,, = I,, = 20ma?

Y
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Product of Inertia = I, = ¥i-, m; (x;y;)

= Iy = my(xX1y1) + my(x2y2) + m3(x3y3) + my(x,y,)

= L, = m(a.a) + 2m(a.—a) + 3m(—a.a) + 4m(—a.—a)
= I, = m(a®) + 2m(—a?) 4+ 3m(—a?) + 4m(a?)

=1, =0

Also I, = ¥z m;(y;2;)

= Iy, = my(V121) + My (¥222) + M3 (¥323) + My (Yaz4)

= I,, = m(a.a) + 2m(—a.—a) + 3m(a. —a) + 4m(—a.a)
= I, = m(a?) + 2m(a®) + 3m(—a®) + 4m(—a?)

= I,, = —4ma?

And I, = iy mi(zx;)

= I = my(21%1) + My (22%7) + m3(23%3) + M4a(24%4)

= I,, =m(a.a) + 2m(—a.—a) + 3m(—a.—a) + 4m(a. —a)
= I, = m(a?) + 2m(a?) + 3m(a?) + 4m(—a?)

= 1,, = 2ma?

Ixx Ixy Ixz
Now inertia matrix will be writtenas I, = (lyx Ly Iy,
sz Izy zZ
20ma? 0 2ma? 0 0 1
=1, = [ 0 20ma? —4ma2] = I, = 2ma? [0 10 —2]
2ma® —4ma® 20ma? 1 -2 10

0O 0 1 0 0 B
=1, = [0 10 —2] = I = [0 108 —2[3] using f = 2ma?

1 -2 10 L =26 108
Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | L,x L, —1 I,, |=0
zx Izy Izz I
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108 — 1 0 B
| o 108—1 =28 |=0= (108 =D[(108—=1?=582]=0
B —28 108 —1

= (108 —=1) =0,(108 —)?* =582 =0

=>1=108, [ =108 FV58 =1, = 108, I, = 108 — V58,1, = 108 + /58

= I, = 20ma?, I, = 2(10 — V5)ma?,I; = 2(10 + V5)ma?  using p = 2ma?
Question

A square of side 2a has particles of masses m,2m,3m,4m at its vertices. Calculate
its principal moment of inertia at the centre of square.

Solution
B T
e | -
g =) ACaq)
e ——3x
- (&) 1 9@.'—'-")
F . 2 R ]
0

z

Given masses are m; = m,m, = 2m, my = 3m,m, = 4m. Given points for each
masses A(a, a), B(—a, a),C(—a, —a) and D(a, —a) and Required Principal
moment of inertia are I, I,, I5. First of all we find all moment of inertia.

In case of square z; = 0

M.1. about X axis = Ly, = Xy my(yZ + z7) = X my?
= Ly = Myyf +mpys + myys +myyy

= I, = ma® + 2ma? + 3ma? + 4ma?

= I,, = 10ma?

And in this case I, = I,, = 10ma?

y
M.I. about z axis = I,, = Yi—; m;(x? + y?) or using perpendicular axis theorem

I,; = L + I,, = 20ma?



visit us @ Youtube | Learning with Usman Hamid

Product of Inertia = I, = ¥i-, m; (x;y;)

= Iy = my(xX1y1) + my(x2y2) + m3(x3y3) + my(x,y,)

= I, = m(a®) + 2m(—a?) 4+ 3m(a®) + 4m(—a?)

= I,, = —2ma*

Also I, =1,,=0 In case of square z; = 0

Ixx Ixy Ixz
Now inertia matrix will be writtenas I, = |lyx Ly Iy,

sz Izy Izz
10ma® —2ma? 0 5 -1 0
= IA = —Zmaz 1Oma2 0 = IA = 2ma2 -1 5 0
0 0 20ma? 0 0 10
5 -1 0 5. =B O
>L=p|l-1 5 O0|=>L=|-B B 0 using B = 2ma?
0 0 10 0 0 10p
Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | I,x L, —1 I,, | =0
zx Izy Izz I
5s6—1 —f 0
=| —p p—1 0 =0= (108 —D[(5—-D?*—-p*] =0
0 0 108-—1

= (108 —1) = 0,(58 — )2 — B2 = 0
S 1=108, [=58FB=1, =108, I, =58 — B, 1 = 58 +
= I, = 20ma?, I, = 2(58 — B)ma?, I, = 2(58 + B)ma? using B = 2ma?

= I, = 20ma?, I, = 8ma?, I; = 12ma?
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Question

Find the moment of inertia for a cube of mass M and side a and for an origin at
one corner.

Solution

Since inertias of cube of side a are

IXX’ Iyyi

M.1. about X axis = I, = [, (y? + z)dm = [" [ ["(y? +z)dm ... (i)

Izz: Ixy» Iyz: sz x

. —

Now by using volume mass density p = %. I.e.dm = pdV = dm = pdxdydz

4
(l) = Ixx — foa J‘Oa foa(yz + ZZ) pdxdydz = Ixx = pa (2%)
For whole mass of the cube p = = = —— = 2 Then
74 a.a.a a

M 2a* 2 2
51, = g.a(T) > L, =-Ma

For cubical shape (with equal length and edges), I, = I, = I,, = = Ma?*
Product of inertia = I, = [, xydm = [* [Fxydm ... (ii)

Now by using volume mass density p = ‘;—Y;. I.e.dm = pdV = dm = pdxdydz

a

.. a ra 5
(iD) = Iy = [ [ xy pdxdydz = L, = p (_)

4
M M

= —. Then

aaa a3

For whole mass of the cube p = % =

M a5 1 2
> Iy = E'(Z) > I, =, Ma

For cubical shape (with equal length and edges), I, = I, = I, = %Ma2

Ixx Ixy Ixz
Now inertia matrix will be writtenas I = |lyx Ly, Iy,
sz Izy Izz
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Ma? *Ma® —-Ma?

3 4 4 8 3 3
|2 Z2p02 1,2 _ 1.2
=] = 4Ma 3Ma 4Ma :>IA—12Ma lg g g]
IMa? IMa?  iMa?
4 4 3

1

8 3 3 86 3B 3pB
=>IA=ﬂl3 8 3]=>IA=l3,8 8p Bﬁ] usingﬁ=izma2

3 3 8 36 38 8B
Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | L,x L, —1 I,, | =0
I Ly Iz —1

86—1 3B 38
| 38 88-1 3B
3B 36 88—1I

5s—1 —(GB—1) 0
= | 38 88 — I 38 |=0 ~R,—R,

38 38 88 — I

=0

1 -1 0
>GB—-D|38 88—-1 38 |[=0
38 38 85—I
1 -1 0
=>Gp-D=0; |38 8—-1 38 |=0
38 38 85-—I
1 0 0
=>Gp-N=0; |38 11p—-1 3B [=0 ~C,+(
38 68 8B—1I

= (G -DIA1B-DNBF—-1)—188] =0

= (GB—1)=0,(118-1)(88 —I) — 188 = 0

= (GB—1)=0,(58—1)(148 —1) = 0

=1 =58 1 =581=148

> = %maz, I, = 1—52ma2,13 = %ma2 using g = %ma2

= I, = 20ma?, I, = 8ma?, I, = 12ma?
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Question

A uniform square plate OABC which has sides of length 2a is cut in half along the
diagonal OB. Calculate Principal M.I. of triangular plate OAB relative to the
corner.

Solution d1 Qas) .
T==w
Consider A uniform square plate OABC
which has sides of length 2a is cut in half along al / =
| . 2d g
the diagonal OB as shown in figure. 0 2a p X
Since square plate is in xy —plane,soz=0and I,, = I, =0

M.1. about X axis = L, = [ (y? + z?)dm = f02a foza(y2 +z%)dm

M.1. about x axis in Xy — plane = I, = [ ,y*dm = foza foza y2dm ... (i)
Now by using area mass density p = 2= = -2 je. dm = 2dxdy
dA dedy 2

. 2 2 8
(D) = Ly = gfgafoayz dxdy = Iy = Epa4

M M M
For whole mass p = — =5 = —. Then
A >(2ax2a) 2a
_8 a4(M _4 2 _ _4 2
= [y = 54 (;) =1, = EMa and In case of square I, = I, = §Ma

By using Perpendicular axis theorem I,,, = I, + I, = gMa2

Product of inertia = I, = [ ;xydm = foza foza xydm ... (ii)
Now by using area mass density p = 2= = 2= ie. dm = 2dxdy
dA dedy 2

(i) = Iy, = §f02a foza xy dxdy = L, = 2a*p

M M M
For whole mass p = — = 7 = —. Then
A E(ZaxZa) 2a

M

_ 4 — 2 — —
> I, =2a (ﬁ) = I, = Ma®. Here I, =I,, =0
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Ly Ixy Iy,
Now inertia matrix will be writtenas I = |L,x 1L,y I,
IZX

[g Ma? Ma? 0 ]

4 3 0
:>I:|Ma2 “Ma? 0 |=>1A=§Ma2[3 4 0]

Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | L,y L, =1 I,, | =0
sz Izy Izz —1

46—1 3B 0
36 48—-1 O
0 0 88-—1I

=>(8B—I)=O;|4ﬁ;)ﬁ_1 45’[i]|=0:>(8ﬁ—1)=0,(4ﬁ—1)2—(35)2=0

-1 36 |_,
3 4B —1I| "

= =0:>(8B—I)|

= (B88-1=0,4B—1-3B8)(148—1+3B) =0
>@8-D=0,8-DTB-D=0=1=88, I=51=78

> I, =2Ma?, I, =-Ma?,I; = ZMa® using f = > Ma?
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Question

Find the inertia matrix for a uniform square plate of length a about a pair of
adjacent edges taken as OX,0Y axes and calculate the principal moments and
principal axes at the origin of the coordinate system OXYZ v :

4\
Solution a
M.1. about X axis = L, = [ ,(y* + z%)dm a Q
) a 7 x
M.1. about X axis = I, = [, ['(y? + z2) dm

M.1. about x axis in xy — plane = I, = fRyzdm = [ [ytdm @)

dm
dA dxd

Now by using area mass density p = .l.e.dm = pdxdy

D)=L =pfy [) y2dxdy = Iy = %Ma2 usingp=2=-"-_==4

A (axa) a2

1 2
In case of square I, = I, = gMa

By using Perpendicular axis theorem I,,, = I, + I, = gMa2

Product of inertia = I, = — [ ,xydm = — foa foa xydm ... (ii)

dm

Now by using area mass density p = =

.l.e.dm = pdxdy

1 . M M M
(i)=>Ly=—pf, [ xy dxdy = I, = — Ma® usingp =—= _M

(axa) a?

Here I, = I,, = 0 for xy —plane.

I Ly Iy
Now inertia matrix will be writtenas I = |lyx Ly, Iy,
I Izy I,,
Ma®? -iMa? —28 0
3 4 4
=1 = —iMa2 %Ma2 —= %[3 0 | using B = Ma?
2 2
| o 0 5Ma2 [ 0 A
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Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | L,x L, —1 I,; | =0
sz Izy Izz —1

L
>[—28 -1 0 [=0
0 0 p-I
=>11=§ﬁ: 12=‘ﬁ+ﬁ\/_13—‘.3_£\/_
For Directions of  Principal Axes

Directions for first Principal Axes

(Lex — Dy + Lywy, + L0, =0

Ly wy + (Iyy - I)a)y +L,0,=0 (1)

Lywy + L0, + (I;; —Dw, =0

Using I = %ﬁ in (1) also using B = Ma? in previously find axes

GMa2 —%Maz) Wy —%Maza)y +0=0> —%Maza)y =0=>w,=a#0
—%Mazwx + GMa2 —§Ma2) w,+0=0= —%Maza)x =0=>w, =0
0+0+(§Ma2—§Ma2)wz=0:>§Ma2a)z=0:>wZ=

= W= wl+wy,f+wk=>d=aj

Similarly find Directions for second, third Principal Axes
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Question
Find the principal moments and principal axes of inertia matrlx for a uniform
rectangular plate of sides a, b at its centre. Yf
/
Solution | a
M.1. about X axis = L, = [ ,(y* + z%)dm DR A IO /
@ A

M.1. about x axis = I, = fob foa(y2 +z%)dm X
M.1. about x axis in Xy — plane = I, = [ ,y*dm = fb fayz dm ... (i)
Now by using area mass density p = Z—TZ = ﬁ I.e. dm = pdxdy

. b ra 1 . M M
D=>Le=p], [, y*dxdy = I, = §Mb2 using p = o= =5 =
M.I. about y axis = I,, = [, (y? + z?)dm
M.1. about y axis = I, = fob foa(y2 + z%)dm
M.1. about y axis in xy — plane = I,,, = [ x*dm = fb faxz dm ... (ii)
Now by using area mass density p = ‘;—r: = ﬁ I.e. dm = pdxdy

.. b ra _1 2 : _M _ —
(i) =L,y = Pfo fo x*dxdy = I, = EMa USING P =7 =)~ ab

By using Perpendicular axis theorem I,,, = I, + I,,, = %M(a2 + b?)

Product of inertia = I,, = — [ ,xydm = — fb fa xydm ... (iii)
Now by using area mass density p = ‘;—TZ = ﬁ I.e. dm = pdxdy

b ra 1 . M M
(i) > Iy, =—p |, J, xydxdy = I, = —;Mab usingp == o = a

Here I, = I,, = 0 for xy —plane.

I xy XZ
Now inertia matrix will be writtenas I = |lyx Iy, Iy,
I Iy, I
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[ sMb?  —-Mab 0o ]
I = ! — iMab §Ma,2 0 ! solve yourself
| o 0 §M(a2 +b?)]
Now for Principal Moment of Inertia solve yourself
Ixx —1 Ixy Ixz
Ly Ly, —1 Ly, [=0
sz Izy Izz —1
For Directions of  Principal Axes solve
equations

(Lex — Dy + Lywy, + L0, =0
Ly wy + (Iyy — I)a)y +I,,0, =0

Lywy + L0, + (I;; —Dw, =0

following
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Question

Three uniform rods OA,OB and OC are each of unit length and unit mass relative
to coordinate system OXYZ, the coordinates of A,B and C are respectively (1,0,0),

(0,0,1) and (—‘/Z—gi 0). Show their principal moment of inertia.
Solution

M.1. of rod about x axis = I, = % _imi(y? + z7)

> L =3 (DO + ;OO +5 D (5) = L = 55

M.I. of rod about y axis = I,,,, = %Z?:l m;(x? + z}7)

- 1y 220D+ +H D () = by =2

M.1. of rod about z axis = I, = é > . mi(xiz + yiz)

= L = ;D +; WO +3 | ) + () D] = 1, =3

Product of Inertia = I, = —§ 2 mi(xy)
1 1 1 V3 _ V3
=Ly == (DO) =3O +1 (1) (T) 2 L, =2
1 1
= Iyz -3 13=1mi(YiZi) = Iyz =0=1, = 3 ?=1mi(xizi) =1, =0
Ixx Ixy Ixz
Now inertia matrix will be writtenas I = |lyx Ly, Iy,
sz Izy Izz
_i ﬁ 0_
12 12 58 /38 0
S1=[38 1 glsi= using B = —
— = 0 \/Eﬁ 133 80 98 =1
0o 0 2 g
| 3_
Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | I,x L, —1 I,, |=0
sz Izy Izz —1

> L =88+8V3=2+2V3 ,=88-84V3=2-243
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Question

A square of side a has particles of masses m, 2m, 3m, 4m at its vertices. Calculate
Principal M.I. also find direction of principal axes.

Solution
_ - o
M.I. about X axis = L, = Xi m;(yZ + z7) ) A5y
= Ly = Yoy myy{ for xy —planez =0 ) T ]
A W A

= Le = Myyf + Myy3 + mays + myyy i o

a2 (- g D (%Q/J__
> L,=m ( )+2m( )+3m( )+4m( )

5
=1, = Ema2

M.I. about y axis = I, = ¥i—, m;(x? + z7)
= L, = Yoy mx? for xy — plane z=0

= I, = myx{ + myxi + max§ + myx;

5Ly =m(%) +2m (L) +3m (L) +am (%)

=1, = ;ma2
Using perpendicular axis theorem I, + I, = I,, = 5ma?
Product of Inertia = I,, = — X{_; m; (x; ;)

= Ly = —[my (x1y1) + mp(x2y2) + m3(x3y3) + my(x4ys)]

=1

o= (2) +2n(2)+9m(2) s ()

1
= Iy, = ma

Inthiscase I,,=1,,=0



visit us @ Youtube | Learning with Usman Hamid

Ly Ixy Iy,
Now inertia matrix will be writtenas I = |L,x 1L,y I,
I,y Izy I,

5 2 1 2

Jma® -ma 0 56 B 0 | )
=>1=|1,,2 5.,2 o |=1=[B 58 0 usmg,8=5ma2

2 2 0 0 108

0 0 S5ma?
Ixx —1 Ixy Ixz
Now for Principal Moment of Inertiawe have | L,y L, —1 I,; | =0
sz Izy Izz I

sp—1 B 0
| g 58-1 0
0 0 108-1

= (108-1)=0,(58-D*—-(B)*=0
= (108-=0D=0,58—-1—-B)GB—-1+B)=0
= (1080 =048 -DO6B—-1)=0=>1=108, I = 48,1 = 68

=0=108-DI[GB-D*—(B)?]=0

= I, = 5ma?, I, = 2ma?,I; = 3ma? using B = %ma2

For Directions of  Principal Axes

Directions for first Principal Axes

(Lex = Dy + Lywy, + L0, =0

Ly wy + (Iyy - I)wy + L0, =0 (1)
Loy + L0, + (I, —Dw, =0

Using I = 108 in (1) also using 8 = %maz in previously find axes
(58 —10B)w, + fwy, + 0 =10

pw, + (56 —10f)w, +0 =10

0+ 0+ (108 — 108)w, = 0
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Put w, = a # 0 any arbitrary constant we get

—5Bw, + fw, =0 ; Bwx — 56w, =0

= —5wy + w, =0 ; wy — 5w, =0 sincef # 0

= —Swy +w, =0 ; Swy — 25w, =0 multiplying by 5

= 24w, =0=>w, =0>w, =0 subtracting and solving

= & = wl+w,f+wk =& =ak

Directions for second Principal Axes

Using I = 4 in (1) also using f = %maz in previously find axes
(58 —4P)wy + fwy, +0 =0

Pw, + (5B —4B)w, +0=0

0+0+ (108 -4B)w, =0=>w, =0

And pw, + Bw, =0 ; pw, + Bw, =0

= Wy = —Wy = W, = —w,, = C; arbitrary constant
=>6=wxi+wyj+wzlzz>5= Cii—Cyj

Directions for third Principal Axes

Using I = 6 in (1) also using f = %maz in previously find axes
(58 —6B)wy + fwy, +0=0

pw, + (56 —6B)w, +0=0
0+0+(108—-6B)w,=0=>w,=0

And —fwy + Pw, =0 ; Bwy, —Lw, =0

= wy = Wy, = w, = w, = C, arbitrary constant

= & = Wl + 0, + wk = & =Gl + C,f
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Question

Find the principal moments of inertia and the principal axes of a uniform solid
hemisphere about a point on its rim.

Solution
Let M be the mass and a be the radius.

Inertia matrix at A

/
Z
M.1. at the base A = Lyyy = Layy = lny, = %Ma2 A
P.l.at the base A = Iy = Iyy; = Iyz =0 z A
Ixx Ixy Ixz
Ly, = |bx Ly lyz
sz Izy Izz gy
ZMa? 0 0 }
>0, = 0 32Ma® 0
tj 2
0 0 %Ma2|
B 0 0
=>1I,;=|0 B 0 using § = %Ma2
0 0 B
Inertia matrix at C
Using parallel axis theorem Iy, = Ly — Md? = 14, = %Mat2 wd; =0
_ 5 2 3 \? 83 2 L 3
leyy = layy —Md2 =2Ma? - M (3a) = >Ma sd, =AC=2a
2
ICZZ = IAZZ - Md% = IAzz = EMaz d3 =a

P.I. at C due to symmetry = Iy, = Icy, = Icz = 0

%Maz 0 0
>l = 0 =Ma® 0
lj 320
0 0 §Ma2
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Inertia matrix at O

Using parallel axis theorem I,y = Icyx + Md'? = Iowx = %Ma2 vwd; =0
_ 12 _ 83 2,73 2 _7 2 .
loyy = Icyy + Md'; = —Ma* + —Ma* = _Ma vdy=0C=0A+AC=a+>a
lozz = lezz + Md'3 = =Ma? + Ma? = ZMa? = dy =0
If (f =a,y=02z= %a) denote the coordinate of the centroid w.r.to Oxyz then

ony=Iny+Mf)7=O_O=O

loxz = loxz + M¥Z = 0 —=Ma? = —> Ma?
loy, = Icy, —Myz=0-0=
[ ZMa? 0 —3Ma?]
5 8
S>lp,=| 0 ZMa®> 0 !
—3Ma? 0 ? Ma? ]
8 5

4

~
S
~

I

0 568 0 ] using § = —Ma?
—158 0  56p

Now for Principal Moment of Inertia about O, the rim we have

Ioxx —1 IOxy Ioxz 16,3 —1 0 —15ﬂ
onx ony - I IOyz = 0 = 0 56ﬁ - I O = 0
Iozx IOzy Iozz — 1 _15ﬂ 0 56:8 —1

= (168 — (568 — D? + (=158)(—158) (568 —I) = 0
= (168 — (568 — D2 + (158)2(568 — 1) = 0

= (568 — D[(168 — (568 —I) + 2258%] = 0

= (568 — I)(I2 — 72BI + 67182) = 0

=568 —1=0,12— 7281 + 67182 = 0

> 1, =568, I, = 118,1, = 618
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Eigenvector or Directions for Principal Axes about ring O
Directions for first Principal Axes

(L = Dy + Lywy, + L,w, =0

Lywy + (Iyy —Dwy + 1,0, =0 ... (1)

Ly, wy + 1y, + (I, — Dw, =0

Using I = 568 in (1) also using previously find axes

(16 — 568)w, + 0 — 15w, = 0 = —40fw, + 0w, — 15Fw, = 0
0+ (568 —568)w, +0=0=0=0

—15Bw, + 0 + (568 — 56B)w, = 0 = —15fw, + 0w, =0

Put w, = a # 0 any arbitrary constant we get

—40fw, — 15w, =0 ; —15fw, + 0w, =0

= —40w, — 15w, =0 ; —15w, + Ow, =0 since 8 # 0
Sw,=a=>w,=0w,=0>d=w,l+w,f+wk=d=aj=[0a0]
Directions for second Principal Axes

Using I = 118 in (1) also using previously find axes

(168 — 11p)w, + 0 — 15w, = 0 = 5w, + 0w, — 158w, = 0

0+ (568 —118)w, + 0 =0 = 458w, =0

—15w, + 0+ (568 —11B)w, = 0 = —15fw, + 0w, + 45w, =0
Put w, = 0 then

56w, — 15w, =0 ; —158w, + 45w, =0

= 5w, — 15w, =0 ; Bw, — 3w, =0 since 8 # 0
>ZX="=( 5w, =30,0,=C

= & = wl + w,f + wk = & =3C,1+ Ck =[3€,,0,C,]
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Directions for third Principal Axes

Using I = 61 in (1) also using previously find axes

(168 — 618)w, + 0 — 158w, = 0

0+ (568 — 618)w, +0 =10

—15fw, + 0+ (568 — 61B)w, =0

We get

= —45fw, + 0w, — 15w, =0

= 0wy, — 5w, + 0w, =0

= —15fwy + 0w, — 5w, =0

Put w, = 0 then

—45fw, — 15w, =0 ; —-15fw, — 5w, =0

= 3w, —w, =0 ; 3w, —w, =0 since f # 0
Wy

w
:sz?:CZ:wx:CZIwZZSCZ

—_ =~

= W = Wyl + wyf + wk

= 5 = Czi"‘ 3C2i€ = [C2; 0;3C2]t
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Theorem (Inclination of Principal Axes with Coordinate Axes)

Show that for two dimensional Lamina one of the principal axes is in inclined at an

angle 6 to the x — axis then Tan26 = Zl—xly
xx~ lyy

Solution:

Consider two dimensional plate in Xy — plane which rotate with an angle 6.

Then Tanf = =2 and w, =0

Wy

Using the following by Principal Axis theorem

(Lix = Dy + Lywy, + L0, =0 .. (1)

Lywe + (Iyy — Dy + 1,0, =0 ... (2)

Lywy + Iyw, + (U, —Dw, =0 ........... (3)

Using w, = 0 and with product of inertia=1I,, = 1,,, = 0
(D)= Uy — Dy + Lyw, =0 ... 4)

(2) = Lywe+ (Iyy —Dwy, =0........... (5)

(4) = (Liy = Dwy = —Lyywy

> Ly — [ = —I, Z—i’ ........... (6)

(5) = (Iyy —Nw, = =10,
=>L,—1=-L, oy (7)
Subtracting (6) and (7)

Sl — 1 — Ly +1= —IxyZ—zny—

2 2
IR (e
= Ly — Iy =1y, (wy wx) = Iy — Ly = Iy ( woriry )
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Lex—1 w?cos?0-w?sin?6 . :
VY — ( ) using w, = wcosb, w, = wsind

Lyy w2cosBsind

Lex—1 c0s%0—-sin?6 Lex—1 c0s20 sin26 21

Ly 2c0s0sinf Iy sin26 cos20 Lex—1yy
21
= Tan20 = —=—
Ixx_lyy
Question

For a uniform rectangular lamina ABCD with sides of length 2a,2b ; b > a, find
the direction of principal axis at the corner A.

Solution
\ /
i - Fe——
’\ i N

Heo [P
nA 2 B

—

Consider a uniform rectangular lamina ABCD with sides of length 2a,2b ;b > a
as shown in figure. For rectangular plate we have

M.1. about x axis = L, = [, (y? + z?)dm
M.1. about x axis in Xy — plane = I, = [ ,y*dm = f02b fozayz dm ... (i)
Now by using area mass density p = Z—TZ. i.e.dm = pdA = dm = pdxdy

. 2b (2 16
W) = Lo =y Jy ¥?pdxdy = Ly, = pab’

. M M M
For whole mass of the lamina p = ~ =S T Then

16 13( M —4Mp2
= Ly == ab® () = Ly = 3 Mb

Similarly 1, = > Ma?
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Product of inertia = I, = [ ;xydm = fOZb foza xydm ... (i)
Now by using area mass density p = ‘;—Z. I.e.dm = pdA = dm = pdxdy

(i) > Ly = fOZb foza xy pdxdy = I, = 4a®b?p

. M M M
For whole mass of the lamina p = — = = —. Then
A 2a.2b 4ab

—a2n2 (M _ _ _
:>Ixy—4ab.(m):,~1xy—Mab. Here I,, = I,, =0

For the direction of principal axis at the corner A we use Tan26 = - ZIny
xx"lyy
_ 2Mab _ 3 ab _ l -1 E ab
= Tan20 = isz_gMaz = Tan20 = > (bz_az) =0 = . Tan (2 (bz_az))
Question
Show that in a plane rectangular lamina the direction of the principal axes at a
sq (%)
= \a) Y,
corner is given by Tan2¢ Ta?-Tup? .

: : Q.
Solution L /
M.I. about X axis = I, = fob foa(y2 +z?)dm —N -
M.I. about x axis in xy —plane = I, = [ ,y*dm = fob foayz dm ... (i)

. . am dam .
Now by using area mass density p = = axdy I.e. dm = pdxdy

()= 1L, = pfob foayz dxdy = 1,, = %sz using p = 2

A (axb) _ ab
M.1. about y axis = I, = fob fo"l(y2 + z%) dm

M.I. about y axis in xy —plane =1I,,, = [ x%dm = fob foaxz dm ... (ii)

Now by using area mass density p = am _ _dm

A Dy I.e. dm = pdxdy

. _ (b a _ 1.2 - _M_ —
(i) > L,y = Pfo fo x*dxdy = I, = EMa USING P =7 =)~ ab
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Product of inertia = I, = — [ ,xydm = — fb Jy xydm ... (iii)

am

Now by using area mass density p = — = ﬁ I.e. dm = pdxdy

b
(iiD) = Ly = —p [, foa xy dxdy

1 . M M M
= Iy, = —ZMab using p = — = (axb) — ab
For the direction of principal axis at the corner A we use Tan2¢ = PR ZIny
xx—1yy
(Mab)
=>TanZ2¢ = ——F—
EM b2~ 3Ma2
2 (%22
= Tan2¢p = -

1 1
EMaZ—EMbZ
Question

A triangular plate is made up of uniform material and has sides of lengths

a, 2a,+/3a. Calculate Principal M.I. about the 30° corner and find the direction of

the Principal Axis.

Solution S

Consider a triangular plate OAB which has sides of

. qs

- BOR

length a, 2a,v/3a as shown in figure. - REaY

M.1. about x axis = L, = [ (¥ + z?)dm = foﬁa foa(y2 +z%)dm

M.I. about x axis in xy — plane = I, = [ ,y*dm = fo*/ga foayz dm ...

Now by using area mass density p = 2= = -2 je. dm = 2dxdy
dA dedy 2
. V3 V3
O = Lo =50 Jy y? dxdy = Ly = 2 pa
For whole mass p = L Then

A %(ﬁaxa) \/—az

= Ly = 2at (22 5 I, = Ma?

2 v3a?

e wa R
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M.1. about y axis = I, = fR(x2 + z%)dm = foﬁa foa(x2 +z?)dm

M.1. about y axis in xy — plane =1I,,, = [ x2dm = foﬁa fyx%dm ... (i)
Now by using area mass density p = 2= = -2 je. dm = 2dxdy
dA dedy 2
.. p V3a ra V3
(i) =1,y = Efo J, x*dxdy > I,,, = ?pa4
For whole mass p = P ™ =2" Then

A %(\/iaxa) "~ V3a?'

_ V3 2M 1.5
- 1y =20t () =1, i

By using Perpendicular axis theorem I,, = I, + I, = %Ma2

Product of inertia = I, = [ ;xydm = foﬁa Jy xydm ... (ii)
Now by using area mass density p = 22 = 2% ie. dm = 2dxdy
dA dedy 2

.. V3 3
(i) = Ly = gfo afoaxydxdy = Iy = Za“p

M M 2M
For whole mass p = — = T axa)  oat Then
3 2M V3
> Ly =>a*. (\/§a2) = Iy, =2 Ma?. Here I, =1, =0
Ixx Ixy Ixz
Now inertia matrix will be writtenas I = |lyx Ly, Iy,
sz Izy Izz
[ Ma2 L ma? 0
- ? ) 6 3V3 0
_ — = 2
=I1=|"Ma* -Ma®> 0 |=l=7Ma 3B/§ g g
0 0 IMa?
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6 3V3 0 66 3V3p 0 | )
>L=F[3y3 2 o|l=L=[3v38 28 0 usmg,8=gMa2
0O 0 8 0 0 8B
Ixx_I Ixy Ixz
Now for Principal Moment of Inertiawe have | L,y L, —1 I,; | =0
sz Izy Izz I
68 —1 338 0
68—1 3V3
>13v3p 26-1 o =0:(8ﬁ—1)|3ﬁ@), oy g| = 0ewby R
0 0 88-1I
68 —1 3V3B
=>@8—-1)=0; =0=>@8—-1)=0,(I-58)I—-3L)=0
8 —-D ‘3\/@ 26— 1 8 —-D (I =5B8)U—-3p)

=1=88 1=581=3p

> I, =2Ma?, I, =-Ma?, Iy =Ma® using f =<Ma?

For the direction of principal axis at the corner A we use Tan26 = %
xx~lyy
\/§ 2 \/5 2
M Yy
= Tan20 = # = Tan26 = 3 L S Tan26 = 33
M(12—§Ma2 EMaZ 2
ﬁ@:lTan_l(ﬁ):ez:gzl_lso r.
2 2
Question B
Find the M.I. of solid sphere about its any diameter. th
Solution -

Consider a sphere of diameter of length 2a as shown in figure.
Now consider small disk of thickness dzwith mass dm at a distance

z from the origin and radius of disk is y. then

1

M.1. about z — axis (diameter) = I,,, = Ef y2dm

1
= IZZ = EMG,Z
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Theorem
Provethat L=Q=H = Iw
Proof
L=#xXP=%xmb=7FxXmréd =mrias =13
Theorem
Prove that dw = Qd@
Proof
dw = F.dr = F.%dt =F.vdt =F.(w X7r)dt
dw = (r X F). wdt = Q. wdt = Q.Z—zdt = 0d6
Theorem
Provethat P = Qw
Proof

P_dw_dwde_dwde
T dt  dtde  df dt

Using dw = Qd6 implies Z—‘;’ =Qand w = % we have

P =0Qw
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Equimomental Systems

Two systems are said to be Equimomental if they have the same moment of inertia
bout any line in space.

Theorem
Two systems are said to be Equimomental iff

I.  They have the same mass
Ii.  They have the same centroid
lii.  They have the same moment of inertia at the centre of mass.

Proof .
L Ta

Consider two system satisfy the given conditions. i.e. T ' ( =

I.  They have the same mass J 3 \\ |

ii.  They have the same centroid “n e -l
ili. ~ They have the same moment of inertia y , Wﬁt,

at the centre of mass. ‘ M |

Then we have to show these are Equimomental. Let L K j _
M = the mass of each system , AP S

[ = line through common centroid

I' = any line in space parallel to [

h = perpendicular distance between parallel lines

Moment of inertia of first system S, about a line [ with direction cosines (4, u,v) is
I} = 2Ly + p?L,y + V21, + 2Apl,y, + 2uvly,, + 201l

For Principal Axis I, =1

yz = Iz = 0; SO

I = XLy + w2l + V21,
Now M.I. of first system S; about a line [ by using Parallel Axis Theorem

I, =1, + Mh?
U =1
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Similarly M.I. of second system S, about a line [ by using Parallel Axis Theorem
Iy =1, + Mh?

Implies Ly =1y =1, + Mh?

This show that two systems are in Equimomental Condition.

Conversely

Suppose that two systems are in Equimomental. i. e. [,y = Iy =1,

I.  Same mass

Consider M, and M, are the masses of two systems.

Now M.I. of first system S; about a line [ by using Parallel Axis Theorem

Iy =1, + Myh?

Similarly M.I. of second system S, about a line [ by using Parallel Axis Theorem
Iy = I, + Myh?

= I =1y

= I, + M;h? = I, + M,h?

= I, + M{h? = I, + M, h? by Supposition Iy =1, =1,

> M, =M,

ii.  Same centroid

Consider G, and G, be the centroid of two systems.
1, = line passes through the1* system at G,

I, = line passes through the 2" system at G,

I; = M.l of S; about [;

I, = M.l. of S; about [,
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By using Parallel Axis Theorem M.I. of S; about [,

I, =1, + Md>?

Now I; = M.I. of S, about [,

I, = M.l. of S, about [,

By using Parallel Axis Theorem M.I. of S, about [,

I, = I, + Md?

=1, =1 + Md? + Md? using I, = I; + Md?
= 2Md? =0

=d?’=0

= |m)|2 =0

= |m| =0

= G, =G,

This shows that systems have same centroid.

ili.  Same moment of inertia at the centre of mass.

As both systems are Equimomental and have the same principal axis, therefore
principal moment of inertia remains same for both systems.

Momental Ellipsoid

A surface all of whose cross sections are elliptical or circular is called ellipsoid.
For momental ellipsoid the moment of inertia about any line L is equal to 1.

In this case direction cosines of line L are (4, u,v) = (x,y,z)
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Equation of Momental Ellipsoid

We know that the moment of inertia of a rigid body about line a line L having
direction cosines (4, u, v) is given by

I = 2Ly + WPl + V2, + 22ulyy, + 2001y, + 2001, (1)

Let % be a vector along a line L and P(x, y, z) be a point on L such that OP = %

and |OP| = — with OP = xi + yj + zk then

Direction cosines of OP are P(ﬂ"“)
v

L=c==xVll, =2==yVI,I; = — = zVI]

1= for = ¥Vl = gy = VI ks = g = 241 / N

Since the direction cosines of line L and OP are same so =

/1=x\/7,u=y\/7,v=2\/7 &/

Then equation (1) becomes

I = x*1L, + y*1L,, + 211, + 2xyll,, + 2yzIl,, + 2zxI1,,
X1y + 21,y + 221, + 2xy1,y + 2y2zl,, + 22x1,, = 1
This is the required equation.

Momental Ellipsoid of the Centre of Elliptical Disk

We know that

_1 2 _1 2
Ixx _ZMb 'Iyy —ZMa

I, = %M(a2 + b?) by Perpendicular Axis Theorem

For Product of inertia

Ly = [ ;xydm = 4p [[ xydydx using area mass density formula
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2

2 2
Since x— + y— + Z— = 1 is an equation of ellipsoid for elliptical disk, so putting

2

z—Oweget—+—=1

sy?=p(1-5)=y=1+b [(1-%)

a

Then I, = 4pf f xy dydx

= Ly, = 4p f_aa 21, (1_£) dx

> Ly =2p [ [p*(1-5) -2 (1-5)] dx
= ey =0
similarly I,,, = 0,1, =0

Now by using equation of momental ellipsoid

XLy + Y21y, + 221, + 2xyly, + 2y2zL,, + 22x1,, = 1

x2 GMbZ) +y2 GMaZ) + 72 GM(UL2 + bz)) +0+0+0=1

1 4
:> + +Z ( +b2) Ma?b?

=> + +z (1 +b12) Constant
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Momental Ellipsoid of the Uniform Rectangular Parallalopiped

We know that for a Parallalopiped with dimensions Y, N i
. c
0<x<2a; 0<y<2a; 0<z<2a o e~ -
’ 20 I-‘)b i
We have _ L8 H
4 4 " |
Ixx = EM(bZ + CZ);Iyy = EM(aZ + CZ) T e e

L, ==M(a? +b?); I, = Mab, I, = Mbc, I, = Mca

Now by using equation of momental ellipsoid

XLy + Y21y, + 221, + 2xyly, + 2y2zL,, + 22x1,, = 1

o 2 (gM(bZ + CZ)) 4 y2 <§M(a2 + c2)> + 72 <§M(a2 + b2)> + 2xy(Mab) +
2yz(Mbc) + 2zx(Mca) = 1

= 4(b? + c*)x?* + 4(a® + ¢*)y? + 4(a?* + b*)z?* + 6abxy + 6bcyz +
6zxab = Constant

Question

Write Inertia Matrix of Equation of Momental of the form
2x% +3y%?+5z%2 —xy + 2yz+5zx =3

Solution

Given that 2x% + 3y? + 5z2 —xy + 2yz + 5zx = 3

22442 452,2_ 1 2 L
=Xty ozt —oxy+oyz+oax 1

. . 2 5 1 1 5
Comparing with I, = by =1L, =5 Ly=—2 1y, =3 Ix =7
2 15
Ixx Ixy Ixz 3 6 6
. . . . . 1 1
Now inertia matrix will be written as I = [lyx Iy Lz|=|-= 1 1
Ly zy lzz 5 1 5
6 3 3
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Question
Find an Equimomental system of particles for a uniform rod AB of mass M.
Solution

Consider a uniform rod of length 2a. if a be the centre of mass of the rod then let
the mass m, M — 2m, m are located at points A,O,B respectively.

-
. "\‘9
o DA~ i —_
&—-—"]‘M l+ &)
"'_*_&E:;,o) owL

The system of particles will be Equimomental with rod if its moment of inertia
about any line is equal to the moment of inertia about the same line then M.I. about
y — axis (axis passing through the centroid of the rod) is

I, ==Ma?

And the moment of inertia of the system of particles about y — axis is
I, =M(—a)*+ (M —2m)(0)? + ma? = 2ma?

If both systems are Equimomental then I; = I,

=>§Ma2 = 2ma? =>m=%

Hence if we take two particle each of mass m = % at end points of rod and

particlesof mass M —2m =M — % = %M at the centre of the rod then this system
of three particles will be in the Equimomental with the given rod of mass M.

{
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CHAPTER

EULER EQUATION
OF MOTION OF
A RIGID BODY

Coriolis/ Coriolis Force

The Coriolis force is an inertial or fictitious force that acts on objects in motion
within a frame of reference that rotates with respect to an inertial frame. In a
reference frame with clockwise rotation, the force acts to the left of the motion of
the object.

Infinitesimal (So Small) Rotation of a Body

Consider the change in the position vector 7 of the point M produced by an
infinitesimal anticlockwise rotation through an angle d¢ about the axis of rotation
as shown in figure.

Since we know that [ = (radius)d .............. (1)

Therefore from figure radius = NM = rsinf ,l = dr ,0 = dg

(D) =>dr=rsinfdp > dr =|dp X7|=>dri=|dp X7Fli=>dr =do X7
ar _ de

dt dt 4 4
il -
In operator form = dt( ) = — X ( )

XT=2UV=wXT

d -
_(pr
dt

] - dA
Generalized for a vector A we have = — =
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Question (Addition of Angular Displacement and Velocities)

Show that finite rotation of the rigid body do not commute but infinite time
rotation commute. Also show that sum of angular velocities is an angular velocity.

Proof

Consider the rotation of a rigid body about an axis passes through a common point
O. Let a particle P with position vector 7 be displaced through an angle §6, about
the axis specified by the unit vector é;. Then the linear displacement will be
H=T7+dr (1)

> =74+ (60,8, X7) ... (2) where d7 = 60,8, X7

Let the same particle naming Q with position vector 7; be displaced through an
angle 66, about the axis specified by the unit vector é,. Then the linear
displacementwillbe 7y, =7 +d7y,  .ocooeiiiiinl. (3)

=7, =1 + (60,8, X7) where d7, = §6,é, X 7}

= iy =7 + (80,8, X 7) + (86,8, x (7 + (86,6, x 7)) using (2)
ST, =7T4+080,8 XT+ 80,8, X1+ 60,8018, X (6, XT) ...ooooiiiininl. 4)
If we reverse the order of rotation then

= 7y =7+ 00,8, X T+ 80,8, X T+ 80,80,8; X (63 XT)  vvvevveereersn) (5)



visit us @ Youtube | Learning with Usman Hamid

Comparing (4) and (5) we have 7, # 7,; (Rotation is not Commute)

If 660,, 66, are finite then the sum of angular displacement is not same. In other
words finite displacement do not satisfy the vector law of addition. i.e.

506 + 56,8, + 56,

If the angular displacements are infinitesimal (very very small) then 66,60, = 0
then from (4) and (5) we have #, =7,; (Infinitesimal Rotation is Commute)
I.e. Angular displacement satisfy the vector law of addition

When the angular displacements are infinitesimal then we have
Flz - 7;)21 - 7;) + 661@1 X F‘l‘ 692@2 X ?
FlZ - F - 661@1 X F‘I‘ 592@2 X F

67;) - 591@1 X 7;) + 692@2 X F

-

I 5 _ 1. 8015 3 4 86,5 o 2
Moo 5 = MMgpso 77 €1 X T T MMges0 7 €2 X T

Which shows the addition of angular velocities.
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In order to derive the relationship between fixed and rotating frames of reference,
we will study the following theorem;

Rotating Axes Theorem (Find velocity in a moving coordinate system)
Or Rotate of Change of Vector in a Rotating Frame

Or Transformation Equation of the Time Derivative between the Body
Fixed and the Space Fixed coordinates

Or Relationship between the Fixed and the rotating coordinates

If a time dependent vector function Ais represented by /Tf and /Tr in fixed and
rotating coordinate system, then

(%), = (&), + @

Where it is understood that the origins of the two systems coincide at t = 0.

Proof

Let Oxyz be a body fixed coordinate system for a rotating body and Ox'y'z’ be a
space fixed coordinate system. Let P(x, y, z) be a position of particles in both
frames.

Bt Ave e e
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For body fixed system;

Let # = xi + yj + zk be a position vector in xyz — system with , j, k constant unit
vectors then

ar dx .  dy .  dz s
&) =425 2%
(dt)r dt actl T

For Space fixed system;

Let # = xi + yj + zk be a position vector in x'y’z’ — system with i, j, k changing
unit vectors with respect to time then

(Z—f)f = % (xi +yj+ zlAc)

ARy (@xp g dve gy (a4 dk
(@), = @i+ T+ TR + (e 4y +2g)

ary _ (dr at 4j dk
(dt)f - (dt)r + (x a Va1 dt)

- dA) —_ ra H d,\ brd n
Using operator form == = & x A implies d—; =@ %1,

>
I
€l
X
&

Il
gl
X

>
YIS

Ql&
by

(), = (), + [x@x D +y@x )+ 2(@ x B)
(%)f _ (%)r + @ x (xt + yj + zk)

ar ar - >
(E)f = (&), +@x7

Hence by replacing # with 4, we have (%)f = (i—f) +@WxA,
r
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Question Show that using operators, the fixed and rotating coordinate systems can
be related as Dy = D,. + w X, where D and D, stands for % in the fixed and
rotating coordinates systems.

dA

Solution:  Using rotating axes theorem (E)f = (d—A

dt)r+w><A
> DiA=DA+@Bx A= DiA= (D, +&X)A=>D; =D, + & x
Question

Show that the angular acceleration & is the same in both the coordinate systems.

Solution:  Using rotating axes theorem (d—A)f = (

dA) — rd
—) +w XA
dt

dw dw — . — dw dw N R
= (@), = (@), +3x3=(3) =(3), o @),=@),

T

Hence the angular acceleration & is the same in both the coordinate systems.
Question

Show that the centripetal acceleration term @ X (w X 7) can be written as w?p
where p is the distance of the particle from the axis of rotation.

Solution:
W X T = wrsinfn

—

=> o X (0 X7) = wrsinf(w X )

> o X (0 X7) = wrsind(wlsin90°) —mi:x{m % 1)
= o X (0 X7) = w?rsind

> o X (WX7)=w?p
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Question

A coordinate system OXYZ is rotating with angular velocity @ = 5 — 4] — 10k
relative to a fixed coordinate system OXYZ both systems having the same origin.
Find the velocity of a particle at rest inthe 0X'Y'Z’ system at the point (3,1, —2)
as seen by an observer in the fixed system.

Solution
Given that @ = 5i — 4] — 10k and we to find ¥, at (3,1, —2)

ar

Using rotating axes theorem (%)f = (dt

) +w X7
T

dF df — - - - — -
:>(—) =(—) +WwXr=>v,=v,+wXr
S b

dat dat
SV =wWXT U, = 0 as particle at rest in 0X'Y'Z’ system
ioj k A
>V, =[5 —4 —-10|=(—4z+ 10y)i+ (—10x —52)j + (5y + 4x)k
X y z

= (Fg)z1,-2) = 181 —20f + 17k
Question

A coordinate system OXYZ is rotating with angular velocity @ = costi + sintj + k
relative to a fixed coordinate system OXYZ both systems having the same origin.

Position vector of the particle is given by # = costi + sintj + tk. Determine the
apparent and true acceleration of the particle.

Solution

Given that @ = costi + sintj + k and # = costi + sintj + tk
We to find d;, and a,
For d,

> 3 av, _ d*t

d N . A T el I T T >
Uy = d—; = costl — sintj + k and then a;, = — = 7 = —sintl —costj + Ok
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For d

dA

dat

Using rotating axes theorem (Z—f)f = (

)r+<T)><A

dT_Z d'F — - - - — - - -
=>(—) =(—) +WXT=>V,=V,+wX7r USINgQA=T
dt/¢ dt/p

i j ok
cost sint 1
sint cost 1

= ¥ = (costi — sintf + lAc) +

= ¥, = (costi — sintj + k) + [(tsint — cost)i + (sint — tcost)] +
(cos?t — sint)k|

= ¥, = (cost + tsint — cost)i + (—sint + sint — tcost)j + (1 + cos?*t —
sin?t)k

= ¥ = (tsint)i + (—tcost)] + (cos?t + cos?t)k
= ¥, = tsinti — tcostj + 2cos*tk

Again Using rotating axes theorem (d—A)f = (d—A) +wXxA
r

dt at
d‘l_js d'l_js — - - - — - - -
=>(—) =(—) +w XV, >a,=0a, +w XV usingA =v
. ) i j k
= dg = — (tsintl — tcost] + 2cos?tk) + |cost  sint 1

tsint —tcost 2cos?t

= dg = [(tcost + sint)i — (—tsint + cost)j — 4costsintk]| + [(2cos?tsint +
tcost)i + (2cos®t — tsint)f + (—tcos?t — tsin?t)k]

= dg = [(tcost + sint + 2cos?tsint + tcost)i — (—tsint + cost + 2cos3t —

tsint)j + (—4costsint — tcos?t — tsin?t)k|

= d,; = (2tcost + 2cos?*tsint + sint)i + (2tsint — 2cos3t — cost)j +
(—4costsint — t)k
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Equation of Motion in terms of a Rotating System
Equation of Motion in Space Body and Fixed Body System

Let Oxyz be a body fixed coordinate system for a rotating body and Ox'y’z’ be a
space fixed coordinate system. Let P(x, y, z) be a position of particles in both
frames then

{

F = F+2m(@ x ,) + m(& x (& x 7))
F, = E. + 2(Coriolis Force) + (Centrifugal Force)
Proof

Let Oxyz be a body fixed coordinate system for a rotating body and Ox'y’z’ be a
space fixed coordinate system. Let P(x, y, z) be a position of particles in both
frames.

R

For body fixed system;

Let # = xi + yj + zk be a position vector in xyz — system with i, j, k constant unit
vectors then

ar dx,. dy .  dz s
(—) =Z1+27+ =2k
at/, — dt = dt dt
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For Space fixed system;

Let # = xi + yj + zk be a position vector in x'y'z’ — system with i, j, k changing
unit vectors with respect to time then

ary _d sy oay ) = (e B, dzp at 4, dk
(dt)s_dt(XL+y]+Zk)_(dtl+dt]+dtk)+(xdt+ydt+zdt)

AR\ (Y (4, dk
(dt)s N (dt)r + (x atVat? dt)

. dA) — 2. - di — N
Using operator form == = & x A implies d—; =@ %1,

>
Il
€l
X
&9

Il
el
X

>
SYfS

&l&
by

(Z_i)s — (Z_i)r + [x(@ % D) + y(d %)) + 2(& x k)]

d?‘ dT_') — A A ™ _ d_? — -
(E)s = (E)T+wx(xl+y]+zk) = (dt)r+w><r

-

Vg =V, +w X T thisis the relation between velocities of fixed body and space body system

. e dA dA R
Generalized for a vector A we have (—) = (—) +w XA
dt/ dt/,
av av oS >
:(ﬁ) =(ﬁ) + w X Vg Put A = v,
at /g at /,
d'l_js d - — —> - — —> - - — -
:(E) =(E(vr+a)><r)> +wX W, +wXr) VU=V + @ XT
S r

:asz(ﬁ) +<%(5x7)> + WXV +w X (WX7T)
r r

wx—+—><F) FBXD 4@ X (@ XP)
r

—

- - — - — - — — - — dw
>d; =0, +OXV,+@0 XV +w& X (wXT) '.'a)=Constant;E=0

> ds=d, +2(@ X B) + (& %X (@ % 7))
this is the relation between accelerations of fixed body and space body system
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= mds = md, +2m(@ X B,) + m(@ x (& x 7))

{

= F, = F +2m(@ x 3,) + m(& x (& x 7))

{

= F, ﬁr + 2(Coriolis Force) + (Centrifugal Force) required

Where Coriolis Forces and Centrifugal Forces are Fictitious/Newtonian forces.
Coriolis Force is a negligible force. It moves the body up and down during rotation
of a body about its axis.

Centrifugal force is reactive force of the rotating system which produced by
increasing the centripetal force. Centrifugal force is directed away from the centre
of rotation. Coriolis force is perpendicular to the velocity of moving particles.



visit us @ Youtube | Learning with Usman Hamid

Coriolis Theorem

Let # = xi + yj + zk be a position vector in x'y'z' — system with i, j, k changing
unit vectors with respect to time then

ary _d sy oay ) = (e B, dzp at 4, dk
(dt)s_dt(XL+y]+Zk)_(dtl+dt]+dtk)+(xdt+ydt+zdt)

AR\ (Y (4, dk
(dt)s N (dt)r + (x atVat? dt)

. dA) — 2. - di — N
Using operator form == = & x A implies d—; =@ %1,

>
Il
€l
X
&9

Il
el
X

>
SYfS

&l&
by

(Z_i)s — (Z_i)r + [x(@ % D) + y(d %)) + 2(& x k)]

d?‘ dT_') — A A ™ _ d_? — -
(E)s = (E)T+wx(xl+y]+zk) = (dt)r+w><r

-

Vg =V, +w X T thisis the relation between velocities of fixed body and space body system

. e dA dA R
Generalized for a vector A we have (—) = (—) +w XA
dt/ dt/,
av av oS >
:(ﬁ) =(ﬁ) + w X Vg Put A = v,
at /g at /,
d'l_js d - — —> - — —> - - — -
:(E) =(E(vr+a)><r)> +wX W, +wXr) VU=V + @ XT
S

T

:asz(ﬁ) +<%(5x7)> + WXV +w X (WX7T)
r r

wx—+—><F) FBXD 4@ X (@ XP)
r

—

- - — - — - — — - — dw
>d; =0, +OXV,+@0 XV +w& X (wXT) '.'a)=Constant;E=0

>d,=d, +2(@%x7V,) + (@ x (@XT))
this is the relation between accelerations of fixed body and space body system
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Equation of Motion of a Particle relative to an observer on Earth’s surface

Assuming the earth to be sphere with centre at O rotating about Z — axis with a

angular velocity @ = wk neglecting the effect of earth’s rotation about sun, XYZ
can be taken as inertial frame.

Since the rotation of earth about its axis is with constant angular speed so =0
The acceleration of Q(origin of moving system) w.r.to O is centripetal, so

R=&8x (@ x7D

, e = Mm
By Newton’s Law of Gravitation F=-G P
=>mdz_ﬁ—_GM_m_)=>dz_ﬁ—_G£_)

dt2 p3 p de2 psp
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Since%=R+?+(w‘"xf)+2(5x?)+(5x(axf))

>F=20 R (3x7)-2@x7) - (3% (@xD)
:?=%—;—2(5x?)—(&3x(a_}x?)) since @ = 0
=>7'7'=—G£4—3,5— X (W XT7T)— Z(er) (wX(a)Xr)) using R ZZTﬁ

Where other forces acting on mass like air resistance etc are neglected
Define g = —Gf—gﬁ— ® X (W X 7) then
>7=g-2(@x7)— (@%@ x7))

Near earth surface w x (w X 7) can be neglected, so
=>7=g¢-2(&8x7)

Which is required equation to a high degree of approximation.
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Acceleration in a Moving Coordinate System

Let 7 be a position vector in XYZ — system (in space) then

D7 = Dy (Ds7) = Dp (D7 + @ X T)

X

7=(Dy+ @& X)(Dp7+ @ XT)
Dftt = Dpy(Dp? + & X 7) + & X (D7 + & X 7)
Dit =DA7 + Dy (WX ) + WX DppP + B x (@ X7) ... (1)

Dy (@0 X7)=Dpw X7+ @ X Dy, 7

So the acceleration of particle relative to the moving system is

d*¢ _ d?x,  d?y .  d’zg
2 = ae bttt toak
dtz  dt dt dt

And the acceleration of particle relative to the fixed system is

a7 a7 do _ - — ar - - o
( 2) =( ) +—><r+2w><(—) +w X (wXT)
atz/ ¢ at?),, dt at/)m



visit us @ Youtube | Learning with Usman Hamid

Question: Express the components of equation of motion in terms of rotating
coordinate system.

Solution:  Rotating coordinate system is a space coordinate system, so we have

-

F=mas=>ﬁ=m(‘jl—f)s .................. (1)

-, -

Using rotating axes theorem we have (d—A) = (d—A) + w X /Tr
S

dt
av av
> (2) =(5) +@ x5,

=

dv
dt

(1)=>ﬁ=m(( )r+5><ar) .................. )

P Fit F i+ Fak o () =y 2s s
Now F = F i+ F,j + Fsk ; (dt)r_ D2y g

T
AISO 6 X 1_7) B (,l)l (1)2 (1)3
V1 VU V3

@ X T = (w3 — w30,)1 + (W3V; — 103)f + (W1, — w0,k

dvl ~ dvz A

(2) = Fi+ F,j + Fsk = m(?l +—"] +%I€ + (w,v3 — w3yl +
(w3v; — W1 V3)f + (w0, — wzvl)i‘\f)
> Fi+Fj+Fk=m [% + (w,v5 — w3v2)] i+m [% + (w3v, — w1v3)]j +

m [% + ((1)11]2 - (1)2171)] IE

4 .
Fi=m % + (wyv3 — W3V3)
d ] : :
F,=m % + (w3v1 — w1V3) Required equations
vy .
F;=m — T (w1v, — W,yv4)
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Euler’s Dynamical Equations of Motion for a Rigid Body Fixed at a
Point/General Motion of a Rigid Body

Consider a rotation of a rigid body (earth, sum, moon or other galaxy system) in
two systems. i. Body fixed system, ii. Space system

Body rotates in the space system. Then the angular momentum of a rotating body
w.r.to the origin is given by

L=7%XP=7Xmv

drL d dr av
S>S—=—Fxmd)==—xXmv+rxXm—=m(V XV)+7Xmd

dt dt dt dt

dz - = dz -

i _ 2w F (—) R (1)

dt dt/ s

By using rotating axes theorem (2—?) = (d—A) +BXA
S

R (g)s _ (z—f)r +BXL 2)

Aswe knowthat L = I@

Ll 11 0 0 wl Ll 11(1)1
:H: 0 I o][wZI:[LZIZ[IZwZI
L3 0 0 13 w3 L3 13(,()3

= Ll = 11(,01 ) LZ = 12(1)2 ; L3 = 13(1)3 ..................... (3)

drL do . ) )
And —~ = Id—‘f where | is constant in this case.

drL KR R
(E)r =lw =I(w11+w2]+w3k) ..................... 4)
N
Also XL =|w, w, w;
Ly Ly Ls
= 5 X Z = (szg - (1)3L2)i + (0)3[;1 - (1)1L3)j + (wlLZ - szl)iE
= 6 X Z - ((1)2[3(1)3 - (1)3]2(1)2)2 + ((1)3]1(1)1 - (L)113(U3)j + ((1)112(02 - (1)211(01)]2
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= B XL = [wyws(Is — L)+ [wyws(I, — )] + [wyw,(T, — Ik ... (5)
Using (1), (4),(5) in (2)

5 (g) = 7 = (@11 + of + @3k) + [0aw3(Is — )]0+ [wrws(I; — I5)]] +
[wiw, (I — 11)]12

= Tli + sz + T3i€ = [I(L)l + (1)2(1)3(]3 - 12)]i + [IC()Z + (1)1(1)3([1 - Ig)]j +
lws + ww,(I; — )]k

On comparing we have

71 =@ + w0313 — 1)
T, = @y + wyw3(I; — I3)
T3 = lwz + ww,(I; — 1)

These are called Euler Dynamical equations of motion.

Symmetrical Top

A rigid body is called Symmetrical Top if its two Principal Moment of Inertia are
equal ie 11 - 12 * 13 or Il * 12 - 13.

Spherical Top

A rigid body is called Spherical Top if any three mutually perpendicular axes can
be selected as the Principal Axes.i.e. I, =1, # I3or I} # I, = I;.

Remark

» Arrigid body is called Oblate Symmetrical Top ifI; =1, < I5.

= Arrigid body is called Prolate Symmetrical Topif; < I, = I;.

= Arrigid body is called Rotator if I; = I, # 0 but I3 = 0.

= The motion of an object in which linear and angular velocities are in the same
direction (or Parallel) is called Screw Motion.
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Force Free Motion of a Symmetrical Top

Free Rotation of a Rigid Body with an axis of Symmetry

Torque Free Motion of a Symmetrical Top

Euler Equation of Motion for Symmetrical Case

Consider a symmetrical top as shown in figure. Symmetrical

Top rotate about z — axis. In the case of principal axis we have “”":';)//

2 WU SURIRT 2 T S

a condition for inertial; = I, =1 # I5.

We have to find angular velocity « by using
Euler Torque Free Equations. i.e.

T, =L, +wws(I3—1,)=0 ... (1)
T, = Lo, +wiws(l; —15)=0 ... (2)
T3 = Lw; +ww, (I, —1,)=0 ... (3)
Putl; =1, =Iin(3)wegetl;w; =0

:137&0;(;)3:0:)(1)3=C

Putl, = I, = I in (1), (2)

(1) :I(Ul +w2w3(13 —I) = O = (1‘)1 +w2w3 (?) - 0

S o +kw, =0 oo, (4) using w, (IT) =k

> w, —kw, =0 ... (5) using ws (?) =k

= iw, —itkw, =0 ................. (6) multiplying (5) by i
Adding (4) and (6)

= d)l + id)z + sz - lk(l)l == 0 = %(wl + lwz) - lk(,()l - izsz = 0
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da . : .
=>d—6;—1k0(=0 using w; +iw, = «

da _ . da _ . ; ikt+A ikt
= —=ika=[—=ik[dt=>ha=ikt+A=>a=e = a = Be

= a = B(coskt + isinkt) = w; + iw, = Bcoskt + iBsinkt

= w, = Bcoskt ; w, = Bsinkt

These are parametric equations of circle of radius B = m

Since we know that @ = w41 + w,] + wsk therefore w? = w? + w? + w?
= w? = B2 + (? using B = Jw? + w? and w; = C

= w = VB2 + C? thisis the equation of cone (Symmetrical Top)

Results

= Angle of the Cone/ Symmetrical Top

In triangle OPQ
B /w%+w§ L fa)%+a)§
w3 w3

tan@zz——:eztan‘

= Time Period of the Cone/ Symmetrical Top
21 =t = 27l
ag(%) T (3-Dw;
= Frequency of the Cone/ Symmetrical Top
. _1 _ (Iz-Dws
Since f = - = f = —_
» Kinetic Energy of the Cone/ Symmetrical Top

SinceK.E=T =%5.E

Sincet=27"=>t=

=>T= %(wli + w,j + w3§). (Ila)li + Lw,j + I3a)312)

5T =1 (Lw! + Lo} + o) = LU(! + 0} + wd) usingl, =1, =1
> T == (IB? + Lw})

= 2T = IB? + L3
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= Angular Momentum of the Cone/ Symmetrical Top
Since L = Lwiil + Lw,j + Lwsk
= L2 = Pw? + 2w + w3
= L2 = *(wf + w3) + w5  usingl, =1, =1
= L? = IB? + [ w3

Radius B and Angular Velocity w3 using Angular Momentum and K.E. of the
Cone/ Symmetrical Top

Since we know that

2T =IB*> + w3 ................ (1)

L[> =IB*+2w% ... ()
Multiplying (1) by I

2IT = I’B? + [ ;w3  ................ (3)
L[> =IB*+ w3 ... (2)

Subtracting (3) and (2) we have

D = 2IT—1?
3 U1y

Multiplying (1) by I5

2,T =1LB%> + 12w3  ................ (4)
[?=IB*+2w% ... (2)

Subtracting (4) and (2) we have

_|2I3T-12
B = \’ I(Iz=1I)
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Example

A body moves about a point O under no force (torque free). The principal moment
of inertia at O being 3A,5A,6A. Initially the angular velocity has components
w; = w, w, = 0, w; = w about the corresponding principal axis. Show that at time

3w wt . ax 1 -1(x
Ftanh = if [ —— = ~tanh (a) Also show that the body

rotates about the mean axis where t - oo

t, we have w, =

Solution:

Given that the principal moment of inertia are I; = 34,1, = 54, I3 = 6A. Initially
the angular velocity has components w; = w, w, = 0, w; = w about the
corresponding principal axis. In the torque free case the Euler equations are

Lo + ww3(I3 — 1) =0

Lw, +wws(l; —13) =0  ................ (1)
Lws; +ww,(I, —1;)=0

Put I; = 3A,1, =5A4,1; = 6Ain (1)

3Aw; + wyw3(6A —54) =0

5Aw, + wiw3;(3A—64) =0

6Aw; + w;w,(54A—-34) =0

After simplification we get

30‘)1 - _(1)2(1)3 ................. (2)
5(1‘)2 = 3(1)1(,03 ................. (3)
3(1.)3 = —(1)1(1)2 ................. (4)

Multiplying (2) by 3w, and (3) by w, then adding we have 9w;w; + 5w,w, =0
On integrating gwf + %w% =C

= 9w +5w5 =2C 2 9w? + 5w =C;  cooviveiannnn, (5)
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Initially using t = 0, w; = w, w, = 0 we get C; = 9w?

(5) = 9w? + 5w = 9w? :w%+ga)§ = w?

Multiplying (2) by w; and (4) by w4 then subtracting we have w,;w; — wzw; =0
On integrating %w% — %w% =C

Sw—wi=202w—w5=Cp .coovevveinnn, (7)

Initially using t = 0,w; = w, w3 = wwegetC, =0

(7) > w? — 0% =0= w! = w?

= W1 = W3 e (8)

Using w; = w5 in (3)

. . . 5 . 5
= 5d); = 3w w3 = 50, = 30f = 5@, = 3w® — w3 Using W} = w? — T w;

. _ 2 2 E dw, dw, _
= 15w, = 9w 5w2:>5f fdt=>3[—F—=t+C

9 2

2 2 3
Z z ( ) .2
0T =) w3

d 1
~ = —tanh™! (f)
—-X a a

a2

= 3——tanh™! <;‘)—2> =t+C using
=) Em J

Initially using t = 0,w, =0, wegetC =0

= %tcmh‘1 ((iwz )> =t > tanh™! <(in )> = % = (iwz) = tanh (%)
\/Ew \/g(x) \/ga)
3w wt : wt ot
= w,(t) = Etanh (ﬁ) after time t — (%t _ eg_e_ﬁ
eVs+e V5
3w .00
= w,(00) = Etanh (f) when t - oo L
tanh (E) = — zot
3w 1+e V5
= wy(e0) =22 (D) 3
tanh (ﬂ) =1 __
V5 1+e~®
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3
= Wy (o) = T(g

Since w? = w? — > w3

= w1(0) = Vw? — w? = w1(0) =0
= w3(0) =0 since w; = wzand t » o
Question

A body moves about a point O under no force (torque free). The principal moment
of inertia at O being 6A,3A,A. Initially the angular velocity has components
w; = n,w, = 0,ws; = 3n about the corresponding principal axis. Show that at

time t, we have w, = V5ntanh(+/5nt). Also show that the body rotates about the
mean axis where t — oo

Solution:

Given that the principal moment of inertiaare I; = 64,1, = 34,15 = A. Initially
the angular velocity has components w; = n, w, = 0, w; = 3n about the
corresponding principal axis. In the torque free case the Euler equations are

Lw, +w,w3(I3 —1,) =0

Lw, +wws(; —13)=0 ... (1)
Lw; + wyw,(I; =) =0

Put I, = 64,1, = 34,1; = A in (1)

6Aw, + wy,w3(A—34) =0

3Aw, + wiw3(6A—A) =0

Aws + wiw,(34A—64) =0

After simplification we get
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3w = WeW3 e (2)
3(1)2 —_ _5(1)1(1)3 ................. (3)
(1.)3 = 3(01(1)2 ................. (4)

Multiplying (2) by 5w, and (3) by w, then adding we have 5w;w; + w,w, =0
On integrating ga)f + %w% =C

S50+t wi=2C>5wi4+w5=C,  coeiiiiiin, (5)

Initially using t = 0, w; = n, w, = 0 we get C; = 5n?

(5)=>5w%+w§=5n2=>w%+§w§=n2

Multiplying (2) by 3w, and (4) by w5 then subtracting we have
Qwiw; —wzwz =0

On integrating gw% — %w% =C

9wl -wi=2C>9% 7 —wi=C, .o (7)
Initially using t = 0,w; = n,w; =3nwegetC, =0

(7) 2 9w? — w3 = 0 = 9w? = wl

= 3W; = W3 i (8)

Using w3 = 3w, in (3)

= 3d)2 == _5(1)1(1)3 = 30:)2 == _150)% = 0:)2 == _50)%
: : 1

= w, = =5 (n2 —iw%) using w? = n? —Ea)ﬁ
: . d 2

= wy, = —5n? + ws > w, = ;;2 =—[(\/§n) —a)ﬁ]

d(A)Z

L B

Ve ="1
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1 -1 w2\ _ _ . dx l -1(x
= —=—tanh (E) =—t+C using [ —— = —tanh (a)

Initially using t = 0,w, =0, wegetC =0

1 “1( %2 ) _ _ -1( X2 ) _ _ P2 _ —
= = tanh (\/En) = —t = tanh (\/En) = —/5nt = N tanh( \/gnt)
= w,(t) = VSntanh(—/5nt) after time t

b \/g _ e—\/gnt_ex/gnt
= w, () = V5ntanh(—V/5n.o)  whent - o tanh(=V5nt) = o
= w, (™) = \/gn(—l) tanh(—/5nt) = ::2§::1
= Wy (o) = —/5n tanh(w) = Z::: =-1
Since w? = n? — 2 w?

5

= w; = ,nz —%wzz = w;(0) = \/nz —%(—\/gn)z

= w,(0) = an —%x 5n?

= w,(0) =Vn? —n? = w1(0) =0
= w3(0) =0 since w; = 3w, and t - o«

Hence prove that the body rotates about the mean axis where t — oo
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Question

An ellipsoid free to move about its centre is set in rotation at t = 0 with component
of angular velocity (n, 0,3n). The principal M.I. at the centre are 6A,3A,A. Find
the component of angular velocity after time ‘t” and show that for t — oo velocity

is nV/5.
Solution:

Given that the principal moment of inertiaare I, = 64,1, = 34,15 = A. Initially
the angular velocity has components w; = n, w, = 0, w3 = 3n about the
corresponding principal axis. In the torque free case the Euler equations are

Loy +w,w3(I3 —1,) =0

Lw, +wws(l; —13)=0 ... (1)

Lws; +ww,(I, —1;)=0

Put I, = 64,1, = 3A,1; = Ain (1)

6Aw, + w,w3(A—34) =0

340, + wyws(6A—A)=0 (A%)
Ads + w0, (34— 64) = 0

After simplification we get

3(1‘)1 = (,L)Za)g ................. (2)
30‘)2 == _5(1)1(1)3 ................. (3)
d)g = 3(1)1(1)2 ................. (4)

Multiplying (2) by 5w, and (3) by w, then adding we have 5w;w; + w,w, =0
On integrating gwf + %w% =C
S5wit+wi=2C=>5wi4+w5=C  .oiiiiii, (3)

Initially using t = 0, w; = n,w, = 0, w3 = 3n we get C; = 5n?



visit us @ Youtube | Learning with Usman Hamid

(5) = 5w? + w3 = 5n? = 5w? = 5n? — w3

= W, = %m ................. (6)

Multiplying (2) by 3w, and (4) by 5w then subtracting we have
w,w, + Swizwz =0

On integrating ga)ﬁ + gaﬁ =C

= 9wi +5w5 =2C > 9w5+5wi=C, .oooiiiiiini, (7)
Initially using ¢t = 0,w; = n,w, = 0,w; = 3n we get C, = 45n?

(7) = 9w3 + 5w3 = 45n? = 5w3 = 45n% — 9w}

= W,y = §J45n2 — 902 e, (8)
Using (7), (8) in (A*)

= 3A(l)2 + 0)1(1)3(614 - A) - 0 = 3A(l)2 + 5Aw1(l)3 - 0

= 3w, = —Swiw; > W, = —g X %\/Sn2 — w2 % g\/45n2 — w3
. - _ 2 2 . _ da)z - _ 2 _ 2 da)z - _

> Wy = —5N" +w; D Wy =—== [(\/gn) a)z] = f—(«/ﬁn)z—wg =—[dt
1 —1({ w2\ _ _ . dx l -1(%

= —=tanh (E) =—t+C using [ —— = —tanh (a)

Initially using t = 0,w, =0, wegetC =0

1

-1( %2 = _ -1(%2) = _ W2 _ —
= = tanh (\/En) = —t = tanh (\/En) = —/5nt = Ton = tanh( \/gnt)
= w,(t) = V5Sntanh(—V/5nt) after time t
b \/g _ e—\/gnt_e\/gnt
= w, () = V5Sntanh(—V5n.)  whent - o tanh(=Vsnt) = i E
= w,(0) = V5n(—1) tanh(—5nt) = oo
= Wy (o) = —\/gn tanh(o) = z::: =-1
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(6) > w, = %\/Sn2 — w3

= w, = %\/SnZ - (\/gntanh(—\/gnt))z > w, = %\/SnZ - (\/gntanh(\/gnt))z

= w; = nSech(V/5nt)

> w, =N when t — oo

(8) = w; = £+/45n% — 9032

= Wy = %\/45712 -9 (\/gntanh(—\/gnt))z

> w; =1 \/ 45n2 — 9 (\/gntanh(\/gnt))z

= w3 = 3nSech(\/§nt)
= w3 =3n whent — oo

The components of velocity are
w=n; w,(t)=—V5n ; w;=23n
$6=w12+wzj+w3k\

= @ = ni —V5nj + 3nk

= |&| = w = Vn? + 5n2 + 9n2 = nV15
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Question

A circular disk of radius a and mass m is supported on a needle point at its centre.
It is set spinning with angular velocity w, about a line making an angle « with the
normal to the disk. Find the angular velocity of the disk at any subsequent time.

Solution:

We know that the principal M.1. of circular disk are I, = I, = %Maz,l3 = %Maz.

Initially at t = O the angular velocity has components (0, wsin «, wcos ) about
the corresponding principal axis. In the torque free case the Euler equations are

. : 2

110)1 + 0)20)3(13 - 12) =0 (1) ‘“)J
Batoiax

120:)2 + (1)1(1)3(11 - 13) = 0 ................. (11) . o

. “"0: W Y
Lws +ww, (I, —1,)=0  ................ (iii)
For symmetrical torque put I; = I, in (iii) E B
= [;w; = 0 = w5 = constant
Initially given that w; = wcos «
Multiplying (ii) by i and adding in (i) we have
Li(0; + iwy) — (ww3 — iww3)(; —I3) =0
= 11:)'/ + (iw1w3 + i2w2w3)(11 - 13) == 0 Where y = d)l + ld)z

= 11:)'/ + i(a)1 + iwz)w3(11 - 13) == 0 = Ily + lng(ll - 13) = O

=y +iyws; (111_113) =0

=>y+iky=0 using k = w; (111_13)
1

>y = —iky = % = —iky > ~dy = ~ikdt = y = de

=y = Aexp [—i <w3 (’11‘1’3)) t]
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=y = e (s (52) )¢

I3—1;

= y = Aexpliwst] wif I3 = 21, then — =1
1

=y = Aexpliwcos < t] ... (iv)

>y=A usingt==0

> w, +iw, =4= w;(0)+iw,(0)=A4

= lwsin x= A

(iv) = w, + iw, = iwsin X expliwcos « t]

= w, + iw, = iwsin < [cos(wcos X t) + isin(wcos < t)]

= w, + iw, = —wsin « sin(wcos X t) + iwsin X cos(wcos « t)
Comparing real and imaginary parts

w; = —wsin < sin(wcos « t)

= w, = wsin X cos(wcos < t)
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Question

A body moves about a point O under no force (torque free). The principal moment
of inertia at O being A,3A,6A. Initially the angular velocity has components
w; = 3n,w, = 2n, w3 = n about the corresponding principal axis. Show that at

. 3n Iin

time t, we have w, = 3ntanhu, w; = Esechu, W, = Esechu where
u = 3nt + InV5.

Solution:

Given that the principal moment of inertiaare I, = A,1, = 34,15 = 6A. Initially
the angular velocity has components w; = 3n, w, = 2n, w; = n about the
corresponding principal axis. In the torque free case the Euler equations are

Loy +w,w3(I3 —1,) =0

Lw, +wws(l; —13)=0 ... (1)
Lws + wiw,(I; —1;) =0

Put I, = A, I, = 34,1, = 6A in (1)

Ad; + wyw5(64 — 34) = 0

346, + w;ws(A — 64) =0

6A0s + W w, (34— A) =0

After simplification we get

W1 = —3WyW3 i, (2)
3w, =5wiw3 3)
3(1.)3 = —(1)1(1)2 ................. (4)

Multiplying (2) by 5w, and (3) by 3w, then adding
we ha.ve 5(1)162)1 + 9(1)2(1‘)2 ES O

On integrating gwf + %w% =C
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= 5w +9w5 =2C 2502 + 9w =C;  covieiiinn, ®)

Initially using t = 0, w; = 3n, w, = 2n we get C; = 81n?

9 81

(5) = 5w? + 9ws = 81n? = w? +Ea)§ = ?nz
2_8 2 9 2

=>(1)1—? —Ea)z ................. (6)

Multiplying (2) by w, and (4) by 3w5 then subtracting we have
wiw; — Ywzw3; =0

On integrating %a)f — gwg =C

= w? — 9wl =2C > w? — 903 =C,
Initially using t = 0,w; = 3n,w; =nwegetC, =0
(7) » w? —9w3 =0 = w? = 9w}

= w; = 3ws

Using ws = %w1 in (3)

: : 1 . 5
= 3d; = 50,03 = 30; = 50;.;0; = &, = ;a)f

81 9 - 81 9
(—n2 —Ewg) using w? = ?nz — - w3

. 5
:wzz—
5 5

9

> @, = In? — w3 = b, = =2 = [(3n)? - w}]

= dwy = [dt

(3n)2-w}
1 -1 (%2) _ -
= —tanh (311) =t+C using [

Initially using t = 0, w, = 2n, we get C = %ln\/g

—_ X 1 a+x
tanh™?! (—) ==In |—
a 2 a—x

3+2
3-2

tanh™?! (g) = %ln |

tanh™! G) = %lnS = InV5

%tanh‘1 G)

1 -1 (w2 _ 1 -1 (X2 _
= gtanh (;) =t+ glm/g = tanh (5) = 3nt + InV/5
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w

= 22 = tanh(3nt + InV5) = w, = 3ntanh(3nt + InV5)

= w, = 3ntanhu put u = 3nt + InV5

81 9 81 9
(6) > w? = ?nz — Ew% = w? = ?nz — E(Bntanhu)2

81 81 81 81
= wi = ?nz — ?nztanhzu = w? = ?nz(l — tanh?u) = w? = ?nzsechzu
= w, = —=sechu
1=

3n .
= w3 = —=sechu using w; = 3ws

V5
Question

A body moves about a point O under no force (torque free). The principal moment
of inertia at O being 7,25,32. Initially t = 0 and the angular velocity has

4 3 . .. .
components w; = -, w; = 0,w; = " about the corresponding principal axis. Show

that w, = gtanh (%) then find w,, w5 after time t.

Solution:

Given that the principal moment of inertiaare I, = 7,1, = 25,15 = 32. Initially
t = 0 and the angular velocity has components w, = %, W, =0,w3 = % about the
corresponding principal axis. In the torque free case the Euler equations are

Lo, + waw3(I3— 1) =0

Lw, +wws(l; —13) =0  ................ (1)
Lws +ww,(I; —1;) =0

Put I, = 7,1, = 25,1, = 32 in (1)

7w, + w,w3(32 —-25)=0

25w, + wiw3(7—-32) =0
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After simplification we get

(1.)1 = —WyW3 e (2)
d)z == (1)1(1)3 ................. (3)
16(1)3 = _9(,()1(1)2 ................. (4)

Multiplying (2) by w; and (3) by w-, then adding we have w,w; + w,w, =0

On integrating %a)f + %w% =C

Switwi=2C2wi+ws=C, ..o, (5)

.- . 4 16
Initially using t = 0, w4 = w2 = 0 we get C; =
(5)=>w%+w§=£=>w%=1—6—w§ ................. (6)

25
Multiplying (2) by 9w, and (4) by w5 then subtracting we have

9w, — 16wsd@5 = 0

On integrating gwf —2wi=cC

2
= 9w? —16w3 =2C > 9w? — 16w =C, ..o, (7)
Initially using t = 0, w, = g,wg = %we getC, =0

(7) 2 9w? — 16w3 = 0 = 9w? = 16w3
4
:w1=§w3 ................. (8)
. _3 .
Using ws; = S@1in (3)
: . 3 . 3 5
:>a)2=a)1w3:>a)2=a)1.za)1=>a)2=za)1
3 (16

2 . 2 _ 16 2
—— W using wy = ——w
25 2) g =57 2

. _dw, _3[(0\2 5 dw, _ 3
T W2 =T T 4[(5) wz] = f(g)z_wg - 4fdt
5
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dx 1 _ X
— = —tanh™! (—)
a“—x a a

= o tanh™! <¥> = %t +C using [

) )

Initially using t = 0,w, =0, wegetC =0

5 w 3 w 3
= Ztanh™! <—2> =2t = tanh! (—2> =2t
4 )/ 4 G/ =

4 3
= 72 = tanh (% t) = Wy = Etanh (?t)

5
16 16 (4 36\ )
2 _16 2 2 _16 _ (4 3t
(6) > wi = 5 T W3 D W = <5 tanh ( - ))
16 16 3 16 3 16 3
= w? = — — =tanh? (—t) = Wi =— (1 — tanh? (—t)> = w? = —sech? (—t)
25 25 5 25 5 5

4 3t
= wq, =-sech (—)

5 5
3 3t . 3
= w3 = -sech (—) using wz = - wq
5 5 4
Question

If w, = gcos<p, Wy = %Simp, w3 = > cos@. Show that body rotate about its

~ s
intermediate principal axes for t - co and w, = %tanh (%)
Solution:

If t - oo then tanh (%) -1

~%) .
ay e T (%) _ 1-0
As t“”h(?)=e<%>+e-<%>= e-@:l@:m:l

{5)
As  sing = tanh (%) =1 then ¢ =§ also w, = gSimp = %tanh (%)

4 4. 4 3 ) n
= Wy = Cosp = 0,w, = ESmcp =,)W3 = CCoSp = 0 using ¢ =7

|=a)=i
5

RS
gl

=>a=w1’i+w2j+w3k$a: j\ﬁl
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Question
In the absence of an external torque in a body prove that

. K.E. is constant for torque free motion
ii.  The magnitude of the square of the angular momentum L? is constant.

Solution:

In the torque free case the Euler equations are

110:)1 + 0)20)3(13 - 12) == 0 ................. (1)
120:)2 + (1)10)3(11 - 13) == 0 ................. (2)
130:)3 + (1)1(,02(12 - Il) =0 . (3)

Multiplying (1) by w; , (2) by w5 , (3) by w5 then adding

Lww; + wiw,ws(; — 1) + Lw,w, + ww,ws(l; —13) + lwsws +
wiw,w3(l; = 1) =0

= Lww; + Lw,w, + lwsws + wywws(Is —L+1; =13+, —1) =0
= 11(1)1(1:)1 + Iz(l)zd)z + 13(1)3d)3 = 0

1 1 1

:%[lla)f + L + Lwi] =C
= % [wlllwl + (1)212(1)2 + (1)3]3(1)3] = C
1 N N ~ N N ~
= E[(wll + w,J + a)3k). (Ila)ll + Lw,] + I3a)3k)] =C
Sigl=cC
2

= K.E =T = Constant
Multiplying (1) by I, w, , (2) by L, w, , (3) by I;w5 then adding

Ilzwld)l + (1)1(1)2(1)3(1113 - 11]2) + I]?wzd)z + w1w2w3(11]2 - 12]3) + I]?w3d)3 +

wiww3 (I3 —1113) =0
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= Ilza)ld)l + Izzwzd)z + 1:3(1)3(1.)3 + (1)1(1)2(1)3(1113 - 1112 + 1112 - 1213 + 1213 -
11]3) = O

= w0, + Fw,0, + 2wzo; =0
= %Ilza)f +%122a)§ + %132(1)% =C
:%[Ifw% + 2w3 + [Zwi] =

= Fw?+ B+ 12w =2C,=C
= L% = Constant

= L = Constant we may write it
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Question

Show directly from Euler dynamical equations of motion that if N = 0and
L. = 1,,, then angular velocity w is constant.

Solution:

Giventhat N = 0 (torque is zero). In the torque free case the Euler equations are

Lx Gy + 0,0, (1, —Ly) =0 i, (1)
Lywy + wew, (L —I,,) =0 (2)
L@y 4 0wy (lyy — L) =0 oo, (3)

Using I, = I, in (3) we have

L,w,=0=>1, #0, 0, =0=>w,=C; .............. 4)

Multiplying (1) by w, , (2) by w,, then adding

Ly, @, + wxwywz(lzz — Iyy) + Ly, w0y + Wy Wy, (I — 1) = 0

Lx @y + Ly wy @y + 0wy, (1 — Ly + Ly — 1,,) =0

Ly wywy + 1y 0yw,, + wxwywz(—lyy + Ixx) =0

Ly Wy s + Ly, =0 using I, = 1,

Lx(0x @y + 0y00) = 02 L, 0 5 (wey + wy0y) = 0= w6, + wyid, =0
=>§w5+%w32,=62:>w§+w32,=262=>w,%+w32,=63 ................. (3)
Adding (4) and (5)

Switwi+w; =G+ttt =C2>0*=C

= w = Constant
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Question

A rigid body is rotating abut a fixed point with angular velocity . If coordinate
axis coincide with the principal axis then prove that % = G.@ where T is K.E. and

G is an external torque acting on the body.

Solution:

For a rotating body we have rotational K.E. T = %6. L

=>T= %((J)li + (Uzj + (1)3]2) (Ilwli + Izwzj + 13(1)3];)

=>T = %(Ilw% + Lws + ;03)

= % = %(11 Zwld)l + 12. 2(1)2d)2 + 13. 2(1)3(1.)3)
ar . . .
= E = (11(;)1)(1)1 + (12(1)2).(1)2 + (13(1)3).(1)3 .............. (1)

With external torque the Euler dynamical equations are

Lw; = wyws (I, — I3) + Gy

Lw, = wiwsz(Is — 1) + G,

Lw; = wwy(I; — ;) + G5

Using above values we have

1= Z_: = (ww3(l; = I3) + Gw; + (wyw3(I3 — ) + G3).w, +

(wiw,(I; — 1) + G3). w3

= Z—: = ; — B)wiwywz + Giw; + (I3 — ) w003 + Gow, + (I —

L)wywywz + Gzws

—1 % = (12 - 13 + 13 — 11 + 11 — 12)(1)1(1)2(1)3 + lel + GZO)Z + G3w3

= % = Giwq + Grw, + Gwz = (Gli + G, + G3E). (wli + w,j + w3E)
dT -

= T Gw
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Question

A circular disk of radius a and mass m is set spinning motion with angular velocity
w, about a line making angle « with the normal to the disk in yz — plane. Find
angular velocity w of the disk at any time.

Solution:

[ LT ma—— o - e -
—

e
it 4~ 49) = M tﬂu ﬂ’g.,“l:‘a

Given thatinitiallyatt = 0; w; =0, Wy = WySIin X, W3 = WECOS X
Also we know that principal moment of inertiaof adiskisI; = I, = iMa2
By perpendicular axis theorem I; =1, + I, = %Ma2 = I; =21,

Using the torque free case of the Euler equations

Ild)l + (,L)Za)g(lg - 12) = 0 ................. (1)
Izd)z + (1)1(1)3(11 - 13) - O ................. (2)
I3d)3 + (1)1(1)2(12 - 11) - O ................. (3)

After using given values we have
B)=>Lw; =0=1; #0; w3 =0 = w; = Cosntant

Initially at t = 0 we have w; = wycos «
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Using I; = 2in (1) and (2)

Loy +w,w3(Iz —L)=0 ... 4)

Lo, +wws(l; —13)=0 ... (5)

Taking addition in form (4) + i(5)

Loy + wws(Is — )] + i[Lo, + w w3l —13)] =0
= L(w; +iw,) +ws(l; —L)(—w, +iw;) =0

= L(w, +iw,) + w3y — 21) (2w, +iw,) =0

= L (0w +iwy) — Lwsi(w, +iw,) =0

=L P—ilwsP =0 using w; + iw, = P

= L(P—iwsP)=0=>1 #0; P—iwgcos < P =0

:Z—I;=iwocosocP=>f%P=iwocosocfdt:laniwocosoct+C
= P = pl@oCOSXt+C — p — plweCosXt ,C — p — fplWoCOSXt

= wy +iw, = Aet®ocosxt L. (6)

Initially at t = 0 using w; = 0, w, = wysin x we have A = iw,sin «
(6) = w; + iw, = iwysin « gtwocosxt

= W, + lw, = lwySin X [co0SwyCos X t + iSinwycos X t]

= W, + iw, = (WySin X coSwycos X t + i2wysin & sinwycos K t
= wq +iwy = lwySin X cOSWHC0S X t — W(Sin X Sinwycos X t
Comparing real and imaginary parts

= W] = —WSIN X SINWEC0S X t; Wy = WySIN X COSWyCOS X t

$6=a)1’i+wzj+w3k

S|

= W = —WySin X Sinwycos X ti + wySin < coswycos X tj + wycos < k
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Question

A circular disk of radius a and mass m is set spinning motion with constant
angular velocity w, about a line making angle « with the normal to the disk in yz —

plane. Find torque N of the body.

Solution:

Given that initiallyatt = 0; w; =0, Wy = WySIin X, W3 = WHCOS X
Also @ = Constant= @ =0= @, = @, = @3 = 0

The principal moment of inertia of a circular disk is I, = I, = iMa2

By perpendicular axis theorem I3 =1, + I, = iMa2 = I; =21,

Using the Euler Dynamical equations

Ild)l + (1)2(1)3([3 - 12) ES N1 ................. (1)
Izd)z + (1)1(1)3(11 - 13) ES Nz ................. (2)
Igd)g + (L)l(l)z(lz - Il) = N3 ................. (3)

After using given values we have
1 1 2 1 2 1 2 2 .
(1) =0+ w,ws (E_Z)Ma =N, =N, =ZMa W, W5 =gMa w§sin2 «

=N =N+ N,j+N;k=>N = %Mazwﬁsinz « i
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Question

A rectangular plate spins at its centre with constant angular velocity about
diagonal. Find torque which must act on the plane in order to maintain its motion.

Solution:
S >
rote 78

Consider a rectangular plate of dimensions 2a and 2b. Let diagonal AB makes an
angle o with x — axis. Then moments of inertia are

About X — axis L=1L,= §Mb2

About y — axis L =1,,= §M0L2

About z — axis L=1I,,= %M(a2 + b?)

From triangle OCB: W1 = WCOS X, W, = WSin X,w; =0

Also w=Constant=>w =0>w; =w, = w3 =0

Using the Euler Dynamical equations

Ild)l + (1)2(1)3(13 - 12) ES N1 ................. (1)
Izd)z + 0)1(1)3(11 - 13) = NZ ................. (2)
Igd)g + (L)l(l)z(lz - Il) = N3 ................. (3)
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After using given values we have

()=>040=N,=>N,=0and 2)=>0+0=N,=>N, =0

Tvp? —1pma?) = Loone, Frem fig-
(3) = 0+ wyw; (2 Mb? —2Ma?) = N : J':J
— 1102 _Lprp2 * 4B
=>N3—(1)1(U2(3Ma 3Mb ) ' . -“ ,,b
— ; 1142 _Yprp2
=>N3—a)cosoca)smoc(3Ma 3Mb ) & a ¢
= N; = =M (a? — b?)w?sin « cos . b
3 SR
= N; = =M(a? — b?)w?. —= - A%
373 "Va2+b2? "Va2+b? o an Q
1 ab(a?-b?) . = L
= N, = -Me2 22 -ﬁ-ul_. .

3 a2+b?

=>1V=N12+N2]A+N3]’C\

— 1 2 ab(a?-b?)
= = - —
N 3 Mw a?+b?

Theorem

A particle moves in an elliptical part with constant angular speed. At what points
the magnitude of the acceleration (a) maximum and (b) minimum? If the major and
minor axes of the elliptical part are 4 and 2 feet respectively determine the
magnitude of these accelerations.

Solution:
- p(tid)

For elliptical part we have L f‘»

Length of the major axis = 2a

N
O a ’
Length of the minor axis = 2b

And its parametric equations are

X = acosf = acoswt ;y = bsinf = bsinwt where 0 <6 <2rm
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Let 7 be the position vector of P(x, y) then
7 = xi + yj = acoswti + bsinwtj

ar

== U = —awsinwti + bwcoswtj
dZ‘F - 2 A 2 . ~ 2 ~ . A
— = d = —aw’coswtl — bw’sinwt] = —w?(acoswtl + bsinwtj)

= |d| = a = w?/(acoswt)? + (bsinwt)? = wz\/az (_1+C052wt) 4 p2 (1—0052wt)

2 2
N 2 b2 2_b2
=>~|0L|=a)2\](a;r )+(a2 )cosZwt

Maximum Acceleration

Using cos2wt = 1

= 2wt = cos (1) 2 2wt = 0,2w, 4™, ... = wt = 0,7, 2, ...

_ 2 a2+b2 a2—p2 _ 2
ﬁamax—w > + > =>amax—a)a

Minimum Acceleration

Using cos2wt = —1

3T 57
2’2"

= 2wt = cos™1(-1) = 2wt = m, 3w, 57, ... > wt = g,

a2+b? a2—-p2
= Amini = wz\/( ) + ( > ) (_1) = Amini = w?b

2

Further giventhat 2a =4=a =2 and 2b =2= b =1 thus

— 2 _ 2
= Apay = WA= Apaxy = 2@

— .2 — a2
=>amini_°‘) b:amini_w
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The Eulerian Angles

A rigid body constrained to rotate about a fixed point has only thres de-
grees of freedom. Therefore we require three parameters to specify the
configuration of such a body. Euler's angle are three angular coordinates
which are used to specify the confipuration (orientation) of a rigid body.
The Euler angles are usually denoted by #, ¢, . Note that there is no
universally agreed notation, neither is there agreed convention about their

signs.

Let the fixed point about which the body is rotating be 0. To define the
Euler angles we consider a coordinate system (or & frame of reference)
- D XYy 2, fixed in space, and another coordinate system{OXY Zfixed in the
body and rotating with it. The first eoordinate system is usually referred
to as space or fized or inertinl coordinate system, whereas the second
coordinate system is referred to asbodyormoving  orrofeiingeoordinate
system. We suppose that the two coordinate systems are initially (i.e. at
t= 0} coincident and define the the Eulerian snglesfl, ¢, yin relation to
the orientation-of t_‘he axes of the rotating coordinate system, as follows.

# = angle between the axesOZ ¢ and0OZ, It varies from O tor, -

Slep 3
Figure 9.5: Steps in the determination of the Euler angles.
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¢ = angle between the fixed axis)X o and the lineN. The line N
is the line of intersection of the planesX o¥o and OXY, and is called the
ine of nedes. The anglegcan also be regarded as the angle betwesn the

planesOZ o2 andOX gZp. It varies from ( to 2. '

¥ = angle between the body axisOXand the line of nodes ON. Tt varies
from O to 2w, . .

As the body rotates the Euler angles#, &, ynary with time and their
derivatives #, ¢, Yrepresent angular speeds about certain axes.

Next we discuss the transformation from the space coordinate systemOX oY 2,
to the body coordinate system OXY Z, and find the corresponding rota-
tion matrix. In order to obtain the desired rotation matrix, we introduce
two other coordinate systems OX'V'Z andOX "y o zv and perform the

following sequence of rotations: _
(1) OXu¥oZn — OX'Y'Z, (2) OX'V'Z SOX "y'ar
(3) OX"Y"2" 4 OXYVZE
- 1. The firat rotation which we perform, through an angleg, i, in the coun-

terclockwise direction, in theX a¥,-plane {l.e. X¥- plané 'uft-]liue. fixed coor-
dinate system), about the axiz(?Z o- This rotation can be r«g:':presentad by

the matrix

; .cosg  sing  0O- '
Ry= | —sing cos¢ 0O - - A8.T.1)
o o 1

The angle ¢ is called precession angle. After applying this transforma-
tion, the new coordinate system is dencted byOX "Y'Z', and the relation

between the coordinates is given by .
X' = RgXo - ' (9.7.2)
whereX ¢ denotes the column vector of coordiniates ie [Ts, 30, zo]'. The

column vectorX ¥ has a similar definition.

2. The szcond rotation takes place in thel}” L& plane, in the -n::-n-ﬁnterr:!cmb
wise direction about theX ‘-axis through an anglef’. The rotation matrix
in this case is given by

1 o 0
Hp=1] 0 cosd . sinf _ (9.7.3)
0 —sinf cosd ) .

The angle & is called nutation angle. The new coordinate system is now
denoted byQX “¥"Z" 'and the coordinates are related by -

X" = Ry X' | (D.7.4)
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x

3. The third rotation talkes place in theQX “¥*_plane in the counterclock-
wise direction through an angleywabout thet? = "-axiz, Thia transformation -

brings us to the body coordinate systemOXY Z., The rotation matrix in
this case is given by

casyr  sinid 0

Ry= | —siny cosb 0O } . (9.7.5)
_ 0 0 1 _
and the mrré._spanding coordinate vectors a.re.relatad by
' ' Xo= RyX" : (9.7.6)

The a.ngle-;e:r is called t.hé: body angle. The transformation from the fixced
coordinate system OXp¥Z; to the body coordinate system OX V2 (see

figure 8.5) is given by the rotation matrix § — Ry RpRy, which when
written in full becomes -

S Cﬂﬁﬁ- sinyy 0 1 o - 0 coosg sing 0
= —siny cos:t 0 -0 cosfl  sing —sing  coag O
1] 0 1 —8ind  cosd l:]_ 0 1 |-

.
S

- . . u
cosyy  sing 0O cosgd . sing ]
= | —siny* cosd O —cosdsing cosfoosg su_rﬁ'
0 o 1. sinfising - —sinfocosgd cosd
The elements of the product matrixf= {r ;) are given by

) cand o
r11=[::-|::-ﬁ.f,ll- siny D] [—ni}nsﬂsinﬁh ] = Wﬁﬂﬂﬂﬂﬂ&lﬂjﬁ&lﬂ?&

sinfzing

-Eli:nq!r ]
iz = [ Eﬂf;t&r singt 0O ] —cosflcosgd ] = posyhsing4-sinycosfcosgd -
' " —sinfcosgd _

coal?

' 0
Tz = [4.‘:-:_351;.!2- . Binlr II]]: [siuﬁ' ] = - simyfsind.

—

o1 = [ —sinal Eﬂsﬂr 0-] = costhsing ] =—sinycosg—cosypoosdaing.
. _ sinfsing _

: i sing ‘ . :
rez = [ —siny cosyr 0] cosflecosgy | =—sinysing+ cosyoosfoosg,
. —sinfsing

- 0
vz3 = [ —siny cosyp 0] sing J = cosy sind.
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) oS :
rar=1[0 0 1] | —cosfsing | = sinfsing.
sindsing

- o sing -
raz=[ 0 0 1] cosdcosd =—ginfcosg
’ . —sinfooag )

_ o -
raz=[0 0 1] | asind ]'=nn-sﬂ,
) cosf, -

An infinitesimal rotation can be represented as a wvector. [ Becall that
such & rotation about an axis specified by the unit vector e is given by
afi— dfa). When the body is rotating about an instantansoys axis through
the fixed point (), its angular velocity can be expressed in terms of the time
derivatives ¢, &, 1of the Euler angles. We note that i

(i) dis along the axisOZ ;.

(it} g is along the line of nodes, which is the line of intersection uJé' the
planesOX ¥ andOXT,

(i) +is along the axisOQZ.

It is not convenient to use these components of angular velocity & of the
~ rigid bady. Instead we use the body coordinate systemO XY Zand express
the angular velocity pomponents (w;, we, wy) w.r.t. this system in terms
of 8, ¢, 1. For this purpese we consider these components along the thres
body axes. Remembering that the general infinitesimal rotation sssociabed
withwean be regarded as consisting of three successive infinitesimal rota-
tions with angular velocities @iy, @y and Dy with their magnitudes erual
to ¢, § and respectively. Therrfore the vector & can be expressed as
o= &y tudp i o

We note thatdl ; is along theQZ g-axds S g alongOX ‘-axis {or along ON, the
line of nodes) andd  along 0Z axis. We will now use the orthogonal trans-
formation given in (9.7.2), (8.7.4), and (5.7.6) to obtain the components of
dialong the set of axes we desire, :

The body system of axes is the most useful for discussing the equa.l:.mns of
motion. Therefore we will obtain ecomponents ofdin this system.

Now slnce @y = (0, 0, @) = [0, 0, ¢]t in OX;¥5Zp coordinate system,
and the vectors in space and body coordinate systems are connected by

X=RX o=RyRa RyXg
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" cosgg sing 0] [0
Walb) =R v fg-Ry iy =R w g —aing cosgd D ] [ 0 ]
1 0 0 1 @

: 0 ] 1 0 0 0.
=R -,;.Ra [ ':I, :l = R‘;. [ 0 cosd Si.l‘.l.lﬁ' 0
O 0 —sinf cosf ¢
[._ cosr  simd n] [ 0 } [;ﬁ-sjnﬂsinﬂr
= | —siny cosy- 0 gsing = | ¢sinfcosyy
' . o 1 Peast deosd J

wheredl (b} denotes the contribution to angular velocity in the body system
due to rotation through anglegaboutQZ j-axis.

The rotation through angle ¢ is about the axis OX' and therefore the
corresponding angular velocity vectord g is directed alongOX / axis. The

veckor g ‘therefore is repr'esanted by the column wector ief:.ﬂ,[l-] tin the
coordinate systemOX "Y' 2", ks transform in the body coordinate systom

isF a(b) and is related by

- ' 1 o 0 [ &
alpb) = Rypllgily =R, | 0 cosf - sind 0
0 —sind cosd | O _

eosyh simd O 8 Goasy
= | —sinyy cosy 0O | | O | = | —fsind
: o 0 1 0 0

-

The rotation eboutOQZ ¥ axis through angleyis the same as rotation about
OZthrough the same angle. Hencew= k" = 0k. Now

@ = alg(b) +& p(b) +a (b

or

T wn deinfsingd - ) nli:c-um.".r 0

[ etz ] = dsinfleasy +- | —fsiny + 0

’ w3 q!-casﬂ _'I] w

which gives
w, = g¢sinfsing+ @oosy ' (9.7.Ta.)
we = gsinfeosp— Heing - (9.7.7h.)

wy = poosfe P (9.7.7c.)

Ths.s:a equations are called FKuler’s geometrical equations. They describe
rigid body motion refative to the body coordinate system.



visitus @ Youtube | Learning with Usman Hamid

Tops and Gyroscope

Motions of toy tops are quite. frequently seen in everyday life, .WE. always
fascinating to observe the spinning motion of 8 top along with 1th pre-
cegsion, ite rise, its sleep and finally its death. The theory of spinning

top has relevance in many areas of practical life in applied mechanics (-
rascopic instruments), atomic, molecular and nuclear physics (a whirling
molecule/atom or nuclews), and in Astronomy { a spinning planet ete. )

A top is called sleeping if it is spinning about its axis of symmetry,
which is vertical.

Mathematically gyroscope or top is a rigid body symmetrical about an
axis and rotating about that axis. (When the gyroscope rotates about a
fixed axis, the angular momentum vector of the gyroscope, about a paint
on the axis of rotation, is directed along the axis of rotation.) However.in

applicd mechanies gyroscope is a specific device.

Rapidly rotating and heavy bodies are veary stable. This fact is the basis
of thegyrescope. Essentially this consists of a spinning bady suspended in
such a way that its axis is free to rotate relative to its support. The bearing
are designed to be nearly frictionless so that the effect of torque due to the
friction is nearly zmero. When this is the case, then no matter how use turn

.. the support, the axis of the gyroscope will remain pointing very closely ta
the same direction in space. More detailed description of the EYTosSCope is
given bolow, - :

It consists of 2 heavy rotating fiy wheel, which is mounted in such &
way that its axis can freely change direction. This can be achieved by
supporting it on & universal joint, or more ususlly, in what is called gémbal .
mouniing. ‘This consists of an outer and an inner ring. The outer ring turns
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&egl}r about & vertical axis fixed to an external support, while the inner ring
burns freely about & horizontal axds fixed to the outer ring, The fywhesl

rotateg nhuuﬁ an axis fixed to the inner ring, which is at right angles to
both the ather axes. As a result of this arrangement, any torque on the
external support does not transfer itself to the Aywheel, whinfh ::.-:mt;ln_ues
to point in the same direction in space. Further, if there is & J.lttlﬂhfl'll:fmﬂ
in the bearing, which transfer part of the torque, the gyroscapic effect -
mentioned above takes care of this decrease in the torque. For this reason,
the arrangement is used in inertial guiding systems in ships and aeroplanes, |

In agyroscopethe Inper and outer rings are fixed to each other, and the
external casing is arranged to move freely in horizontal plane.

The stability induced by the spin about the symmetry axis is Icalied
the gyroscopic effect; since it is this principle on which the wnrlcfng of
a myroscope is based. This principle is used, among other thi:‘lgs, in the-
construction of the barrel of a rifle. The barrel of & rifle has a helical groove
cut into it. This makes the bullet move along its axis, which ensures that it
continuous to point in the direction of its motion after leaving the barrel.

The importance of the gyroscope as a directional stabilizer arises from
the fact that the angular momentum vectorLremaing constant when the
torque is applied. The changes in the direction of a well-made gyroscape
are sraall becaus= the applied torques are small andLis very large, so that
dL/dt gives no sppreciable change in direction. Moreover, & gyroscope
only changes direction while a torque is applied. If it shifts slightly due to
pecasional small frictional -torques in its mountings, it stops shifting when
the tbrque stops. A large non-rotating mass, if mounted like a‘gyroscope,
would acquire only small angular velocities due to frictional torgues, but

. once get in motion by a small torque, it would continue to rotate, and the
changé in position might become large ast— oa. o
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Example

Obtain an expression for the kinetic energy of rotation of a rigid body in
terms cnf the Fuler angles. :

Eulutlun

Since three mul:u&.l!y orthogonally principal aves exist at each point of
a rigid body, we choose the principal axes at the polnt 0, as the hud:,u'
coordinate axes. Then in the usual notation

T = EEF-L
. where o
W= 1H—m aj+u sk
L=l ywp il gwg J+T auwgk
Therelore |

1 .
T = El{hm% +Igwﬂz +I3w§} ;

Substituting the values fonw 1,wy andw 5 from equations (9.7.7 a, b, ¢), we
have

3
I

{0 (dsinsing osy) ?)
.+ I(dsinfeosp-  feing) 2
. + & (wi* )%}
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Equations of Motion for a Spinning Top having fixed point

Let xyz be a fixed coordinate system in space with origin O. Let x'y’z’ be a
moving coordinate system (due to rotation of earth) having same origin, which is at
earth.

The angular velocity due to rotation of x'y’z’ is as follows;

W = wie; + wye, + wses

The angular momentum in component form due to rotation of x"y’z’ is as follows;
L= Lwe; + Lwye, + I3(ws + 5)e; where s = se; = e,

L =lLwe +Lwe,+ (Isws + I35)eq

By using rotating axes theorem (Z—f) = (

f
= (d—L) = (ﬂ) +@ XL
dt f dt/m

= (ﬂ)f = %(110)181 + Lwye, + (Izws + I35)e;) + (wieq + wye, + wses)

dA

) + B XA
dat ) m

X (ljwie; + Lw,e, + (Izws + 135)e3)

L el ez 83
dL ) ) _ .
= (E) =lLw,e; + Lwye; + [wzez +38e3 +| W1 W w3
! Lo, Lw; Lws+Izs
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= (%)f = Lwie; + Lwze; + zwzes + 353 + e, (30,03 + 30,8 — [Lw,ws)

J —e;(lzwiws + lw s — hwiws) + e3(Lw,w, — I;wiw,)
=T =Lwe; + Lwye, + [;wse; + I35e;3 + e (30,03 + 30,8 — [,w,ws)
—ey(lhw wz + ws — Lwywsz) + e3(Lw w, — wiw,)

= T,e, + T8, + T3e3 = [Lw e, + Lw,e, + lz;wses + I38e; + e (Izw,w3 +
Izw,s — Lwywsz) — e (lzw;ws + wys — Lwiws) + e3(l,wiw, — [w,w;)

= T8 + T + 1363 = [[Lw, + (I3 — L)w,w3 + hw,s]le; + [,w, +
(I, — B)wywz + w;sle; + [lzwz + (I, — 1)) wiw, + 135]e;

Since7=#XF = les x mg = les X (—mgk)

,.Z.’ == —mgl63 X ((kl 61)61 + (kz.ez)ez + (k3 33)63)

—mgle; X ((|k1||61|C0S90°)81 + (lkzllezlcos(90° — 6))e, + (|k3||e3|c058)e3)

7= —mgles X ((1.1.0)e; + (1.1.sinB)e, + (1.1.cosO)es)

T = —mgle; X (sinfe, + cosfe;) = —mglsinfe; X e,

T =Tye, + T,e, + T3e3 = mglsinfe;  .................. (2)
Comparing (1) and (2) and using I; = I, we have
Il(bl + (Dzwg(lg — 12) + 13(1)25 = mnglnH

Iz(bz + (1)1(1)3(11 - 13) + 13(1)15 =0
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Relationship between the time rate of change of Angular Momentum of a
Rigid Body relative to axes Fixed in space and in the body respectively

If the axes of rigid body are choosen as principal axes (rotating) then

The angular velocity due to rotation of x'y'z’ is as follows;

W = wie; + wye, + wses

The angular momentum in component form due to rotation of x'y’z’ is as follows;
L= LLwie; + Lw,e, + lzwse;

dA

By using rotating axes theorem (d—A)f = (dt

dt
=>(d—L) =(E) +@ XL
dt f dt/m

d d
= (d_l;)f =—(Lhwie; + Lwye, + Lwses) + (wie; + wae; + wzes)

) + @B XA
m

X (ljwie; + Lw,e, + Iswse3)
e, e, e
wq o)) w3

Lw, Lw, Izw;

drL ) ) )
= (d_l,;)f = lLwie; + Lwye, + [;wses +

= (%)f = Ild)lel + Izd)zez + I3d)3e3 + 31(13(1)2(1)3 - 12(1)2(1)3)
—e;(lzwiwz — Lw wz) + e3(l,w 0, — Lw,wy)

dL , _
= (E)f = [Loy + (I3 — L)wywsle; + [Lo, + (I; — I3)wiws]e; +

[hws + (I; — ;) wiw;]es
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» )

Equations of Motion ofthe Gyroscope
mx.=ésiné?siny/+0cosy/
o, = fsinfeosy+ fsiny

0,=geosd+

Lo vy o
T=§I1 (OJX HUJ)'}'E.GN‘

=%(02+;52 sin® 9)+-I§-(y}+gﬁcos€)2

V'=Mglcost

1L st st g |
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