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Objectives of the course:   

To provide solid understanding of classical mechanics and enable the students to 

use this understanding while studying courses on quantum mechanics, statistical 

mechanics, electromagnetism, fluid dynamics, space-flight dynamics, 

astrodynamics and continuum mechanics.  

Muhammad Usman Hamid 

       University of Sargodha 

…………………………………………………………………………………….. 

For video lectures 

@ You tube visit 

Learning with Usman Hamid 
visit facebook page “mathwath” 

or contact: 0323 – 6032785 
…………………………………………………………………………………….. 

Books Recommended  

 John R. Taylor. Classical Mechanics, University of Colorado.  

 Goldstein H. Classical Mechanics, Addison-Wesley Publishing Co.  

 Spiegel M. R. Theoretical Mechanics, Addison-Wesley Publishing Company.  

 Mir K.L. Theoretical Mechanics: Ilmi Ketab Khana. 

 Virtual University Lecture Handouts on Classical Mechanics. 

 Mechanics by HRK. 

 Mechanics, Waves and Oscillations by Kaleem Akhtar 
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CHAPTER 

          GENERAL INTRODUCTION & 

NON INERTIAL REFERENCE 

   SYSTEM 
What is Mechanics? 

Mechanics is the branch of science which studies the state of rest and motion of 

objects and laws governing rest, equilibrium and motion. Since material objects 

exist in the form of liquids gases and solids there are corresponding types of 

mechanics to deal with them.  

i. Kinematics  

ii. Dynamics  

iii. Statics  

Kinematics  

Kinematics is the branch of mechanics which describe the motion of objects 

without consideration of their masses and force acting on them. It is the motion of 

objects without discussing the causes of motion. 

Dynamics/Kinetics  

Dynamics is the branch of mechanics concerned with the motion of objects under 

the action of force. It is the motion of objects with discussing the causes of motion.  

Statics 

Statics is the branch of mechanics concerned with objects at rest or in equilibrium 

under the action of forces.  

 

1 
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Classical Mechanics 

This is the branch of mechanics in which we study the mechanics of big bodies. It 

deals with the motion of physical objects at macroscopic level. It is based upon 

Newton‟s Law of Motion.  It is also called Newtonian Mechanics because the 

bodies obey Newton‟s Law of Motion. The study of bodies on atomic scales falls 

in the category of Quantum Mechanics. The problems involving velocities which 

are not negligible when compared with the velocity of light or discussed on the 

basis of relativity. Galileo and Newtonian provide the base of classical mechanics 

in 17
th

 century. 

Non – Relativistic Mechanics: Non – Relativistic Mechanics based on the laws of 

Newton‟s is concerned with bodies moving at speed and velocities negligibly small 

as compared to the speed of light. i.e.             

Relativistic Mechanics: Relativistic Mechanics is concerned with bodies moving 

at speed and velocities comparable to the speed of light. i.e.             

Division of Classical Mechanics  

Three major divisions of classical mechanics are the following:  

 Mechanics of particles and rigid bodies: It is based on newton‟s law. 

Basic concepts and terms are space, time and mass; particle and body; 

velocity, momentum and acceleration; force and energy.  

 Mechanics of fluid: It is also based on newton‟s law and their extensions 

and deal with the behavior of the fluid (liquid and gases) in motion. Its two 

well-known branches are hydrodynamics (for fluid) and Aerodynamics (for 

gases). 

 Mechanics of elastic solids: it deals with the behavior of solids when the 

undergo deformation under forces. 

Macroscopic Objects: Visible objects through naked eyes are called Macroscopic 

Objects. e.g. Star, Table, Horse etc. 

Microscopic Objects: Invisible objects through naked eyes are called Microscopic 

Objects. e.g. electron, proton, bacteria etc. 



              visit us @ Youtube  Learning with Usman Hamid

 

 

7 

Classical Mechanics by Methodology and Approach 

 Newtonian Mechanics or Vector Mechanics: In this type of mechanics 

vector quantities such as position vector, velocity, momentum etc. appear as 

basic physical entities. This is directly based on Newton Laws of motion. 

 Analytic Mechanics or Scalar Mechanics: In this type of mechanics scalar 

quantities occupies the central position. 

Rectangular Components  

The process of splitting a vector into various parts or components is called 

“Resolution of vector” and these parts are called components of vector. If we split 

a vector in a rectangular plane OXY, such components are called rectangular 

components of a vector.  

Component Along x-axis is called horizontal component of vector.  

Component Along y-axis is called vertical component of vector.  

Position vector: It is often convenient to describe the motion of a particle in terms 

of its x, y or rectangular components, relative to a fixed frame of reference. In a 

given reference system, the position of a particle can be specified by a single 

vector, namely, the displacement of the particle relative to the origin of the 

coordinate system. This vector is called the position vector of the particle. In 

rectangular coordinates, the position vector is simply 𝑟 = 𝑥 ̂ + 𝑦 ̂                                 

The components of the position vector of a moving particle are functions of the 

time, namely, 𝑥  𝑥( )  𝑦  𝑦( ) 

CLASSIFICATION OF COORDINATES 

Cartesian or Rectangular Coordinates: Let (𝑥 𝑦 𝑧) be a point on surface S in R
3
 

then (𝑥 𝑦 𝑧) are called Cartesian coordinates. 

Polar Coordinates: Let  (𝑟  ) be a point on the curve in R
2
 then (𝑟  ) are called 

Polar coordinates. Its parametric equations are 𝑥  𝑟     𝑦  𝑟                         

Where 𝑟  √𝑥  𝑦  and         
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Cylindrical Coordinate System (     ) 

Let  (𝑟   𝑧) be a point on surface of cylinder S in R
3 
then (𝑟   𝑧) are called 

Cylindrical Polar coordinates.  

Its parametric equations are 𝑥  𝑟     𝑦  𝑟     𝑧  𝑧  . 

Where 𝑟  √𝑥  𝑦  𝑟    and         

 
         and    𝑧    

Fix Vary Locus 

  𝑧 𝑟 Straight Line 

𝑟   𝑧 Line 

𝑟 𝑧   Circle 

𝑧 𝑟   Disk 

  𝑟 𝑧 Plane 

𝑟   𝑧 Cylinder 

  Spherical Coordinate System (     ) 

Let  (𝑟    ) be a point on surface of sphere S in R
3 
then (𝑟    ) are called 

Cylindrical Polar coordinates.  

Its parametric equations are 𝑥  𝑟         𝑦  𝑟         𝑧  𝑟    . 

Where 𝑟  √𝑥  𝑦  𝑧  𝑟    and        √     

 
   

 

 
   

 

 
             

and         

 
         

Fix Vary Locus 

𝑟     Circle  

𝑟     Semi-Circle  

    𝑟 Line 

𝑟     Sphere  

  𝑟   Cone 

  𝑟   Plane 
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Framework  

A framework that is used for the observation and mathematical description of 

physical phenomena and the formulation of physical laws, usually consisting of an 

observer, a coordinate system, and a clock or clocks assigning times at positions 

with respect to the coordinate system. A system of geometric axes in relation to 

which measurements of size, position, or motion can be made.  

Frame of Reference 

The system in which the clock and the meter scale used for the measurement are at 

rest. Such coordinate system is called a frame of reference. There are two types of 

frame of references 

 Inertial frames of reference (Newtonian Frames) 

 Non – inertial frames of reference  

Inertial Frames of Reference  

Inertial frame of reference is that in which the law of inertia (Newton‟s first law of 

motion) holds, that is a frame in which a body that is acted upon by zero net 

external force moves with a constant velocity. 

The law of inertia holds in any frame of reference, which happens to move with a 

constant velocity relative to a given inertial frame. Therefore, any frame of 

reference, which moves with a constant velocity relative to an inertial frame, is 

also an inertial frame. These frames are non – accelerated. i.e.  ⃗    

Examples 

 A frame of reference fixed with respect to the stars is an inertial frame.  

 A spaceship drifting in outer space without spinning and with its engines shut 

off would be an ideal inertial frame. 

 However for all practical purposes, any frame of reference fixed to the earth 

such as a railway station or a laboratory can be taken as an inertial frame. Thus 

a railway station is an inertial frame and a train travelling at constant velocity 

with respect to the railway station is also an inertial frame. 
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Non – Inertial Frames of Reference  

Non – Inertial frame of reference is that in which the law of inertia (Newton‟s first 

law of motion) does not holds, that is a frame in which a body that is acted upon by 

zero net external force does not moves with a constant velocity. i.e. velocity 

remains change. E.g. person sitting in a moving train. 

Newtonian or The Principle of Relativity (Galilean Invariance) 

The Principle of Relativity (PR) applies to inertial frames of reference. This 

principle states that the laws of Physics take the same mathematical form in all 

inertial frames. 

Or  the basic laws of Physics are identical in all frames of reference which are 

moving with uniform velocity (unaccelerated) relative to one another.   

Or It is impossible by using any physical law to distinguish between inertial 

frames. 

GALILEAN TRANSFORMATION (G.T) / NEWTONIAN 

TRANSFORMATION 

This is the set of equations in classical physics that relate the space and time 

coordinates of two systems moving at a constant velocity relative to each other. 

The transformation equations which relate the time and space coordinates in 

frames S and    and are called Galilean Transformations (G.T.) as follows; 

𝑥  𝑥    ,  𝑦  𝑦, 𝑧  𝑧 ,       

Nature of time and Space: According to G.T. 

 the concept of time is absolute (invariant) (    )  

 the concept of space that is the concept of distance or length  is also 

absolute (invariant) (     ). 

 

 

 

 

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

11 

Absolute (Invariant) Space 

Space that is not affected by what occupies it or occurs within it and that provides 

a standard for distinguishing inertial system from other frames of references. For 

example, Bob on Earth, sitting at his telescope, catches sight of Alice in her rocket 

ship streaking at 9/10 the speed of light right towards the sun. 

Application of G.T. to Mechanics  

On the basis of G.T., it is possible to obtain relations between physical quantities 

measured by two inertial observers in relative motion. Some of these are merely 

listed below: 

(a)  If  ⃗⃗  and   ⃗⃗  are the velocities of a particle as observed from frames S and  

   respectively, then   ⃗⃗   ⃗⃗   ⃗  

Where  ⃗ is the velocity of    relative S. This is the familiar ‘common 

sense’ formula of relative velocity. 

(b) Acceleration of a particle as measured in S and    is the same. That is say   

 ⃗   ⃗  

(c) The mass of a particle has the same value in different inertial frames. If    

and   are the masses of a particle as determined in frames    and S 

respectively, then     . 

Hence equation of motion such as  ⃗    ⃗  in frame S is transformed into 

 ⃗     ⃗  in frame   . Not only this equation but in fact Newtonian 

Mechanics has the same form in different inertial frames according to pre-

Einstein relativity. 

Covariant 

Laws which remain same in all inertial frame of references are called covariant 

laws. e.g.  Newton law  ⃗    ⃗ is covariant in all inertial frame of references. 

Invariant (Absolute) 

Quantities which remain same in all inertial frame of references are called 

invariant quantities. e.g.  mass, length, time etc. 

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

12 

Newton’s 1
st
 law of motion (Galileo’s Law) 

An object continues its state of rest or of uniform motion in a straight line provided 

no net force or external force act on it. It is also called Law of inertia. This law 

measures the force of an object qualitatively. 

The symbolic form of first law of motion is ∑  ⃗   . i.e.   ⃗    

As the mass of the object is non-zero, therefore the acceleration of the concerned 

object must be zero. i.e.  ⃗   . implies 
  ⃗⃗

  
  . Then  ⃗   Constant. 

Examples: A ball kicked in a ground, A car moving with constant velocity, A 

book lying in a book shelf. 

Inertia: It is a property of a body due to which it resists any change in its state 

of rest or of its motion. It depends on mass of body. i.e.    𝑟  

Newton’s 2
nd

 law of Motion  

(Time rate of change of momentum equal to net force) 

Newton‟s 2
nd

 law of motion describes the relationship among the force, mass and 

acceleration of the given object. We can states the 2
nd

 law of motion as;                  

Change of motion is proportional to the external applied force and takes place 

in the direction of the straight line in which the force acts. Or For any particle 

of mass m, the net force F on the particle of mass m times the particle's 

acceleration. i.e.  ⃗⃗⃗    ⃗⃗⃗.   

The second law can be rephrased in terms of the particle's momentum, defined as 

 ⃗⃗    ⃗ then  ⃗    ⃗   
  ⃗⃗

  
 

 

  
(  ⃗)   ⃗  

  ⃗⃗

  
                  

That is the rate of change of linear momentum in the direction of applied force 

is equal to that force. 

Examples  

When we apply same force to move a truck and a bicycle, the bicycle will have 

more acceleration than the truck, because the mass of bicycle is less than the truck. 

An empty shopping cart is much easier to move than a full one, because the empty 

one has less mass. 
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Newton's 3
rd

 Law of motion  

Newton's first two laws concern the response of a single object to applied forces. 

The third law addresses a quite different issue: Every force on an object inevitably 

involves a second object the object that exerts the force. The nail is hit by the 

hammer; the cart is pulled by the horse, and so on. Newton realized that if an 

object 1 exerts a force on another object 2, then object 2 always exerts a force (the 

"reaction" force) back on object 1.  

Newton's third law can be stated very compactly:  

To every action there is an equal and opposite reaction. 

Examples  

A fish‟s thrust through the water, A bird‟s fly in the air, A rocket‟s launch, The car 

moving on a road, The nail hit by hammer. 

Gravitational Mass 

Mass of the body define on the basis of gravitational properties is called 

Gravitational Mass. 

Rigid Body 

A rigid body is defined as a collection of particles such that distance between every 

pair of its constituent particles remains unchanged whatever the forces acting on it. 

Constraint of Rigidity 

The defining condition of a rigid body is called the constraint of rigidity. It can be 

expressed as (𝑟  𝑟 )
 
 (𝑟  𝑟 ) (𝑟  𝑟 )      where 𝑟  is the position vector 

of the i
th

 particle and     is a constant. This definition implies that a rigid body will 

not undergo any deformation. 
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Question 

A constant force  ⃗ acting on a particle of mass   changes the velocity from  ⃗  to 

 ⃗  in time  . 

a) Prove that  ⃗  
 ( ⃗⃗   ⃗⃗ )

 
 

b) Does above result hold if the force is variable? Explain. 

Solution 

By Newton‟s second law    ⃗    ⃗   
  ⃗⃗

  
 

  ⃗⃗

  
 

 ⃗

 
   ⃗  

 ⃗

 
   

 ∫   ⃗
 ⃗⃗ 
 ⃗⃗ 

 
 ⃗

 
∫   
 

 
  ⃗   ⃗  

 ⃗

 
( )   ⃗  

 ( ⃗⃗   ⃗⃗ )

 
  

Above result does not hold in general if the force is variable ( ⃗ is not constant), 

since in such case we would not obtain the result of integration achieved above. 

Question 

What constant force is needed to bring a 900 kg mass moving at a speed of  

100km/h to rest in 4seconds? 

Solution 

We shall assume that the motion takes place in a straight line which we choose as 

the positive direction of the x – axis. Then we have; 

         ⃗      ̂            ̂      ⃗    ̂            

Using formula  ⃗  
 ( ⃗⃗   ⃗⃗ )

 
 we have 

 ⃗    ⃗  
 ( ⃗⃗   ⃗⃗ )

 
           ̂ newtons 

Thus the force has magnitude          newtons in the negative x direction. i.e. 

in the direction opposite to the motion. This is of course to be expected. 
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Question 

On the basis of G.T. show that the force acting on a particle is independent of the 

inertial frame in which it is measured. i.e.  ⃗   ⃗. Or  Show that Newton‟s 2
nd

 

Law of motion is Covariant. Or  Show that Newton‟s 2
nd

 Law of motion is 

invariant under G.T. 

Solution 

If  ⃗⃗  and   ⃗⃗  are the velocities of a particle as observed from frames S and    

respectively, then according to Galilean Transformations 

𝑥  𝑥     
   

   
 

 

  
(𝑥    )  

   

   
 

  

  
  

  

  
  in G.T.      

          (      )  (     )  (     )   ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗ 

 
  ⃗⃗⃗ 

   
 

 

  
( ⃗⃗   ⃗)  

  ⃗⃗⃗ 

   
 

  ⃗⃗⃗

  
 

  ⃗⃗

  
 

  ⃗⃗⃗

  
  ⃗⃗⃗   ⃗⃗⃗  

Multiplying    on both sides we get     ⃗     ⃗  

    ⃗    ⃗     In inertial frame      

  ⃗⃗⃗   ⃗⃗⃗      

Equilibrium 

A body is said to be in equilibrium if no net force acts on it. i.e.  ⃗    

Types of Equilibrium 

 Stable Equilibrium/Stability of Equilibrium: In Stable equilibrium the 

particle will return to its original position when slightly displaced to either 

side. 

 unStable Equilibrium: In unStable equilibrium the particle will not return 

to its original position when slightly displaced to either side. 

 Neutral Equilibrium: In neutral equilibrium the particle will return to its 

new position when slightly displaced to either side from its previous 

position. 
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Condition of Equilibrium State 

There are two conditions for equilibrium state; 

 Net force acting on a body is zero. i.e. ∑  ⃗   . 

 Net torque acting on a body is zero. i.e. ∑  ⃗   . 

Keep in Mind 

 Theorem: If the force field is conservative with potential  ⃗⃗, then a 

Necessary and sufficient condition for a particle to be in equilibrium at a 

point is that   ⃗⃗   .            i.e. 
  ⃗⃗⃗

  
 

  ⃗⃗⃗

  
 

  ⃗⃗⃗

  
   

 Theorem: A Necessary and sufficient condition that and an equilibrium 

point be one of stability is that the potential   at the point be a minimum.  

i.e. 
  ⃗⃗⃗

  
 

  ⃗⃗⃗

  
 

  ⃗⃗⃗

  
   

Question  

A particle is acted upon by the forces  

 ⃗    ̂     ̂     ̂  ⃗     ̂     ̂     ̂  and   ⃗     ̂     ̂     ̂ 

Find the force needed to keep the particle in equilibrium. 

Solution 

The resultant of forces is  ⃗⃗   ⃗   ⃗   ⃗     ̂    ̂    ̂ 

Then the force needed to keep the particle in equilibrium is   ⃗⃗      ̂    ̂    ̂ 
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Stable Equilibrium/Stability of Equilibrium 

In Stable equilibrium the particle will return to its original position when slightly 

displaced to either side. 

Point of Stability  

If a particle which is displaced slightly from an equilibrium point P tends to return 

to P, then we called P a point of stability or stable point and the equilibrium is said 

to be equilibrium. Otherwise we say that the point is one of instability and the 

equilibrium is unstable. 

Theorem: A necessary and sufficient condition that an equilibrium point be one of 

stability is that the potential  ⃗⃗ at the point be a minimum. 

Question 

A particle moves along the x – axis in a force field having potential                                

 ⃗⃗  
 

 
 𝑥       then  

a) Determine the point of equilibrium 

b) Investigate the stability 

Solution 

a) Equilibrium point occur where   ⃗⃗    

 
  ⃗⃗⃗

  
   

 

  
(
 

 
 𝑥 )     𝑥    𝑥     

Thus there is only one equilibrium point at 𝑥    

b) Since 
   ⃗⃗⃗

   
    , it follows that at 𝑥   ,  ⃗⃗ is minimum then by using 

theorem “A necessary and sufficient condition that an equilibrium point be one 

of stability is that the potential  ⃗⃗ at the point be a minimum.” 𝑥    is a point 

of stability. 
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Bounded and Unbounded Motion of a Particle 

Dynamic system may be categorized as bounded or unbounded.  

 If the sum of the kinetic and binding energies is less than zero, interacting 

entities are considered bounded. In this, system lies confined in a particular 

region of space. This generally happens when the energy of the particle is 

less than or equal to the total potential barrier at infinite separation. In other 

words, the particle has less energy than is required to escape the barrier. In 

classical mechanics, a bounded system is one where the motion of all the 

objects in the system is restricted to some finite region of space. 

For example consider an object moving in a Newtonian gravitational 

potential  (𝑟)   
  

 
. The motion of this object is bounded if it has 

negative total energy. In this case, the object will move in a close orbit in the 

shape of a ellipse. We can draw an imaginary box of finite size that 

completely encloses the orbital ellipse of the object. 

 If the sum of the kinetic and binding energies is greater than zero, interacting 

entities are considered unbounded. In this, system does not lies confined in 

a particular region of space. This generally happens when the energy of the 

particle is greater to the total potential barrier at infinite separation. In other 

words, the particle has greater energy than is required to escape the barrier. 

In classical mechanics, an unbounded system is one where the motion of 

all the objects in the system is not restricted to some finite region of 

space. 

For example consider an object moving in a Newtonian gravitational 

potential  (𝑟)   
  

 
. The motion of this object is unbounded if it has 

positive total energy. In this case, the object will move along a hyperbolic 

escape trajectory. And there does not exist any finite sized trajectory. In this 

case, the motion is unbounded. 
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Foucault’s Pendulum 

The Coriolis effect resulting from the rotation of the Earth was dramatically 

demonstrated by Jean Foucault (1819 – 1868) in 1851, using a long pendulum 

of 67 meter string with a very heavy bob (to reduce the effects of air currents) 

of 28km hung from a support designed to allow the pendulum to swing 

(rotated) freely in any direction (especially in a given vertical plane). His 

experiments showed that the plane in which the pendulum oscillates rotates slowly 

with time. The effect is very striking because, unlike previous examples, the 

motion takes place in a small region of space, and the velocity of the pendulum is 

not very great. The gravity force is, of course, much more important than the 

Coriolis force in determining the pendulum‟s motion. However, the direction of the 

small Coriolis force is out of the plane of oscillation; thus, despite its smallness, 

the Coriolis force has a significant effect on the motion of the pendulum. 

  

As shown in Figure,   is the angle between the line along which the 

pendulum oscillates and a reference polar axis. Foucault showed that the rate of 

rotation ϕ of the direction of swing of the bob is related to the latitude λ of the 

pendulum on the earth and the angular velocity ω of the Earth‟s rotation by the 

expression        .  
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Statement: Foucault’s Theorem (Foucault’s Formula) 

The plane of oscillation of the plane rotates with an angular frequency       

Proof 

Consider a Foucault‟s Pendulum comprises a bob of mass m suspended by a light 

wire of length L from the point P on a high ceiling. The tension force on the bob is 

shown as  ⃗⃗ and its x and y components are    and   , for small oscillation the 

angle   is very small. 

Consider a coordinate system OXYZ with origin O at the point of 

equilibrium and z – axis coincident with the local vertical; with point of suspension 

S on the z – axis. Then the xy – plane will be coincident with the local horizontal 

plane. We consider very small oscillation of the pendulum and therefore it is 

reasonable to assume that they take place in the horizontal plane. 

  

Let 𝑟 denote the position vector of the bob at any time t. If is the tension  ⃗⃗ in the 

string then the equation of motion of bob will be 

 𝑟̈     ⃗⃗⃗  𝑟̇   ⃗⃗    ⃗   …………………(1) 
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Where the quantities on the L.H.S refer to the body (or rotating) coordinate system 

OXYZ, and those on the R.H.S to a fixed (or inertial) coordinate system with O as 

origin. Let       be the angles which the line segment SP makes with coordinate 

axes, then the angles which the tension  ⃗⃗ makes with the same axes will be 

           . The component of  ⃗⃗ will therefore be 

    ⃗⃗  ̂      (   )          

    ⃗⃗  ̂      (   )          

    ⃗⃗  ̂      (   )          

Let (𝑥 𝑦 𝑧) be the coordinates of the point P. now we will use the following 

relations from the three – dimensional geometry 

     

 
          

     

 
          

     

 
       

Where   denotes the distance between the points (𝑥  𝑦  𝑧 ) and (𝑥  𝑦  𝑧 ). 

Noting that the end points of the string have coordinates (    ) and (𝑥 𝑦 𝑧) we 

obtain 

   

 
          

   

 
          

   

 
       

 

 
          

 

 
          

 

 
       

Therefore on substitution      
 

 
          

 

 
          

 

 
  

We consider very small displacement in the YZ – plane. Then 𝑥    𝑦    and 

𝑧    . Under these circumstances  ⃗⃗    ⃗, and for the components we can write 

    
 

 
         

 

 
             (because 𝑧   ) 

The angular velocity vector  ⃗⃗⃗ can be written as  ⃗⃗⃗  (     ) ̂  (     ) ̂ and 

 ⃗     ̂. Therefore  
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 ⃗⃗⃗  𝑟̇  |
 ̂  ̂  ̂

           
𝑥̇ 𝑦̇ 𝑧̇

|  

 ⃗⃗⃗  𝑟̇   ( 𝑦̇    ) ̂   (𝑥̇     𝑧̇    ) ̂  ( 𝑦̇    ) ̂  

Using in the equation (1) we have 

 𝑟̈     ⃗⃗⃗  𝑟̇   ⃗⃗    ⃗  

 (𝑥̈ ̂  𝑦̈ ̂  𝑧̈ ̂)    [ ( 𝑦̇    ) ̂   (𝑥̇     𝑧̇    ) ̂  ( 𝑦̇    ) ̂]  

 
 

 
(𝑥 ̂  𝑦 ̂  𝑧 ̂)     ̂  

On equating the coefficients of  ̂  ̂  ̂ we have 

𝑥̈    (     )𝑦̇   
  

  
  

𝑦̈    (𝑥̇     𝑧̇    )   
  

  
   …………………(2)   for all three equations 

𝑧̈    (    )𝑦̇   
  

  
    

Next we will make use of the assumption that the bob of the pendulum oscillates in 

the XY – plane. Because of this assumption 𝑧    and therefore 𝑧̇  𝑧̈    also 

using  ⃗⃗    ⃗ equation (2) reduces to the following form 

𝑥̈  (      )𝑦̇   
  

 
   𝑦̈  (      )𝑥̇   

  

 
   (      )𝑦̇      

Putting         , the motion of the pendulum in the XY – plane is given by 

𝑥̈  
  

 
    𝑦̇  and   𝑦̈  

  

 
     𝑥̇ …………………(3)  

(𝑥̈  
  

 
)   (𝑦̈  

  

 
)  (   𝑦̇)   (    𝑥̇)  

(𝑥̈   𝑦̈)  
 

 
(𝑥   𝑦)     (𝑦̇   𝑥̇)     (   𝑦̇   𝑥̇)  
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(𝑥̈   𝑦̈)  
 

 
(𝑥   𝑦)       (𝑥̇   𝑦̇)  

 ̈  
 

 
        ̇  using   𝑥   𝑦 

 ̈       ̇  
 

 
     

(         
 

 
)      

         
 

 
    

  
 

 
(      √    

     
 )    (   √  

    
 )  

Where   
  

 

 
 is the angular frequency of the pendulum, in the absence of the 

damping term.  

Since the roots are imaginary the general solution can be written as 

       [  
  √  

    
   

   
   √  

    
   

]   …………………(3) 

                 in the absence of the damping term 

The angular frequency (which is the same as angular velocity)    of the undamped 

oscillator is much greater than the angular velocity   of earth‟s rotation. i.e. 

      therefore above solution (3) can be approximated as 

        [            ]  or             

 𝑥   𝑦  (              )(𝑥
   𝑦 )   using    𝑥   𝑦  

 𝑥  𝑥        𝑦          and  𝑦   𝑥        𝑦        

Above equations describe a rotation through an angle              .  Thus 

the plane of oscillation of the plane rotates with an angular frequency      . This 

result clearly demonstrate the rotation of the earth. 

𝜉̈  
𝑔

𝑙
𝜉    is called equation of 

S.H.M. with period  𝜋√
𝑔

𝑙
 and 

the terms   𝑖𝜔𝑧𝜉̇ is called  

Damping Term 
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CHAPTER 

          

 KINETICS 

 
Kinetics 

The branch of Mechanics/Dynamics which deals with the geometry of motion of a 

body with reference to the force causing motion is called kinetics. 

Conservation Laws of Mechanics 

Certain quantities such as linear and angular momentum, under certain 

circumstances, remain constant during motion of mechanical system. They are 

called constant of motion or conserved quantities. The results expressing 

constancy of these quantities play fundamental role not only in mechanical but also 

in other areas of theoretical physics. 

In mechanics these results follow as consequences of the fundamental laws of 

motion and therefore sometimes called conservation axioms. But in other 

branches of physical sciences, such as Elementary Particle Physics, where 

fundamental dynamics laws are not known, the results expressing conservation of 

quantities such as linear momentum, angular momentum and energy are regarded 

as fundamental postulates of the theory or fundamental laws of nature. Our belief 

in their universal validity is bases on the observation that in the areas of physics, 

such as mechanics, electromagnetic theory and thermodynamics, where 

fundamental laws are well – founded and well – understood, these conservation 

laws are found to be strictly valid. 

 

 

 

2 
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Momentum (Linear Momentum)  

If a body of mass m is moving with velocity, then the momentum of that body is 

equals to the product of mass and velocity of the specific body.  Mathematically, 

we can write is as  ⃗⃗    ⃗. It is a vector quantity. It S.I unit is   m −1
.  

Momentum of system of particles  

The total momentum of a system of particles is the vector sum of the momenta of 

the individual particles: 

 ⃗⃗     ⃗   ⃗     ⃗  ∑  ⃗ 
 
    ∑    ⃗ 

 
     

Where the system consists of n particles and    is the mass of i
th
 particle and  ⃗  is 

corresponding velocity. 

Angular Momentum/ Moment of Momentum about Origin  

Angular momentum of a particle of mass  , position vector 𝑟 and linear 

momentum  ⃗⃗ is defined as 𝑟   ⃗⃗. The angular momentum of a single particle is the 

cross product of linear momentum and position vector of concerned particle. It is 

also called moment of momentum. It is represented by     or   

Angular Momentum of System of Particles  

The angular momentum L of a system of particles is defined accordingly, as the 

vector sum of the individual angular momentum, namely,   ∑ 𝑟     ⃗ 
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Law of Conservation of Momentum (Linear Momentum) 

Law of conservation of momentum can be stated as:  

If the sum of the external forces on a system is zero, the total momentum of the 

system does not change. i.e.  ⃗⃗   Constant. 

Momentum is always conserved (even if forces are non-conservative).  

Proof 

We know that  ⃗  
  ⃗⃗

  
 

If  ⃗    then 
  ⃗⃗

  
   and hence  ⃗⃗   Constant. 

Explanation  

In simple terms, momentum is considered to be a quantity of motion. This quantity 

is measurable because if an object is moving and has mass, then it has momentum. 

Something that has a large mass has a large momentum or something that is 

moving very fast has a large momentum. The momentum of individual component 

may change but the total momentum of system remains conserved.  

Example  

 A 3000 kg vehicle moving at 30 m/sec has a momentum of 90,000 kgm/sec 

as a result of product of the mass and the velocity.  

 Two hockey players of equal mass are traveling towards each other, one is 

moving at 9 m/sec and the other at 5 m/sec. The one moving with the faster 

velocity has a greater momentum and will knock the other one backwards.  

 A bullet fired from a gun, although small in mass, has a large momentum 

because of an extremely large velocity. 
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Law of Conservation of Angular Momentum  

Total angular momentum of the system remains constant if external torque act on 

the system is zero. i.e.    Constant 

Or The time rate change of angular momentum in the absence of some external 

forces is zero. Mathematically, we can write 
  

  
  . i.e.    Constant 

1
st
 Proof 

We know that   
  

  
 

If     then 
  

  
   and hence    Constant 

2
nd

 Proof 

Let us calculate the time derivative of the angular momentum. Using the rule for 

differentiating the cross product, we find  

  

  
 

 

  
(∑ 𝑟     ⃗ 

 
   )  ∑ (      ⃗ )

 
    ∑ (𝑟     ⃗ )

 
     

Now the first term on the right vanishes, because,     ⃗    and, because    ⃗  is 

equal to the total force acting on particle  , we can write  

  

  
 ∑ (𝑟     ⃗ )

 
     

  

  
 ∑ (𝑟  (∑   

(   )
  ∑ ∑    

(   ) 
   

 
   )) 

         (2)  

  

  
 ∑ (𝑟    

(   )
) 

    ∑ ∑    
(   ) 

   
 
          (3)  

Where     denotes the total external force on particle  , and     denotes the 

(internal) force exerted on particle   by any other particle  . Now the double 

summation on the right consists of pairs of terms of the form (𝑟    )  (𝑟     ) 

Denoting the vector displacement of particle   relative to particle   by 𝑟  , we have 

𝑟   𝑟  𝑟 . Therefore, because         , expression (3) reduces to   𝑟        

Which clearly vanishes if the internal forces are central, that is, if they act along 

the lines connecting pairs of particles.  
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Hence, the double sum in Equation (3) vanishes. Now the cross product (𝑟    ) is 

the moment of the external force F. The sum  ∑(𝑟    ) is, therefore, the total 

moment of all the external forces acting on the system. If we denote the total 

external torque, or moment of force, by N, Equation (3) takes the form  
  

  
  . 

That is, the time rate of change of the angular momentum of a system is equal to 

the total moment of all the external forces acting on the system.   

If a system is isolated, then    , and the angular momentum remains constant in 

both magnitude and direction:   

  ∑ 𝑟     ⃗ 
 
     Constant vector                                                     (8)  

This is a statement of the principle of conservation of angular momentum. It is a 

generalization for a single particle in a central field. 

Applications (Examples) of angular momentum 

 Planets move around the sun and satellites move around the earth are 

examples of angular momentum. 

 If a car move with constant velocity then momentum of the car remains 

constant. 

Examples 

A particle moves in a force field given by  ⃗  𝑟 𝑟  where  𝑟 is the position vector 

of the particle. Prove that the angular momentum of the particle is conserved. 

Solution 

The torque acting on the particle is     𝑟   ⃗ 

     𝑟  𝑟 𝑟  𝑟 (𝑟  𝑟)     

Then by theorem “Total angular momentum of the system remains constant if 

external torque act on the system is zero. i.e.    Constant” 

The angular momentum is constant. i.e. The angular momentum is conserved. 
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Torque 

Torque is defined as the turning effect of a body. It is trend of an acting force due 

to which the rotational motion of a body changes. It is a moment force acting on 

the particle about origin. It is also called twist and rotational force on an object. 

Mathematically, torque is defined as the cross product of the force vector to the 

distance vector, which causes rotational motion of the body. i.e.     𝑟   ⃗              

The magnitude of torque depends upon the applied force, the length of the lever 

arm connecting the axis to the point where the force applied, and the angle between 

the force vector and the length of lever arm. Symbolically we can write it as:  

    𝑟      

Torque is a vector quantity implies that it has direction as well as magnitude. The 

SI unit for torque is the newton meter (Nm). The direction of torque can be 

approximate using Right Hand Rule.  

Principal of angular momentum  

Relationship between Torque and Angular Momentum 

Or The moment of force or torque about the origin O of a coordinate system is 

equal to the time rate of change of angular momentum. 

Proof: We know that  

    𝑟   ⃗   ………(1)   

   𝑟   ⃗⃗   ………(2) 

( )  
  

  
 

 

  
 (𝑟   ⃗⃗)  

 
  

  
 𝑟  

  ⃗⃗

  
 

  ⃗

  
  ⃗⃗  

 
  

  
 𝑟   ⃗   ⃗    ⃗  

 
  

  
     ( ⃗   ⃗)  

  

  
          ⃗   ⃗    
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Principal of angular momentum (Another Way)  

If   is the torque about the axis and  ⃗⃗ is angular momentum then   
  ⃗⃗

  
                    

or  If   is then angular momentum then show that the rate of change of angular 

momentum equal to the moment of torque or force. i.e.   
  

  
.                                  

Proof             

  𝑟    𝑟   ̇  𝑟    ̇   𝑟  𝑟̈   𝑟  
  ̇

  
 

 

  
( 𝑟  𝑟̇)  

 

  
(𝑟   )   

  
  

  
  

Work Energy relation in case of Plane Rotational Motion 

The total work done in rotating a rigid body from an angle    where the angular 

speed is    to angle    where the angular speed is    is the difference in KE of 

rotation at    and   . 

Or Prove that ∫    
  

  
 

 

 
   

  
 

 
   

  

Proof 

From work done we have    ∫    
  

  
 

 ∫    
  

  
 ∫ ( 

  

  
) (   )

  
  

  

 ∫    
  

  
 ∫ ( 

  

  
) (   )

  

  
  

 ∫    
  

  
 ∫     

  

  
  

 ∫    
  

  
  ∫    

  

  
  

 ∫    
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Work 

When some external force is applied on an object, work is done by this force in the 

direction of force. Also when some work is done by the applied force, energy 

transferred from one place to another.   

The work done can be defined as a product of force and the displacement in the 

direction of applied force. The amount of work done can be expressed as the 

following equation:  

Work = Applied Force   Distance  

The SI unit of work is the joule (J), which is defined as the work done by a force of 

one newton through a displacement of one meter.    

If a force  ⃗ acting on a particle gives it a displacement  𝑟, then the work done by 

the force on the particle is defined as      ⃗  𝑟. 

Since only the component of  ⃗ in the direction of  𝑟 is effective in producing the 

motion. 

  

The total work done by a force field (vector field)  ⃗ in moving the particle from 

point  1 to point  2 along the curve C of Fig. is given by the line integral                  

  ∫  ⃗  𝑟
  

  
 ∫  ⃗  𝑟

  
  

, Where 𝑟  and 𝑟  are the position vectors of     and     

respectively. 
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Energy  

Energy is defined as the ability to do the work by the object. It is a measurable 

characteristic of a system which may be in the form of kinetic energy or potential.  

There exist many forms of energy. The energy neither can be created nor be 

destroyed but can be converted from one form to another. In mechanics, energy is 

the characteristic that transferred from one particle to another. The SI unit of 

energy is the joule; 1 joule can be defined as the energy transferred to an object 

by the work done of moving it a distance of 1 meter against a force of 1 

newton. The forms of energy include kinetic energy, potential energy, elastic 

energy, chemical energy, thermal energy and many others.  

Potential Energy/ Potential/Scalar Potential 

Energy possess by a body due to its position is called potential energy. It is a work 

done by a particle from its existing position to the standard position. It is denoted 

by V. Mathematically it is written as   ∫  ⃗  𝑟
  

 
 

Kinetic Energy (T) 

Kinetic energy is the energy stored in a body due to its motion. It can be 

transferred from one objects to another and transformed into other kinds of energy. 

In classical mechanics, the kinetic energy is equal to 1/2 the product of the mass 

and the square of the speed. In formula form:       
 

 
                   

The measuring unit of kinetic energy is the joule. It is denoted by  .   

The kinetic energy increases with the square of the velocity. If a car is moving with 

double velocity then we can say that it has four times as much kinetic energy. As a 

consequence of this quadrupling, it takes four times the work to double the 

velocity.  

If P denotes momentum of the object and m is the mass then we can symbolize the 

kinetic energy in the form of momentum as    
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Gravitational Potential Energy 

Gravitational Potential Energy is the energy possessed or acquired by an object due 

to a change in its position when it is present in a gravitational field. It is energy that 

is related to gravitational force or gravity. 

Using Newton‟s Law of universal gravitation between two particles    and    

 ⃗    
    

  
𝑟  

Where vector 𝑟 is directed from    to   .  

If we replace    by M and    by m, thenpro 

 ⃗    
  

  
𝑟      (

 

 
)   (

   

 
)    ( 

   

 
)  

      ( 
   

 
)  

Which shows that gravitational potential energy between particles of masses M and 

m is given by 

 (𝑟)   
   

 
  

Electrostatic Potential Energy 

Electrostatic Potential Energy is the electric potential energy per unit charge. It 

results from conservative coulomb forces and is associated with the configuration 

of a particular set of point charges within a defined system. 

Using Coulomb‟s Law of the force between two charged particles    and    

 ⃗  
 

    

    

  
𝑟   

    

    
 (

 

 
)    (

    

    

 

 
)  

      (
    

    

 

 
)  

Which shows that electrostatic potential function is given by 

 (𝑟)  
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Conservative Force Field 

A force field is said to conservative if the total work done by the particle moving 

along a curve is independent of the path taken by the particle and depend upon the 

end points of the curve only.  

Necessary and sufficient conditions for a Conservative Force Field  

Conservative force fields conserve the following properties:  

i. A force field F is conservative if and only if there exists a continuously 

differentiable scalar field V such that  ⃗      or, equivalently, if and only 

if    𝑟   ⃗     ⃗   . 

ii. A continuously differentiable force field F is  conservative if and only if for 

any closed non-intersecting curve C (simple closed curve)   

   
 
  ⃗  𝑟       

i.e. the total work done in moving a particle around any closed path is zero.   

Examples of Conservative Forces  

 Gravitational force is an example of a conservative force.  

 Elastic spring force is example of conservative force.  

 The work done of a particle moving along a closed path is zero and the 

force which causes such motion is conservative. 

Physical Significance of Conservative Force  

For any conservative force  ⃗ we have   ⃗  𝑟    for any closed path (in a simply 

connected region). This means that the force is not dissipative and any mechanical 

process taking place under its influence is reversible. 

The property of reversibility can be described as follows; 

If, at a certain moment, the velocities of all moving particles are reversed, then, 

following the same physical laws, a reversible mechanical process will retrace its 

former sequence of position and accelerations, in reverse order, as though time 

were running back. 
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Theorem 

Show that a necessary and sufficient condition that     𝑥     𝑦     𝑧 be an 

exact differential is that   𝑟   ⃗     ⃗    where   ⃗     ̂     ̂     ̂ 

Proof:  

Suppose     𝑥     𝑦     𝑧 be an exact differential. Then x,y,z are independent 

variables. We know that  

   𝑥     𝑦     𝑧     
  

  
 𝑥  

  

  
 𝑦  

  

  
 𝑧  

   
  

  
        

  

  
        

  

  
  

  ⃗     ̂     ̂     ̂  
  

  
 ̂  

  

  
 ̂  

  

  
 ̂      

Thus   𝑟   ⃗     ⃗         

Conversely suppose that    ⃗   . Then  ⃗     and so  ⃗  𝑟      𝑟     

That is       𝑥     𝑦     𝑧 be an exact differential. 

Question  

Show that (𝑦 𝑧    𝑥   𝑥 𝑧) 𝑥   𝑧 𝑦   𝑥 𝑦  ( 𝑦 𝑧    𝑥  𝑥 ) 𝑧 be an 

exact differential of a function   and find  . 

Solution   

Given that  ⃗  (𝑦 𝑧    𝑥   𝑥 𝑧) ̂   𝑧 𝑦   𝑥 ̂  ( 𝑦 𝑧    𝑥  𝑥 ) ̂  

Clearly    ⃗   . Then according to result “   𝑥     𝑦     𝑧 be an exact 

differential iff    ⃗   ” 

(𝑦 𝑧    𝑥   𝑥 𝑧) 𝑥   𝑧 𝑦   𝑥 𝑦  ( 𝑦 𝑧    𝑥  𝑥 ) 𝑧 be an exact 

differential. 

To find   integrate these terms as needed and arrange to get required answer 
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Theorem: If  ⃗     , where   is single valued and has continuous partial 

erivatives, show that the work done in moving the particle from one point    

(𝑥  𝑦  𝑧 ) in this field to another point    (𝑥  𝑦  𝑧 ) is independent of the path 

joining the two points.  

Proof:  ⃗⃗⃗⃗  ∫  ⃗  𝑟
  

  
  ⃗⃗⃗⃗  ∫      𝑟

  

  
  

 ⃗⃗⃗⃗   ∫ (
  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  ( 𝑥 ̂   𝑦 ̂   𝑧 ̂)

  

  
     

 ⃗⃗⃗⃗   ∫
  

  
 𝑥  

  

  
 𝑦  

  

  
 𝑧

  

  
  ∫   

  

  
  | |  

    (  )   (  ) 

Integral depends only on points not on path joining the points.  

Theorem: If ∫
 
  ⃗  𝑟 is independent of the path C joining any two points, show 

that there exists a function V such that  ⃗     . 

Proof: Let   ⃗     ̂     ̂     ̂  …………….(1) 

If ∫
 
  ⃗  𝑟 is independent of the path C joining any two points which we take as 

(𝑥  𝑦  𝑧 ) and (𝑥 𝑦 𝑧) respectively then 

 (𝑥 𝑦 𝑧)   ∫  ⃗  𝑟
(     )

(        )
  ∫ (   𝑥     𝑦     𝑧)

(     )

(        )
                               

Since    ∫
 
  ⃗  𝑟 is independent of the path C joining any two points, thus 

 (𝑥 𝑦 𝑧)   ∫
 
[  (𝑥 𝑦 𝑧) 𝑥    (𝑥 𝑦 𝑧) 𝑦    (𝑥 𝑦 𝑧) 𝑧]                                   

Let us choose a particular path the straight line segment from (𝑥  𝑦  𝑧 )  to 

(𝑥 𝑦  𝑧 ) to (𝑥 𝑦 𝑧 ) to (𝑥 𝑦 𝑧) and call  (𝑥 𝑦 𝑧) the work done along this path 

 (𝑥 𝑦 𝑧)   ∫   (𝑥 𝑦  𝑧 ) 𝑥
 

  
 ∫   (𝑥 𝑦 𝑧 ) 𝑦

 

  
 ∫   (𝑥 𝑦 𝑧) 𝑧

 

  
  

  

  
    (𝑥 𝑦 𝑧)  

  

  
    (𝑥 𝑦 𝑧 )  ∫

   

  
(𝑥 𝑦 𝑧) 𝑧

 

  
    (𝑥 𝑦 𝑧)  

  

  
    (𝑥 𝑦  𝑧 )  ∫   (𝑥 𝑦 𝑧 ) 𝑦

 

  
 ∫   (𝑥 𝑦 𝑧) 𝑧

 

  
    (𝑥 𝑦 𝑧)  

( )    ⃗   
  

  
 ̂  

  

  
 ̂  

  

  
 ̂   ⃗⃗⃗       
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Theorem:  

Prove that If ∫  ⃗  𝑟
  

  
 is independent of the path C joining any two points in a 

given region then   ⃗  𝑟    for all closed paths in the region and conversely. 

Proof 

 

Let          be a closed curve then 

  ⃗  𝑟  ∫
        

  ⃗  𝑟  

  ⃗  𝑟  ∫
     

  ⃗  𝑟   ∫
     

  ⃗  𝑟  

  ⃗  𝑟  ∫
     

  ⃗  𝑟   ∫
     

  ⃗  𝑟  

  ⃗  𝑟     

Conversely   

if   ⃗  𝑟    

∫
     

  ⃗  𝑟   ∫
     

  ⃗  𝑟     

∫
     

  ⃗  𝑟   ∫
     

  ⃗  𝑟     

∫
     

  ⃗  𝑟   ∫
     

  ⃗  𝑟    

That is ∫  ⃗  𝑟
  

  
 is independent of the path C joining any two points in a given 

region. 
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Theorem 

If  ⃗ is a conservative field force then there exist a scalar point function V such that 

 ⃗     . 

Proof 

Consider a particle which is at existing position   and move towards the standard 

position   . At existing position potential energy is     ∫  ⃗  𝑟
  

 
  

At existing position potential energy is     
    

       
 ∫  ⃗  𝑟

  

 
  

 ∫   
 

  
 ∫  ⃗  𝑟

  

 
 ∫   

 

  
  ∫  ⃗  𝑟

 

  
      ⃗  𝑟  

 
  

  
 𝑥  

  

  
 𝑦  

  

  
 𝑧    ⃗  𝑟  

 (
  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  ( 𝑥 ̂   𝑦 ̂   𝑧 ̂)    ⃗  𝑟  

     𝑟    ⃗  𝑟   ⃗       

Theorem 

If the force acting on the particle is given by  ⃗     ⃗⃗ then the total work done in 

moving the particle along the curve C from    to    is       

 ⃗⃗⃗⃗  ∫  ⃗  𝑟
  

  
  (  )   (  ) 

Proof 

 ⃗⃗⃗⃗  ∫  ⃗  𝑟
  

  
  ⃗⃗⃗⃗  ∫      𝑟

  

  
  

 ⃗⃗⃗⃗   ∫   
  

  
  | |  

    

 ⃗⃗⃗⃗   (  )   (  )  

Or             

Standard 

Position  
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Work – Energy Theorem  

A particle of constant mass m moves in space under the influence of a force field 

F. Assuming that at times   1 and   2  the velocity is  ⃗  and  ⃗   respectively, prove 

that the work done is the change in kinetic energy, i.e., 

  ∫  ⃗  𝑟

  

  

 
 

 
  ⃗ 

  
 

 
  ⃗ 

        

Proof: Consider the work done by taking an external force  ⃗, the force  ⃗ 

moves the particle from position 1 to position 2 in the horizontal direction then 

  ∫  ⃗  𝑟
 

 
    ∫   ⃗ 

  ⃗

  
  

 

 
     ∫

  ⃗⃗

  
 
  ⃗

  
  

 

 
  ∫  ⃗ 

  ⃗⃗

  
  

 

 
  

    ∫  ⃗  ⃗
 

 
  |

 ⃗⃗

 

 

|
 

 

 
 

 
  ⃗ 

  
 

 
  ⃗ 

            

Hence    ∫  ⃗  𝑟
  
  

 
 

 
  ⃗ 

  
 

 
  ⃗ 

        

Question 

Find the work done in moving a particle once around a circle C in the xy – plane, if 

the circle has center at the origin and radius 3 and if the force field is given by 

 ⃗  ( 𝑥  𝑦  𝑧) ̂  (𝑥  𝑦  𝑧 ) ̂  ( 𝑥   𝑦   𝑧) ̂ 

Solution  

In xy – plane we have   ⃗  ( 𝑥  𝑦) ̂  (𝑥  𝑦) ̂  ( 𝑥   𝑦) ̂ 

   ∫
 
 ⃗  𝑟  ∫

 [( 𝑥  𝑦) ̂  (𝑥  𝑦) ̂  ( 𝑥   𝑦) ̂] [ 𝑥 ̂   𝑦 ̂]  

   ∫
 
( 𝑥  𝑦) 𝑥  (𝑥  𝑦) 𝑦  

        using 𝑥        𝑦                

If C were traversed in Counterclockwise (Clockwise) direction 

The value of integral would be    (    ) 
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Conservation of Energy for a System of Particles in case of Conservative force  

Principle of Conservation of Energy / Law of Conservation of Energy  

The law of conservation of energy describes that the net energy of an isolated 

system remains conserved. Energy can neither be created nor destroyed; rather, it 

transforms from one form to another.”   

In case of conservative force field, the total energy is a constant. i.e. If   is for 

kinetic energy and V is for potential energy, then the total energy E is                            

       constant 

Proof 

Consider a particle move from position 1 to position 2. There will be two cases; 

Case – I: Consider the work done by taking a conservative force  ⃗ derived from a 

potential energy V, then 

    ∫  ⃗  𝑟
 

 
     ∫      𝑟

 

 
      ∫   

 

 
  | | 

   

             ……………(1) 

Case – II: Consider the work done by taking an external force  ⃗, the force  ⃗ 

moves the particle from position 1 to position 2 in the horizontal direction then 

    ∫  ⃗  𝑟
 

 
     ∫   ⃗ 

  ⃗

  
  

 

 
      ∫

  

  
 
  ⃗

  
  

 

 
  ∫   

  

  
  

 

 
  

      ∫    
 

 
  |

 

 

 
|
 

 

 
 

 
   

  
 

 
   

   

             ……………(2) 

From (1) and (2) we get 

             

              

        constant 
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Question: A particle of mass m moving along the x – axis under the influence of 

a conservative force field having potential V(x). If the particle is located at the 

position 𝑥  and 𝑥  at respective times    and   , prove that if E is the total energy 

then        √
 

 
∫

  

√   ( )

  

  
 

Solution: By the conservation of energy                                  

 
 

 
 (

  

  
)
 
  (𝑥)    (

  

  
)
 
 

 

 
(   (𝑥))  

  

  
 √

 

 
√   (𝑥)  

 ∫   
  
  

 √
 

 
∫

  

√   ( )

  

  
       √

 

 
∫

  

√   ( )

  

  
  

Conservative Systems and Orbits of Particles  

A single particle moving in a conservative field of forces may perform an 

important type of motion. Suppose the total energy E of the system is a constant of 

motion i.e. 
 

 
 𝑟̇   (𝑟)                              

Where E is some constant denoting total energy of the system.                 

Suppose the particle‟s motion in such that it returns to the same position, 

represented by the position vector 𝑟0, at a later time. Then it must have the same 

K.E. and therefore the same speed.  It follows that in a conservative system it is 

possible for closed trajectories to occur. This fact is very relevant in the study of 

Earth‟s motion about the Sun.  

Question: Is the force  ⃗   ⃗  𝑟 conservative? 

Solution: Let  ⃗     ̂     ̂     ̂ and 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂ then 

 ⃗   ⃗  𝑟  |
 ̂  ̂  ̂
      

𝑥 𝑦 𝑧
|  (  𝑧    𝑦) ̂  (  𝑥    𝑧) ̂  (  𝑦    𝑥) ̂  

 ⃗⃗⃗   ⃗  |

 ̂  ̂  ̂
 

  

 

  

 

  

  𝑧    𝑦   𝑥    𝑧   𝑦    𝑥

|     

Thus the force  ⃗   ⃗  𝑟  is conservative. 
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Question 

Find the potential energy function associated with the force  

 ⃗   𝑦𝑧 ̂  𝑥𝑧 ̂  𝑥𝑦 ̂  

Solution 

In this case  ⃗      

  𝑦𝑧 ̂  𝑥𝑧 ̂  𝑥𝑦 ̂         𝑦𝑧 ̂  𝑥𝑧 ̂  𝑥𝑦 ̂  

 
  

  
 ̂  

  

  
 ̂  

  

  
 ̂  𝑦𝑧 ̂  𝑥𝑧 ̂  𝑥𝑦 ̂  

 
  

  
 𝑦𝑧   ( )    

  

  
 𝑥𝑧   ( )    

  

  
 𝑥𝑦   ( )  

( )  ∫   𝑦𝑧 ∫ 𝑥    𝑥𝑦𝑧   (𝑦 𝑧)  …………..(4) 

 
  

  
 𝑥𝑧  

  

  
(𝑦 𝑧)  …………..(5)  partially differentiating w.r.to y 

 𝑥𝑧  𝑥𝑧  
  

  
(𝑦 𝑧)      from (2) and (5) 

 
  

  
(𝑦 𝑧)     (𝑦 𝑧)     (𝑧)   (𝑦 𝑧)   (𝑧)  …………..(6) 

( )    𝑥𝑦𝑧   (𝑧)  …………..(7)    using (6) in (4) 

 
  

  
 𝑥𝑦    (𝑧)      partially differentiating w.r.to z 

 𝑥𝑦  𝑥𝑦    (𝑧)    (𝑧)     (𝑧)       using (3) 

Hence our required potential function is  

   𝑥𝑦𝑧     
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Question 

Find the potential energy function associated with the force  

 ⃗   𝑥 ̂   𝑦 ̂   𝑧 ̂  

Solution 

In this case  ⃗      

  𝑥 ̂   𝑦 ̂   𝑧 ̂          ( 𝑥 ̂   𝑦 ̂   𝑧 ̂)  

 
  

  
 ̂  

  

  
 ̂  

  

  
 ̂    𝑥 ̂   𝑦 ̂   𝑧 ̂  

 
  

  
   𝑥   ( )    

  

  
   𝑦   ( )    

  

  
   𝑧   ( )  

( )  ∫     ∫𝑥 𝑥     
 

 
 𝑥   (𝑦 𝑧)  …………..(4) 

 
  

  
 

  

  
(𝑦 𝑧)  …………..(5)  partially differentiating w.r.to y 

   𝑦  
  

  
(𝑦 𝑧)     from (2) and (5) 

    
 

 
 𝑦   (𝑧)  …………..(6) 

( )     
 

 
 𝑥  

 

 
 𝑦   (𝑧)  …………..(7)  using (6) in (4) 

 
  

  
 

  

  
      partially differentiating w.r.to z 

 
  

  
   𝑧     

 

 
 𝑧   

Hence our required potential function is  

    
 

 
 𝑥  

 

 
 𝑦  

 

 
 𝑧   
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Question: Discuss whether the following force is conservative, if so, find the 

potential energy function associated with the force  

 ⃗  ( 𝑥   𝑦 ) ̂  ( 𝑧    𝑥𝑦) ̂  ( 𝑦   𝑧 ) ̂  

Solution: For conservative force we will prove  ⃗⃗⃗   ⃗    

 ⃗⃗⃗   ⃗  |

 ̂  ̂  ̂
 

  

 

  

 

  

 𝑥   𝑦  𝑧    𝑥𝑦  𝑦   𝑧 

|     

Thus the force  ⃗ is conservative. 

In this case  ⃗      

 ( 𝑥   𝑦 ) ̂  ( 𝑧    𝑥𝑦) ̂  ( 𝑦   𝑧 ) ̂       

  (
  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  ( 𝑥   𝑦 ) ̂  ( 𝑧    𝑥𝑦) ̂  ( 𝑦   𝑧 ) ̂  

 
  

  
   𝑥   𝑦   ( )    

  

  
   𝑧    𝑥𝑦  ( )    

  

  
   𝑦   𝑧   ( )  

( )     
 

 
 𝑥   𝑥𝑦   (𝑦 𝑧)  …………..(4) 

 
  

  
    𝑥𝑦  

  

  
(𝑦 𝑧)  …………..(5) partially differentiating w.r.to y 

   𝑧    𝑥𝑦     𝑥𝑦  
  

  
(𝑦 𝑧)     from (2) and (5) 

 
  

  
(𝑦 𝑧)    𝑧   (𝑦 𝑧)    𝑦𝑧   (𝑧) …………..(6) 

( )     
 

 
 𝑥   𝑥𝑦    𝑦𝑧   (𝑧)  ………..(7)  using (6) in (4) 

 
  

  
   𝑦    (𝑧)      partially differentiating w.r.to z 

   𝑦   𝑧    𝑦    (𝑧)    (𝑧)    𝑧   (𝑧)   
 

 
 𝑧   using (3) 

Hence our required potential function is    
 

 
 𝑥   𝑥𝑦    𝑦𝑧  

 

 
 𝑧  
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Question: Find the work done by the force field  

 ⃗  (𝑦 𝑧   𝑥𝑧 ) ̂   𝑥𝑦𝑧  ̂  ( 𝑥𝑦 𝑧   𝑥 𝑧) ̂  

 in moving a particle from the point  (      ) to (       ). 

Solution: To find work done we will use the formula   ∫  ⃗  𝑟
 

 
 

   ∫  ⃗  𝑟
 

 
 ∫      𝑟

 

 
  ∫   

(       )

(      )
 |  |(      )

(       )
  

   |  𝑥 𝑧  𝑥𝑦 𝑧   |(      )
(       )

      

Question:  

Show that  ⃗  ( 𝑥𝑦  𝑧 ) ̂  𝑥  ̂   𝑥𝑧  ̂ is a conservative force field. Find the 

potential. Also find the work done in moving an object in this field from (      ) 

to (     ). 

Solution: For conservative force we will prove  ⃗⃗⃗   ⃗    

 ⃗⃗⃗   ⃗  |

 ̂  ̂  ̂
 

  

 

  

 

  

 𝑥𝑦  𝑧 𝑥  𝑥𝑧 

|   . Thus the force  ⃗ is conservative. 

To find potential we have   ⃗      

 ( 𝑥𝑦  𝑧 ) ̂  𝑥  ̂   𝑥𝑧  ̂       

  (
  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  ( 𝑥𝑦  𝑧 ) ̂  𝑥  ̂   𝑥𝑧  ̂  

 
  

  
  𝑥𝑦  𝑧   ( )    

  

  
 𝑥    ( )    

  

  
  𝑥𝑧    ( )  

Our required potential function is    (𝑥 𝑦  𝑥𝑧 )                

To find work done we will use the formula   ∫  ⃗  𝑟
 

 
 

   ∫  ⃗  𝑟
 

 
 ∫      𝑟

 

 
  ∫   

(     )

(      )
 |  |(      )

(     )
  

   | (𝑥 𝑦  𝑥𝑧 )|(      )
(     )
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Question 

A particle of mass m moves under a force   ⃗    𝑥  where c is a positive 

constant. Then 

i. Find potential energy function. 

ii. If the particle starts from rest at 𝑥     what is its velocity when it reaches 

at 𝑥   . 

iii. Where in the subsequent motion does it come to the rest? 

Solution 

i. Given that   ⃗    𝑥  

  ⃗       
  

  
   𝑥  

  

  
  𝑥      𝑥  𝑥    

 

 
 𝑥     

ii.   ∫  ⃗ 𝑥
 

 
 

 

 
      ∫ 𝑥  𝑥

 

 
     since       

  √
 

  
    

iii. When body moves from 𝑥     to 𝑥    it comes to rest then     

 ∫  ⃗ 𝑥
 

  
     ∫ 𝑥  𝑥

 

  
            

            (         )  

When     then it comes to the rest. 
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Motion of a Particle under a Constant Force 

Let  ⃗ be a constant force applied on a particle of mass „m‟. Then 

 ⃗    ⃗   Constant   ⃗   Constant 

Since  
  ⃗⃗

  
  ⃗ Therefore    ⃗   ⃗   

  ⃗   ⃗   ⃗   on integrating 

Initially using       ⃗   ⃗  we get  ⃗   ⃗ . Thus  ⃗   ⃗   ⃗  

 
  ⃗

  
  ⃗   ⃗   𝑟   ⃗     ⃗     

 𝑟   ⃗    ⃗
  

 
  ⃗⃗   on integrating 

Initially using      𝑟    we get  ⃗⃗   . Thus  ⃗⃗   ⃗⃗⃗   
 

 
 ⃗⃗⃗   

Motion of a Particle under a Time Dependent Force 

Let  ⃗   ⃗( ) be a time dependent force applied on a particle of mass „m‟. Then 

 ⃗    ⃗   ⃗( )    ⃗   ⃗  
 ⃗( )

 
 

  ⃗⃗

  
 

 ⃗( )

 
   ⃗  

 ⃗( )

 
    

 ∫   ⃗
 

  
 

 

 
∫  ⃗( )  
 

  
 | ⃗|  

  
 

 
∫  ⃗( )  
 

  
  ⃗   ⃗  

 

 
∫  ⃗( )  
 

  
  

  ⃗   ⃗  
 

 
∫  ⃗( )  
 

  
  

 
  ⃗

  
  ⃗  

 

 
∫  ⃗( )  
 

  
  𝑟   ⃗    

 

 
*∫  ⃗( )  

 

  
+     

 ∫  𝑟
 

  
  ⃗ ∫   

 

  
 

 

 
∫ *∫  ⃗( )  

 

  
+   

 

  
  

 |𝑟|  
   ⃗ | |  

  
 

 
∫ *∫  ⃗( )  

 

  
+   

 

  
  

 𝑟  𝑟   ⃗ (    )  
 

 
∫ *∫  ⃗( )  

 

  
+   

 

  
  

  ⃗⃗   ⃗⃗   ⃗⃗⃗ (    )  
 

 
∫ *∫  ⃗⃗⃗( )  

 

  
+   
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Motion of a Particle under a Velocity Dependent Force 

Let  ⃗   ⃗( ⃗) be a time dependent force applied on a particle of mass „m‟. Then 

 ⃗    ⃗   ⃗( ⃗)   
  ⃗⃗

  
  …………(1) 

∫   
 

  
  ∫

 

 ⃗( ⃗⃗)
  ⃗

 

  
 | |  

   ∫
 

 ⃗( ⃗⃗)
  ⃗

 

  
  

       ∫
 

 ⃗( ⃗⃗)
  ⃗

 

  
  

       ∫
 

 ⃗( ⃗⃗)
  ⃗

 

  
  

( )   ⃗( ⃗)   
  ⃗⃗

  
  

  ⃗⃗

  

  

  
   ⃗

  ⃗⃗

  
   𝑥  

  ⃗⃗

 ⃗( ⃗⃗)
  ⃗  

 ∫  𝑥
 

  
  ∫

 ⃗⃗

 ⃗( ⃗⃗)
  ⃗

 

  
  

 ∫  𝑥
 

  
  ∫

 ⃗⃗

 ⃗( ⃗⃗)
  ⃗

 

  
  

 𝑥  𝑥   ∫
 ⃗⃗

 ⃗( ⃗⃗)
  ⃗

 

  
  

       ∫
 ⃗⃗⃗

 ⃗⃗⃗( ⃗⃗⃗)
  ⃗⃗⃗

 

  
  

Question 

A particle of mass m is projected vertically up with an initial velocity   . If the 

force due to the friction of air is directly proportional to its instantaneous velocity, 

calculate velocity and position of the particle as a function of time. 

Solution 
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Body move upward, so frictional force         and       

               ( )          where       are constants. 

  
  

  
           

      

 
      

 (     )

 
    

 
 

 
∫

 

     
  

 

  
  

 

 
∫   
 

 
 

 

 
|  (     )|  

   
 

 
| | 

   

 
 

 
[  (     )    (      )]   

 

 
  

 

 
*  (

     

      
)+     

   
 

 
*  (

      

     
)+  

Now     
 

 
*  (

     

      
)+ 

   (
     

      
)   

 

 
  

     

      
   

 

 
        (      ) 

 
 

 
 
  

    (      ) 
 

 

 
       

  

 
(  

 

 
   )     

 
 

 
 
  

Now  
  

  
 

  

 
(  

 

 
   )     

 
 

 
 
 

 ∫  𝑥
 

  
 

  

 
∫ (  

 

 
   )  

 

 
   ∫   

 

 
   

 

 
  

 |𝑥|  

  
  

 
|
 
 

 
 

 

 
 

 

  |
 

 

   |
 
 

 
 

 

 
 

 

|
 

 

  

 𝑥  𝑥  
  

 
.
 
 

 
 

 

 
 

 

   
 

 
 

 

/    .
 
 

 
 

 

 
 

 

 
 

 
 

 

/  

 𝑥  𝑥  
  

 
. 

  
 

 
 

 

 
   

 

 
/    . 

  
 

 
 

 

 
 

 

 
/  

      
   

 
 (

   

  
 

   

 
) (    

 

 
 )  
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Question 

A particle of mass m is falling under action of gravity near the surface of Earth. If 

the force due to the friction of air is directly proportional to its instantaneous 

velocity, calculate velocity and position of the particle as a function of time. 

Solution 

 

Body move downward, so frictional force         and      

              ( )         where       are constants. 

  
  

  
          

     

 
      

     

 
    

  
 

 
∫

  

     
  

 

  
 

 

 
∫   
 

 
 

 

 
|  (     )|  

   
 

 
| | 

   

 
 

 
[  (     )    (      )]   

 

 
  

 

 
*  (

     

      
)+     

   
 

 
*  (

      

     
)+  

Now     
 

 
*  (

     

      
)+ 

   (
     

      
)   

 

 
  

     

      
   

 

 
        (      ) 

 
 

 
 
  

       (      ) 
 

 

 
    

  

 
(    

 

 
 )     

 
 

 
 
  

Now  
  

  
 

  

 
(    
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 ∫  𝑥
 

  
 

  

 
∫ (    

 

 
 )   

 

 
   ∫   

 

 
   

 

 
  

 |𝑥|  

  
  

 
|  

 
 

 
 

 

 
 

 

|
 

 

   |
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 𝑥  𝑥  
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/    .
 
 

 
 

 

 
 

 

 
 

 
 

 

/  

 𝑥  𝑥  
  

 
.  

  
 

 
 

 

 
 

 

 
/    . 

  
 

 
 

 

 
 

 

 
/  

 𝑥  𝑥  
  

 
.  

  
 

 
 

 

 
 

 

 
/    . 

  
 

 
 

 

 
 

 

 
/  

      
  

 
  

 

 
(
  

 
   ) (  

 

 
   )  

Question 

A mass   tied to a spring having force constant   oscillate in one dimension. If the 

motion is subjected to the force     𝑥, find expression for displacement, 

velocity and period of oscillation. 

Solution 

 

Given     𝑥 

In this case Law of Conservation of Energy holds as          Total energy 

        ……………..(1) 

Since   
 

 
    but   ∫   𝑥

 

 
  ∫   𝑥

 

 
  ∫ (  𝑥) 𝑥

 

 
 

 

 
 𝑥  therefore 
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( )  
 

 
    

 

 
 𝑥     

 
 

 
      

 

 
 𝑥  

 

 
     (  

 

  
 𝑥 )     

  

 
(  

 

  
 𝑥 )  

    
  

 
(  .√

 

  
𝑥/

 

)  

Put √
 

  
𝑥        𝑥  √

  

 
       

    
  

 
(       )  (

  

  
)
 
 

  

 
      

  

  
 √

  

 
      

 
  

  
 

 

√
  

 
    

    
  

√
  

 
    

    
√

  

 
      

√
  

 
    

    √
 

 
    

    
 

 
     with   √

 

 
 

        ∫   
 

  
 ∫    

 

  
                  

Then  √
 

  
𝑥       becomes 𝑥  √

  

 
     

 𝑥  √
  

 
   (     )  

 
  

  
 √

  

 
    (     )      √

  

 
   (     )  

We know that   
  

 
 

   
  

√
 

 

  

     √
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Question 

A particle of mass   is at rest at the origin of the coordinate system. At     a 

force     (       ) is applied to the particle. Find the velocity and position 

of the particle as a function of time. 

Solution 

Given     (       ) 

In this case Newton‟s 2
nd

 Law holds. i.e.      

   ⃗    (       )   
  ⃗⃗

  
   (       )    ⃗  

  

 
(       )    

 ∫  ⃗  
  

 
∫(       )    ⃗  

  

 
*  

 

 
     

 

  
      +  

Initially     then  ⃗    we have    
 

  
 

  ⃗  
  

 
*  

 

 
     

 

  
     

 

  
+   ⃗  

  

 
*  

 

 
(      

 

 
     

 

 
)+  

  ⃗⃗⃗  
   

 
 

  

  
(      

 

 
     

 

 
)  

 
  

  
 

   

 
 

  

  
(      

 

 
     

 

 
)  

 ∫ 𝑥  ∫ *
   

 
 

  

  
(      

 

 
     

 

 
)+     

 𝑥  
   

 

  
 

   

   
     

  

   
     

  

   
     

   

   
    

Initially     then 𝑥    we have   
   

   
 

 𝑥  
   

 

  
 

   

   
     

  

   
     

  

   
     

   

   
 

   

   
  

   
    

   
(      )  

   

   
(      )  
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Question 

A particle having total energy E is moving in a potential field V(r). Show that the 

time taken by the particle to move from 𝑟  to 𝑟  is       ∫
  

√
 (   )

 

  
  

 

Solution: T and V are position dependent energies and       

 
 

 
        

 

 
 (

  

  
)
 
     (

  

  
)
 
 

 (   )

 
 

  

  
 √

 (   )

 
  

 ∫   
  
  

 ∫
  

√
 (   )

 

  
  

       ∫
  

√
 (   )

 

  
  

  

Question 

A block of mass   is at rest on a frictionless surface at the origin. At time     a 

force  ⃗     
    where   is a small positive constant is applied. Calculate 𝑥( ) 

and  ( ). 

Solution: Given  ⃗     
    

In this case Newton‟s 2
nd

 Law holds. i.e.  ⃗     

   ⃗     
     

  ⃗⃗

  
    

      ⃗  
  

 
        

 ∫  ⃗  
  

 
∫         ⃗  

  

 
(
    

  
)     

Initially     then  ⃗    we have   
 

 
 

  ⃗  
  

 
(
    

  
)  

 

 
  ⃗⃗⃗( )  

 

 
(  

  

 
    )  

 
  

  
 

 

 
(  

  

 
    )  ∫ 𝑥  ∫(

 

 
 

  

  
    )    𝑥  

 

 
  

  

   
        

Initially     then 𝑥    we have    
  

   
 

  ( )  
 

 
  

  

   ( 
     )  
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Question 

A particle of mass m having initial velocity  ⃗  in horizontal direction is subjected 

to retarding force proportional to its instantaneous velocity. Calculate its velocity 

and position as a function of time. 

Solution 

In horizontal direction a retarding force is   ⃗     ⃗ 

   ⃗     ⃗   
  ⃗⃗

  
    ⃗  

 ∫
 

 ⃗⃗
  ⃗

 

  
  

 

 
∫   
 

 
 |   ⃗|  

   
 

 
| | 

     ⃗     ⃗   
 

 
   

   (
 ⃗⃗

 ⃗⃗ 
)   

 

 
  

 ⃗⃗

 ⃗⃗ 
   

 

 
   ⃗⃗⃗   ⃗⃗⃗  

 
 

 
 
  

 
  

  
  ⃗  

 
 

 
  ∫  𝑥

 

  
  ⃗ ∫   

 

 
   

 

 
  

 |𝑥|  

   ⃗ |
 
 

 
 

 

 
 

 

|
 

 

 𝑥  𝑥   ⃗ . 
 
 

 
 

 

 

 

 
 
 

 

/  

      
  ⃗⃗⃗ 

 
(    

 

 
 )  

Question 

A ball of mass m thrown with velocity on a horizontal surface, where the retarding 

force is proportional to the square root of instantaneous velocity. Calculate its 

velocity and position as a function of time. 

Solution 

Since  ⃗  √ ⃗   ⃗    √ ⃗    ⃗    √ ⃗   
  ⃗⃗

  
   √ ⃗  

 ∫
 

√ ⃗⃗
  ⃗

 

  
  

 

 
∫   
 

 
 |√ ⃗|

  

 
  

 

  
| | 

  √ ⃗  √ ⃗   
 

  
   

 √ ⃗  √ ⃗  
 

  
   ⃗⃗⃗  (√ ⃗⃗⃗  

 

  
 )

 
  



              visit us @ Youtube  Learning with Usman Hamid

 

 

57 

 
  

  
 (√ ⃗  

 

  
 )

 
 ∫  𝑥

 

  
 ∫ (√ ⃗  

 

  
 )

 
  

 

 
  

 ∫  𝑥
 

  
 ∫  ⃗   

 

 
 (

 

  
)
 

∫     
 

 
 

 √ ⃗⃗ 

 
∫    
 

 
  

 |𝑥|  

   ⃗ | | 
  (

 

  
)
 
|
  

 
|
 

 

 
 √ ⃗⃗ 

 
|
  

 
|
 

 

  𝑥  𝑥   ⃗   (
 

  
)
   

 
 

 √ ⃗⃗ 

 

  

 
  

       ⃗⃗⃗   (
 

  
)
   

 
 

 √ ⃗⃗⃗ 

 

  

 
  

Question 

A particle of mass m is at rest at     when it is subjected to a force  ⃗        . 

Calculate values of  ⃗( ) and 𝑥( ). 

Solution 

 ⃗           ⃗          
  ⃗⃗

  
         

 ∫   ⃗
 

 
 

 

 
∫        
 

 
 | ⃗| 

  
 

 
| 

 

 
     |

 

 
  ⃗⃗⃗  

 

  
(       )  

 
  

  
 

 

  
(       )  ∫  𝑥

 

 
 

 

  
∫ (       )  
 

 
  

 |𝑥| 
  

 

  
|  

 

 
     |

 

 
    

 

  
(  

 

 
     )  

Question 

A particle of mass m is at rest at the origin of the coordinate system at    , a 

force  ⃗     starts acting on the particle. Find velocity and position of the particle 

as a function of time. 

Solution 

 ⃗       ⃗      
  ⃗⃗

  
    ∫   ⃗

 

 
 

 

 
∫    
 

 
 | ⃗| 

  
 

 
|
  

 
|
 

 

  

  ⃗⃗⃗  
 

  
    

  

  
 

 

  
   ∫  𝑥

 

 
 

 

  
∫     
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Question 

Find the displacement and velocity of a particle moving horizontally in a resistive 

medium in which the retarding force is proportional to the velocity. 

Solution 

In horizontal direction a retarding force is  ⃗      ⃗ 

   ⃗      ⃗  
  ⃗⃗

  
    ⃗  

 ∫
 

 ⃗⃗
  ⃗

 

  
   ∫   

 

 
 |   ⃗|  

    | | 
     ⃗     ⃗       

   (
 ⃗⃗

 ⃗⃗ 
)      

 ⃗⃗

 ⃗⃗ 
       ⃗⃗⃗   ⃗⃗⃗  

     

 
  

  
  ⃗  

    ∫  𝑥
 

 
  ⃗ ∫       

 

 
  

 |𝑥| 
   ⃗ |

    

  
|
 

 

 𝑥   ⃗ ( 
    

 
 

 

 
)    

 ⃗⃗⃗ 

 
(      )  

Question 

A particle falling in a resistive medium in under a retarding force proportional to 

the velocity. Find its velocity and displacement. 

Solution 

In particle falling downward a retarding force is  ⃗         ⃗ 

   ⃗         ⃗  
  ⃗⃗

  
      ⃗  

 ∫
  ⃗⃗

    ⃗⃗
  ∫   

 

 
  (    ⃗)           ⃗                   

     ⃗          

Suppose that initially the particle has velocity  ⃗  and  

Position 𝑦 .i.e.  ⃗   ⃗  when 𝑦  𝑦  at      

We have           ⃗  
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     ⃗  (    ⃗ ) 
     ⃗   

 

 
 (

    ⃗⃗ 

 
)       

 
  

  
  

 

 
 (

    ⃗⃗ 

 
)      𝑦   

 

 
  (

    ⃗⃗ 

  )         

Using initial conditions. i.e. 𝑦  𝑦  when     We have   𝑦  
    ⃗⃗ 

  
 

 𝑦   
 

 
  (

    ⃗⃗ 

  )      𝑦  
    ⃗⃗ 

  
  

      
 

 
  

    ⃗⃗⃗ 

  (      )  

Equation shows that in the limit     (i.e. after the passage of long enough time) 

   
 

 
. This velocity is called terminal velocity. 

Question 

Discuss equilibrium for the particle subject to the force  ⃗     𝑥 . 

Solution 

Since  ⃗   
  

  
 

  (𝑥)   ∫  ⃗ 𝑥     (𝑥)   ∫(   𝑥 ) 𝑥      ∫𝑥  𝑥     

  (𝑥)  
 

 
  𝑥     

Now since  ⃗    at 𝑥   , the particle is in a state of equilibrium at 𝑥   . 

To see further if the equilibrium is stable or unstable, we calculate 
   

   
 

If 
  

  
   𝑥  then 

   

   
    𝑥 

We note that 
   

   
   at 𝑥   , 

   

   
   at 𝑥   , 

   

   
   at 𝑥   , then these 

results show that the equilibrium is stable for positive displacement and unstable 

for negative displacement. 
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Non-Conservative / Dissipative Forces 

Forces that cannot be expressed in the term of a potential energy function are 

called non-conservative forces. We can also state that forces that do not store 

energy are called non-conservative or dissipative forces. If there is no scalar 

function V such that       [or, equivalently, if      ], then F is called a 

non-conservative force field. Friction is a non-conservative force, and there are 

others. It is always opposed to the direction of motion and is not a single valued 

function of position alone. Similarly the impulse (time dependent force) is also 

non-conservative and cannot be derived from a scalar point function.  An example 

of non-conservative force, we have     , where v is the velocity of the particle, 

then   ⃗  𝑟  ∫  ⃗ 
  ⃗

  
   ∫  ⃗  ⃗

  
  

    ∫  ⃗  ⃗
  
  

     ∫     
  
  

      

Which shows the integral is not equals to zero. Hence the force is non-

conservative. 

Work-Energy relation and Non-conservative Forces 

We have already shown that for any general force F: ∫  ⃗  𝑟
  

  
       

When the force F can be broken into conservative and non-conservative parts 

 ⃗   ⃗( )   ⃗(  )  

Then we have  ∫  ⃗( )  𝑟
  

  
 ∫  ⃗(  )  𝑟

  

  
       

       ∫  ⃗(  )  𝑟
  

  
           ⃗( )      

       ∫  ⃗(  )  𝑟
  

  
        

The work done in overcoming friction is always negative, because  ⃗(  ) is 

opposite to the displacement relation above proves that the influence of friction is 

dissipative and therefore decrease the total mechanical energy of the system. 

Alternatively above can be expressed as 

 (     )  (     )  ∫  ⃗(  )  𝑟
  

  
   (   )  ∫  ⃗⃗⃗(  )   ⃗⃗

  

  
                          

It is interesting to remember that the process in which work is converted into 

internal energy (due to friction) are irreversible. 
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Impulse  

Impulse is a special type of force defined by applying the integral of a force  ⃗, 

over the time interval, t, for which it acts on the body.  Impulse is a directional 

(vector) quantity in the same direction of force as force is also a directional 

quantity. When Impulse is applied to a rigid body, it results a corresponding vector 

change in its linear momentum along the same direction. The SI unit of impulse is 

the newton second (Ns), and the dimensionally equivalent unit of momentum is the 

kilogram meter per second (kgms
−1

). The particle is located at P1 and P2 at times t1 

and t2 where it has velocities v1 and v2 respectively. The time integral of the force F 

given by ∫  ⃗  
  
  

 is called the impulse of the force  ⃗. 

Angular Impulse  

The time integral of the torque   ∫    
  
  

 is called the angular impulse. 

Theorem   

Impulse is equal to the change in momentum  ∫  ⃗  
  
  

   ⃗    ⃗   ⃗⃗   ⃗⃗  

Proof  

We have to prove that the impulse of a force is equal to the change in momentum.  

By definition of impulse and Newton's second law, we have  

∫  ⃗  
  
  

 ∫  
  ⃗⃗

  
  

  
  

 ∫    ⃗
  
  

  | ⃗|  
     ⃗    ⃗   ⃗⃗   ⃗⃗   

Where we use the conditions   ⃗(  )   ⃗  and  ⃗(  )   ⃗  

The theorem is true even when the mass is variable and the force is non-

conservative. 

Theorem   

Prove that  ∫    
  
  

        

Proof  

∫    
  
  

 ∫
  

  
  

  
  

 ∫   
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Question 

A mass of 5000kg moves on a straight line from a speed of 540km/h to 720km/h in 

2 minutes. What is the impulse developed in this time? 

Solution 

Assume that the mass travel in the direction of positive x direction. In SI system 

 ⃗      ̂      
    ̂      

     
         ̂      

 ⃗      ̂      
    ̂      

     
         ̂      

   ( ⃗   ⃗ )  (      )(        ̂    )          ̂        

          ̂    

Thus the impulse has magnitude in the positive x direction. 

Power  

The rate of doing work is called power. If an agent does work    in time   , then 

the average power is defined as the ration to total work done to the total time. It is 

described  mathematically as: 

    〈 〉  
  

  
  

If the power is variable, then the instantaneous power is given by the expression:  

            
  

  
 

  

  
  

Watt  

The SI unit of power is watt which can be defined as:  

“If an agent does work of one joule of work per second,  the power of that agent 

will be 1 watt”   

Question: Prove that  ⃗⃗   ⃗  ⃗ 

Proof:   As   ⃗⃗  
  ⃗⃗⃗⃗

  
 

  ⃗⃗  
 ⃗   ⃗

  
  ⃗ 

  ⃗

  
  ⃗  ⃗   using   ⃗⃗⃗⃗   ⃗  𝑟 
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Atwood Machine 

As an example of a two – particle system we discuss the motion of the Atwood 

machine. It is a mechanical system consisting of two particles connected by a 

string passing over a pulley. It is an idealized mechanical system used to gain 

insight about the behaviour of a two – particles system. 

  

Here is assumed that  

a) The string is massless and inextensible. 

b) The pulley has no inertia and rotates on frictionless bearings. 

We first determine the acceleration of each particle by a simple application of 

Newton‟s 2
nd

 Law; 

        𝑧̈    ……………(i) 

        𝑧̈    ……………(ii) 

Where   is the tension in the string, supposed to be constant at all points of the 

string and 𝑧  𝑧  are the instantaneous distances from the centre of the pulley to the 

respective particles. Since the string is inextensible, we must have 

  𝑧  𝑧        ……………(iii)  where   is the length of the string. 

(   )  𝑧̇   𝑧̇     𝑧̈   𝑧̈    ……………(iv)   

Eliminating 𝑧̈  and from (i) and (ii) with the help of (iv) we have 

𝑧̈   
     

     
   ……………(v)   
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For         𝑧̈   . i.e. the particle    moves upwards. 

For         𝑧̈   . i.e. the particle    moves upwards. 

For         𝑧̈  𝑧̈   . i.e. no motion. 

In each case the acceleration remains constant. 

To calculate the tension   in the string we have from (i) 

        𝑧̈        ( 
     

     
)  

  
     

     
   ……………(vi)   

From this expression it follows that in case of                    and 

the system will be in the state of equilibrium. 

On the other hand, if       then 𝑧̈    and the acceleration is nearly the same 

as in the state of free fall. 

In spite of the fact that one particle is accelerated upwards and the other 

downwards, the net system acceleration will be downwards, as long as the two 

masses are unequal. 

To see this we consider the acceleration of the c.m. Regarding the c.m. as a particle 

of mass      , with acceleration 𝑧̈  we write its equation of motion as  

           (     )𝑧̈   

 (
     

     
 )          (     )𝑧̈   

𝑧̈    (
     

     
)
 
  

This shows that the acceleration of the system is always (     ) downwards. 
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Virial Theorem 

This theorem has to do with time averaged behavior of an isolated system of N 

particles. According to this theorem 

〈 〉   
 

 
〈∑  ⃗  𝑟  〉  

Here the quantity  
 

 
〈∑  ⃗  𝑟  〉 is called the Virial of the system. Where angle 

brackets represent the average over time of the enclosed quantity. 

Proof 

Let us consider a scalar function     ∑  ⃗⃗  𝑟 
 
     .………….(1) 

where  ⃗⃗  and 𝑟  denote the linear momentum and position vector of the i
th
 particle 

of the system. Assume that system is bounded for all time. i.e. the system remains 

confined with fixed boundaries. 

( )  
  

  
 ∑ ( ̇⃗⃗  𝑟   ⃗⃗  𝑟̇ )

 
      ………….(2) 

Define the time average of a function  ( ) over an interval [   ] as follows 

 ̅( )  〈 ( )〉  
 

 
∫  ( )  
 

 
  then (2) in view of this definition becomes 

 〈
  

  
〉  

 

 
∫   ( )  
 

 
 

 ( )  ( )

 
    ………….(3) 

If the system is periodic and   issome multiple of the period   (i.e.           ) 

then 〈
  

  
〉   . If the system is not periodic, then by the assumption of 

boundedness, (3) becomes       〈
  

  
〉     

Therefore whether the system is periodic or not, we have 

〈∑ ( ̇⃗⃗  𝑟   ⃗⃗  𝑟̇ )
 
   〉     

 〈∑  ⃗⃗  𝑟̇ 
 
   〉   〈∑  ̇⃗⃗  𝑟 

 
   〉     ………….(4) 

Now  ∑  ⃗⃗  𝑟̇ 
 
    ∑    ⃗   ⃗ 

 
     ∑ (

 

 
   ⃗ 

 ) 
       

Where T is the total K.E. of the system, then 

( )   〈 〉   〈∑  ̇⃗⃗  𝑟 
 
   〉 ( )  〈 〉   

 

 
〈∑  ⃗⃗⃗   ⃗⃗  〉   where   ̇⃗⃗   ⃗ 
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The word "virial" derives  from vis or viris, the Latin word for "force" or "energy", 

and was given its technical definition by Clausius in 1870. 

The significance of the virial theorem is that it allows the average total kinetic 

energy to be calculated even for very complicated systems that defy an exact 

solution, such as those considered in statistical mechanics; this average total 

kinetic energy is related to the temperature of the system by the equipartition 

theorem.  

However, the virial theorem does not depend on the notion of temperature and 

holds even for systems that are not in thermal equilibrium. The virial theorem has 

been generalized in various ways, most notably to a tensor form. Definitions of the 

virial and its time derivative  

Virial of the System  

For a collection of N point particles, the scalar moment of inertia   about the origin 

is defined by the equation    ∑   |𝑟 |
  

    ∑   𝑟 
  

    where    and 𝑟  

represent the mass and position of the k
th
 particle. 𝑟  |𝑟 | is the position vector 

magnitude.  

The scalar virial G is defined by the equation    ∑  ⃗⃗  𝑟 
 
    where  ⃗⃗  is the 

momentum vector of the k
th
 particle.  

Assuming that the masses are constant, the virial G is one-half the time derivative 

of this moment of inertia  

 

 

  

  
 

 

 

 

  
∑   𝑟  𝑟 

 
    

 

 
∑   

  ⃗ 

  
 𝑟 

 
    

 

 
∑    ⃗  𝑟 

 
    ∑  ⃗⃗  𝑟 

 
       

Virial Radius  

In astronomy, the term virial radius is used to refer to the radius of a sphere, 

centered on a galaxy or a galaxy cluster, within which virial equilibrium holds.  
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CHAPTER 

          

 KINEMATICS 
 

 

Kinematics is the branch of mechanics deals with the moving objects without 

reference to the forces which cause the motion.  In other words we can say those 

kinematics are the features or properties of motion of concerned with system of 

particles (rigid bodies).  

Here some features of rigid body motion are  

 Displacement  

 Position  

 Velocity   

 Linear Velocity & Angular Velocity  

 Linear Acceleration & Angular Acceleration  

 Motion of a Rigid Body (Translation & Rotation) 

From everyday experience, we all have some idea as to the meaning of each of the 

following terms or concepts. However, we would certainly find it difficult to 

formulate completely satisfactory definitions. We take them as undefined concepts.   

 Space. This is closely related to the concepts of point, position,' direction and 

displacement. Measurement in space involves the concepts of length or distance, 

with which we assume familiarity. Units of length are feet, meters, miles, etc.  

 Time. This concept is derived from our experience of having one event taking 

place after, before or simultaneous with another event. Measurement of time is 

achieved, for example, by use of clocks. Units of time are seconds, hours, years, 

etc.  

 Matter. Physical objects are composed of "small bits of matter" such as atoms and 

molecules. From this we arrive at the concept of a material object called a particle 

which can be considered as occupying a point in space and perhaps moving as time 

goes by. A measure of the "quantity of matter" associated with a particle is called 

3 
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its mass. Units of mass are grams, kilograms, etc. Unless otherwise stated we shall 

assume that the mass of a particle does not change with time. 

Rectilinear Motion 

When a moving particle remains on a single straight line, the motion is said to be 

rectilinear. In this case, without loss of generality we can choose the x-axis as the 

line of motion.  The general equation of motion is then   

 ⃗    ⃗   ⃗(𝑥 𝑥̇ 𝑥̈)   𝑥̈  

Rectilinear Motion of Particles 

 

Rectilinear motion of a body is defined by considering the two point of a body 

covered the same distance in the parallel direction. The figures below illustrate 

rectilinear motion for a particle and body. 

Rectilinear motion for a body 

 

In the above figures, 𝑥( ) represents the position of the particles along the 

direction of motion, as a function of time t. An example of linear motion is an 

athlete running g along a straight track.  

The rectilinear motion can be of two types:   

i. Uniform rectilinear motion  

ii. Non uniform rectilinear motion 
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Uniform Rectilinear Motion  

Uniform rectilinear motion is a type of motion in which the body moves with 

uniform velocity or zero acceleration.   

 In contrast, Non uniform rectilinear motion is such type of motion with 

variable velocity or non-zero acceleration.   

Uniformly Accelerated Rectilinear Motion 

Uniformly accelerated rectilinear motion is a special case of non-uniform 

rectilinear motion along a line is that which arises when an object is subjected to 

constant acceleration. This kind of motion is called uniformly accelerated motion.  

Uniformly accelerated motion is a type of motion in which the velocity of an 

object changes by an equal amount in every equal intervals of time. An example of 

uniformly accelerated body is freely falling object in which the amount of 

gravitational acceleration remains same.  ⃗    ⃗ 

Curvilinear Motion of Particle 

The motion of a particle moving in a curved path is called curvilinear motion. 

Example: A stone thrown into the air at an angle.  

Importance/Purpose: Curvilinear motion describes the motion of a moving 

particle that conforms to a known or fixed curve. The study of such motion 

involves the use of two co-ordinate systems, the first being planar motion and the 

latter being cylindrical motion. 

Velocity of Curvilinear motion  

If the tangential and normal unit vectors are  ⃗  and  ⃗  respectively, then the 

velocity will be  ⃗  
  ⃗

  
 ⃗ . 

You have already learnt that   ⃗  | ⃗|     

Acceleration of Curvilinear Motion  

If the tangential and normal unit vectors are  ⃗  and  ⃗  respectively, then the 

acceleration will be  ⃗  
   ⃗

   
 ⃗  

(
  ⃗⃗⃗

  
)
 

 
 ⃗  

You have already learnt that   ⃗           
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Example  

 A stone thrown into the air at an angle.  

 A car driving along a curved road.  

 Throwing paper airplanes or paper darts is an example of curvilinear motion.  

Example 

For the rectilinear motion of a particle moving with a velocity  √
     

  
 at a 

distance x from a fixed point. Show that particle attracted towards the fixed point 

with a force  (𝑥)  
 

  
 

Solution 

 ⃗   √
     

  
      (

     

  )       (
  

  
  )  

   
  

 𝑥
   .

    

𝑥 
/   

  

 𝑥
 

     

𝑥 
 

   
  

  
 

      

  
   ………….(1) 

Using the fact       

   
  

  
  

  

  

  

  
  

    
  

  
  

( )   (𝑥)  
 

  
   and       is constant. 
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Velocity 

Suppose an object moves along a straight line according to an equation of motion 

   ( ), where s is the displacement (directed distance) of the object from the 

origin at time  t. The function f  that describes the motion is called the position 

function of the object. In the time interval from     to       the change in 

position is  (   )   ( ). 

The average velocity over this time interval is 

                 
            

    
 

 (   )  ( )

 
  

which is the same as the slope of the secant line PQ in Figure. 
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Now suppose we compute the average velocities over shorter and shorter time 

intervals[     ]. In other words, we let h approach 0.  

We define the velocity (or instantaneous velocity)  ⃗( ) at time     to be the 

limit of these average velocities: 

 ⃗( )        
 (   )  ( )

 
  

This means that the velocity at time     is equal to the slope of the tangent line 

at P. 

Relative Velocity 

If two particles    and    are moving with respective velocities  ⃗  and  ⃗ , then the 

vector  ⃗      
  ⃗   ⃗  is called the relative velocity of    with respect to   . 

Acceleration 

If    ( ) is the position function of an object that moves in a straight line, we 

know that its first derivative represents the velocity  ⃗( ) of the object as a function 

of time. Then‟ 

The instantaneous rate of change of velocity with respect to time is called the 

acceleration  ⃗( ) of the object. Thus the acceleration function is the derivative of 

the velocity function and is therefore the second derivative of the position function: 

 ⃗( )   ⃗ ( )  𝑟  ( )  
   ⃗

   
  

Relative Acceleration 

If two particles    and    are moving with respective accelerations  ⃗  and  ⃗ , then 

the vector  ⃗      
  ⃗   ⃗  is called the relative acceleration of    with respect 

to   . 

Cartesian Components of Velocity and Acceleration 

Let 𝑟  𝑥 ̂  𝑦 ̂ be a position vector of a particle then 

 ⃗( )  
  ⃗

  
 

  

  
 ̂  

  

  
 ̂  and   ⃗( )   ⃗ ( )  

   ⃗

   
 

   

   
 ̂  

   

   
 ̂,  Then  

   𝑥   component of velocity  
  

  
 ,    𝑦   component of velocity  

  

  
 

   𝑥   component of velocity  
   

   
 ,    𝑦   component of velocity  
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Cartesian Components of Velocity and Acceleration 

 

Let 𝑟  𝑥 ̂  𝑦 ̂ be a position vector of a particle then       𝑟  

And therefore, velocity of a fluid particle denoted as „ ⃗⃗‟. 

 ⃗⃗         
  

  
 

  ⃗

  
  and   ⃗         

  

  
 

   ⃗

   
 

  ⃗⃗  
 

  
(𝑥 ̂  𝑦 ̂)  

  

  
 ̂  

  

  
 ̂  

  ⃗  
   ⃗

   
 

  

   
(𝑥 ̂  𝑦 ̂)  

   

   
 ̂  

   

   
 ̂  

   𝑥   component of velocity  
  

  
  

   𝑦   component of velocity  
  

  
 

   𝑥   component of velocity  
   

   
  

   𝑦   component of velocity  
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Tangential and Normal/Centripetal Components of Velocity 

When we study the motion of a particle, it is often useful to resolve the 

acceleration in two components, one in the direction of the tangent and the other in 

the direction of the normal. If we write   | ⃗| for the speed of the particle, then 

 ( )  
 ⃗ ( )

| ⃗ ( )|
 

 ⃗⃗( )

| ⃗⃗( )|
 

 ⃗⃗( )

 
  

And so   ⃗         with  ⃗     and  ⃗    

Question (Tangential and Normal/Centripetal Components of Acceleration) 

Show that acceleration of a particle travels along a space curve with velocity  ⃗ is 

given by  ⃗           
  

  
  

  

 
 .  We may use   instead  . 

Solution 

Since   ⃗  
  ⃗⃗

  
 

  ⃗  
 

  
(| | )  

 

  
(  )  

  

  
   

  

  
  ……………(1) 

  

  
 

  

  

  

  
           

 

 

  

  
    

  

  
    

  

  
 also 

  

  
   

  

  
  

 

 
   

( )   ⃗  
  

  
     

 

 
  ⃗⃗⃗  

  

  
  

  

 
  

  

  
        

Writing  ⃗  and  ⃗  for the tangential and normal components of acceleration, we 

have   ⃗⃗⃗   ⃗⃗⃗    ⃗⃗⃗     where     ⃗      and  ⃗      
  

 
     

Note 

Although we have expressions for the tangential and normal components of 

acceleration above, it‟s desirable to have expressions that depend only on 𝑟 𝑟 , and 

𝑟  . To this end we take the dot product of  ⃗     with  ⃗: 

 ⃗  ⃗     (        )                     

Therefore  ⃗     
 ⃗⃗  ⃗⃗

 
 

 ⃗ ( )  ⃗  ( )

| ⃗ ( )|
  

Using the formula for curvature, we have 

 ⃗      
| ⃗ ( )  ⃗  ( )|

| ⃗ ( )| 
 |𝑟 ( )|  

| ⃗ ( )  ⃗  ( )|

| ⃗ ( )|
  

radial and transverse components of velocity and acceleration. 
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Circular Motion 

Consider an object is revolving along a circular path with constant angular velocity 

 . The position of the body revolving in a circle is given by:  

𝑟  𝑟𝑟̂  

Suppose that the center of the circle is at origin O. Now the magnitude of  𝑟 

remains constant and the unit vector 𝑟̂ rotates at a constant rate. A circular motion 

is an example of a motion in two  dimension. i.e. in a plane. So 𝑟̂ can be written as: 

𝑟̂  
 ⃗

 
      ̂       ̂  

𝑟̂        ̂        ̂  

Where   is the angular velocity (speed) which is constant.   

Radial and Transversal Components of Velocity and Acceleration 

In polar coordinates, the position of a particle is specified by a radius vector r and 

the polar angle   which are related to x and y through the relations 

𝑥  𝑟      and  𝑦  𝑟     

Provided the two coordinate frames have the same origin and the x – axis and the 

initial line coincide. The direction of radius vector is known as radial direction 

and that perpendicular to it  in the direction of the increasing   is called transverse 

direction. 

If 𝑟̂  
 ⃗

 
      ̂       ̂  then 

   angular speed (velocity)  
  

  
  ̇ 

   angular acceleration  
   

   
  ̈ 

    radial component of velocity  
  

  
 𝑟̇  

    transversal component of velocity  𝑟
  

  
 𝑟 ̇ 

    radial component of acceleration  
   

   
 𝑟 (

  

  
)
 
 𝑟̈  𝑟 ̇   

    transversal component of acceleration   
  

  
(
  

  
)  𝑟

   

   
  𝑟̇ ̇  𝑟 ̈ 
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Radial and Transversal Components of Velocity and Acceleration 

In polar coordinates, the position of a particle is specified by a radius vector 𝑟 and 

the polar angle   which are related to x and y through the relations 

𝑥  𝑟      and  𝑦  𝑟     

Let 𝑟̂ and  ̂ be unit vectors in the radial and transverse directions respectively as 

shown in figure. Then  

𝑟̂       ̂       ̂   …………..(i) 

 ̂     (     ) ̂     (     )  ̂  

 ̂        ̂       ̂   …………..(ii) 

 
  ̂

  
 

 

  
(     ̂       ̂)

  

  
  

 
  ̂

  
 

  

  
 ̂    …………..(iii) 

 
  ̂

  
 

 

  
(      ̂       ̂)

  

  
  

 
  ̂

  
  

  

  
𝑟̂    …………..(iv) 

We know that 𝑟̂  
 ⃗

 
 implies 𝑟  𝑟𝑟̂ 

  ⃗  
  ⃗

  
 

 

  
(𝑟𝑟̂)  

  

  
𝑟̂  𝑟

  ̂

  
 

  

  
𝑟̂  𝑟

  

  
 ̂  

    radial component of velocity  
  

  
 𝑟̇  

    transversal component of velocity  𝑟
  

  
 𝑟 ̇ 

Let  ⃗ be the acceleration then 

  ⃗  
  ⃗⃗

  
 

 

  
(
  

  
𝑟̂  𝑟

  

  
 ̂)  

 

  
(
  

  
𝑟̂)  

 

  
(𝑟

  

  
 ̂)  

  ⃗  
   

   
𝑟̂  

  

  

  ̂

  
 

  

  
(
  

  
)  ̂  

   

   
𝑟 ̂  

  ̂

  
(
  

  
) 𝑟  

  ⃗  
   

   
𝑟̂  

  

  
(
  

  
 ̂)  

  

  
(
  

  
)  ̂  

   

   
𝑟 ̂  ( 

  

  
𝑟̂) (

  

  
) 𝑟  

  ⃗  
   

   
𝑟̂  𝑟 (

  

  
)
 
𝑟̂   

  

  
(
  

  
)  ̂  

   

   
𝑟 ̂  

  ⃗  [
   

   
 𝑟 (

  

  
)
 

] 𝑟̂  * 
  

  
(
  

  
)  

   

   
𝑟+  ̂  

   
   

   
 𝑟 (

  

  
)
 
 𝑟̈  𝑟 ̇  and      

  

  
(
  

  
)  𝑟

   

   
  𝑟̇ ̇  𝑟 ̈ 
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Question 

A particle moves so that its position vector is given by 𝑟        ̂        ̂ 

where   is constant. Then show that  

i. The velocity  ⃗ of the particle is perpendicular to 𝑟. 

ii. The acceleration  ⃗ is directed toward the origin and has magnitude 

proportional to the distance from the origin.  

iii. 𝑟   ⃗ is constant vector. 

Solution 

𝑟        ̂        ̂  

 ⃗  
  ⃗

  
         ̂         ̂   ⃗  

  ⃗⃗

  
          ̂          ̂  

i. 𝑟  ⃗  (      ̂        ̂) (        ̂         ̂)    

The velocity  ⃗ of the particle is perpendicular to 𝑟. 

ii.  ⃗           ̂          ̂     (      ̂        ̂)     𝑟 

The acceleration  ⃗ is directed toward the origin and has magnitude 

proportional to the distance from the origin.  

iii. 𝑟   ⃗  (      ̂        ̂)  (        ̂         ̂)  

𝑟   ⃗  |
 ̂  ̂  ̂

           
              

|    ̂  

𝑟   ⃗ is constant vector. 

Question 

Given a space with  position vector 𝑟         ̂         ̂  (    ) ̂. Find 

unit tangent vector to the curve. Also verify that   ⃗    . 

Solution 

𝑟         ̂         ̂  (    ) ̂  

 ( )  
 ⃗ ( )

| ⃗ ( )|
  

 

 
      ̂  

 

 
      ̂  

 

 
 ̂  

 ⃗          ̂         ̂    ̂    | ⃗|      

Cearly  ⃗    . Prove it by             
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Free Vectors 

Vectors which are specified by magnitude and direction only are called free 

vectors. Few types of such vectors given as follows; 

 Equal free Vectors: Any two free vectors are equal if they have the same 

magnitude and direction.  

 
 Equal Sliding Vectors: Any two free vectors are equal sliding iff they have 

the same magnitude, direction and line of action. 

 
 Equal Bound Vectors: Any two free vectors are equal bound vectors iff they 

have the same magnitude, direction and point of action. i.e identical. 
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Uniform Force Field 

A force field which has constant magnitude and direction is called a uniform or 

constant force field. If the direction of this field is taken as the negative z direction 

and the magnitude is the constant    then the force field will be  ⃗     ̂ 

 

Uniformly Accelerated Motion 

If a particle of constant mass m moves in a uniform field, then its acceleration is 

uniform or constant. The motion is then described as uniformly accelerated motion. 

Its formula is given by  ⃗  
  

 
 ̂. 

Accelerated due to Gravity 

Near the earth‟s surface an object fall with a vertical acceleration which is constant 

provided that air resistance is negligible. This acceleration is denoted by  ⃗ and 

called the acceleration due to gravity or the gravitational acceleration. Its value is 

given by  ⃗         . 

Freely Falling Bodies 

If an object moves so that the only force acting upon it is its weight, or force due to 

gravity, then the object is often called a freely falling body. If 𝑟 is the position 

vector and m is the mass of the body, then using Newton‟s 2
nd

 Law and  ⃗⃗⃗⃗     

assuming the motion in xy – plane we have 

 ⃗    ⃗   ⃗  
 ⃗⃗⃗⃗

 
 ⃗   

   ⃗

   
 

    ̂

 
 

   ⃗⃗

   
    ̂  

Equations shows that motion of freely falling body is independent of mass. 
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Question 

A particle of mass m moves along a straight line under the influence of a constant 

force of magnitude F. If its initial speed is  ⃗ , find the speed, the velocity and the 

distance travelled after time t. 

Solution 

 

Assume that the straight line along which the particle P moves is the x – axis as 

shown in figure. Suppose that at time t the particle is at a distance x from origin O. 

If  ̂ is a unit vector in the direction OP and   is the speed at time t, then the velocity 

is  ⃗ ̂. Then we have 

 ⃗    ⃗   
 

  
(  ̂)    ̂   

  

  
   

  

  
 

 

 
    

 

 
     

 

 
     

Initially using           we get     . Thus   
 

 
        

      
 

 
  

To find velocity 

Since we have      
 

 
  

   ̂     ̂  
  ̂

 
   ⃗   ⃗  

 ⃗

 
   

To find distance 

Since we have      
 

 
   

 
  

  
    

 

 
   𝑥  (   

 

 
 )    𝑥      

 

  
                    

Initially using  𝑥        we get    .  

Thus 𝑥      
 

  
   



              visit us @ Youtube  Learning with Usman Hamid

 

 

81 

Trajectory 

The curve traced by a moving particle is called the trajectory or path of the 

particle. 

Projectile Motion of a Particle 

An object fired from a gun or dropped from a moving airplane is often called a 

projectile.  If a ball is thrown from one person to another or an object is dropped 

from a moving plane, then their path of traveling/motion is often called a 

projectile.  

Position vector of Projectile at any time t 

Consider a body of mass   projected with velocity  ⃗  at angle   with the 

horizontal. Derive the expression for the P.V. of the projectile. 

 

Solution 

Since  ⃗     ̂     ̂    ̂  (   )  ̂

             
   

   
       

   

   
      

  

  
     

    
  

  
          initially using                         

  𝑥           𝑥  (      )      

 𝑥  (      )    initially using     𝑥         

                
   

   
       

  

  
         

    
  

  
             initially using                         

  𝑦                 𝑦   
 

 
    (      )      

 𝑦   
 

 
    (      )    initially using     𝑦         

  ⃗⃗    ̂    ̂  (      )  ̂  *(      )  
 

 
   +  ̂  
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Range of Flight/ Range of Projectile/ Horizontal Range of Projectile 

Consider a body of mass   projected with velocity  ⃗  at angle   with the 

horizontal. Derive the expression for the range of flight. 

 

Solution 

Since  ⃗     ̂     ̂    ̂  (   )  ̂

             
   

   
       

   

   
      

  

  
     

    
  

  
          initially using                         

  𝑥           𝑥  (      )      

   (      )    initially using     𝑥         

                
   

   
       

  

  
         

    
  

  
             initially using                         

  𝑦                 𝑦   
 

 
    (      )      

    
 

 
    (      )    initially using     𝑦         

 𝑦   
 

 
 (

 

      
)
 
 (      ) (

 

      
)   Using    

 

      
 

 𝑦   
   

   
 (

 

     
)  𝑥      𝑦  𝑥     

   

   
    

    

         
   

   
         Using 𝑥    𝑦    
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Time of Flight/ Time of Projectile/ The Time of flight back to Earth 

Consider a body of mass   projected with velocity  ⃗  at angle   with the 

horizontal. Derive the expression for the time of flight. 

 

 

Solution 

Since  ⃗     ̂     ̂    ̂  (   )  ̂

             
   

   
       

   

   
      

  

  
     

    
  

  
          initially using                         

  𝑥           𝑥  (      )      

   (      )     initially using     𝑥         

   (      )    Using 𝑥        

   
 

      
  

   

  
 

 
     

      
 

  
           

       
        

  
 

 
      

   
   

 
      

Remember that time of flight depends on        which is the vertical 

component of the velocity of the projection. 
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Path of Projectile is a Parabola 

Consider a body of mass   projected with velocity  ⃗  at angle   with the 

horizontal.  

 

We know that    
 

      
  and 𝑦   

 

 
    (      )  then using both 

equations we have 

 𝑦   
 

 
 (

 

      
)
 
 (      ) (

 

      
)  𝑦        

 

   
  

        

Which is a Parabola. 

Maximum Range of Projectile / Maximum Horizontal Range of Projectile 

Consider a body of mass   projected with velocity  ⃗  at angle   with the 

horizontal.  

 

We know that   
  
 

 
      

The range of the projectile will be maximum, when          

         ( )          

Thus the projectile will have the maximum range when it will be projected at an 

angle of    , therefore 
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Question 

An object of mass m is thrown vertically upward from the earth‟s surface with 

speed   , find the position at any time, the time taken to reach the highest point 

and the maximum height reached. 

Solution 

Let the position vector of m at any time t be 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂. Assume that the 

object starts at 𝑟    when    . Since the force acting on the object is     ̂, 

we have by Newton‟s Law; 

  ⃗      ̂   
   ⃗

   
     ̂  

  ⃗⃗

  
    ̂   ⃗      ̂     

Using  ⃗     ̂ at time     we have      ̂ 

  ⃗      ̂     ̂   ⃗  (     ) ̂  

 
  ⃗

  
 (     ) ̂  𝑟  (    

 

 
   )  ̂     

Using 𝑟    at time     we have     

  ⃗⃗  (    
 

 
   )  ̂  

Or equivalently                       
 

 
     

The highest point is reached when  ⃗  (     ) ̂    that is at time   
  

 
 

At time   
  

 
  the maximum height reached is from 𝑧      

 

 
    as follows 

𝑧  
  
 

  
  

Maximum Height of Projectile Reached 

A the highest point of the path the component of the velocity is zero thus using  

(      )        and we get   
  

 
     

 𝑦  (      )  
 

 
     

                        𝑦  (      ) (
  

 
    )  

 

 
 (

  

 
    )
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Question 

A projectile is launched with initial speed    at an angle   with the horizontal 

acting upon a force due to air resistance equal to     where   is constant. Find the 

position and velocity vector at any time. 

Solution  

Body move downward, so frictional force   ⃗      ⃗     ⃗ and  ⃗⃗⃗⃗     ⃗ 

 ⃗   ⃗⃗⃗⃗   ⃗     ⃗    ⃗    ⃗     ⃗    ⃗   

 
  ⃗⃗

  
   ⃗  (

 

 
)  ⃗  

  ⃗⃗

  
 (

 

 
)  ⃗    ⃗(𝑥)  

 
  ⃗⃗

  
 
(
 

 
) 

 (
 

 
)  ⃗ 

(
 

 
) 

   ⃗(𝑥) 
(
 

 
) 

 
 

  
( ⃗ 

(
 

 
) 
)     

(
 

 
) 

  

  ⃗ 
(
 

 
) 

   ∫ 
(
 

 
) 

      ⃗ 
(
 

 
) 

  (
  

 
)  

(
 

 
) 

    

using initially              ̂         ̂  

we get          ̂         ̂  
  

 
 

  ⃗ 
(
 

 
) 

  (
  

 
)  

(
 

 
) 

        ̂         ̂  
  

 
  

  ⃗⃗⃗  (       ̂         ̂) 
 (

 

 
) 

 
  

 
(   

 (
 

 
) 
)      required velocity 

 
  ⃗

  
 (       ̂         ̂) 

 (
 

 
) 

 
  

 
(   

 (
 

 
) 
)  

 𝑟   (
 

 
) (       ̂         ̂) 

 (
 

 
) 

 
  

 
(  (

 

 
)  

 (
 

 
) 
)     

using initially     𝑟    we get   
 

 
(       ̂         ̂  

   

  ) 

  ⃗⃗  (
   

 
) (     ̂       ̂) (   

 (
 

 
) 
)  

  

 
(  (

 

 
)  

 (
 

 
) 

 
 

 
)       
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Projectile Motion (of a particle) with air Resistance 

Consider a body of mass   projected with velocity  ⃗  at angle   with the 

horizontal. 

 

Body move downward, so frictional force   ⃗      ⃗ and  ⃗⃗⃗⃗     ⃗ 

 ⃗   ⃗⃗⃗⃗   ⃗     ⃗     ⃗    ⃗     ⃗     ⃗  where       are constants. 

  ⃗    ⃗    ⃗  (𝑥   ̂  𝑦   ̂)     ̂   (𝑥  ̂  𝑦  ̂)  

 𝑥   ̂  𝑦   ̂    𝑥  ̂  (    𝑦 ) ̂  

 𝑥     𝑥      ( ) 𝑦       𝑦     (  )  

( )  𝑥     𝑥  𝑧    𝑧   using 𝑥  𝑧 𝑥   𝑧  

 
  

  
   𝑧  ∫

 

 
 𝑧    ∫     𝑧        𝑧                 

 𝑧     
    𝑧     

      using initially          we get       

 
  

  
    

    ∫ 𝑥    ∫        𝑥    
    

  
    

 𝑥    
    

  
 

  

 
    using initially     𝑥    

   
  

 
(      )  

(  )  𝑦       𝑦             using 𝑦    𝑦      

 
  

  
       

  

  
                 using integrating factor  

 
 

  
(    )        ∫ (    )    ∫              
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     using initially       𝑦        

      
 

 
  then         

   

 
    

 

 
    

 

 
     (   

 

 
)  

 
  

  
  

 

 
     (   

 

 
)  ∫ 𝑦  ∫ * 

 

 
     (   

 

 
)+     

 𝑦   
 

 
∫   (   

 

 
) ∫        𝑦   

 

 
  (   

 

 
)

    

  
    

using initially         we get   
 

 
(   

 

 
) 

 𝑦   
 

 
  (   

 

 
)

    

 
 

 

 
(   

 

 
)  

    
 

 
  

 

 
(   

 

 
) (      )  

Time of Flight/ Time of Projectile with Air Resistance 

Since we know that  𝑦   
 

 
  

 

 
(   

 

 
) (      )  

Using 𝑦        

    
 

 
  

 

 
(   

 

 
) (      )  

 

 
  

 

 
(   

 

 
) (      )  

    (
      

 
) (      )    (

      

  
) *  (     

    

  
 

    

  
  )+  

   (
      

  
) (   

    

  
 

    

  
  )  

   (
      

  
)   (  

  

  
 

    

  
           )             

   (
      

 
) (  

  

  
 

    

  
)  

 

      
   

  

  
 

    

  
  

 
  

 
   

    

 
 

 

      
 

  

 
 (

        

      
)  

    

 
  

 
  

 
 (

   

      
)  

    

 
   

 

 
(

   

      
 

    

 
)    

   

      
 

   

 
    (   )  
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For ideal condition friction is zero so     then   
   

  
  

   
       

  
   using           

    
       

  
   for small value of k using      

(   )    
   

      
 

   
 

 
  

   
   

      
 

 

 
(
   

  
)
 
   

   

 (  
   
 

)
 

 

 
(
    

 

   )  

   
   

 
[(  

   

 
)
  

 
    

  
]    

   

 
*(  

   

 
 

    
 

  
  )  

    

  
+  

   
   

 
*  

   

 
            

    

  
+    

   

 
*  (

   

 
 

    

  
)+  

   
   

 
*  (

         

  
)+    

   

 
(  

   

  
)  

Range of Projectile with Air Resistance 

Since we know that  𝑥  
  

 
(      )  

    
  

 
(      )   using 𝑥         

    
  

 
*  (     

    

  
 

    

  
  )+  

    
  

 
*       

    

  
 

    

  
  +  

    
  

 
*   

    

  
 

    

  
  +  

using   
   

 
(  

   

  
) 

    
  

 
[ .

   

 
(  

   

  
)/  

  

 
.
   

 
(  

   

  
)/

 

           ]   
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[
    

 
(  

   

  
)  

      
 

   (  
   

  
)
 

]  

    
  

 
*
    

 
(  

   

  
)  

     
 

  (  
     

 

   
  )+  

    
  

 
 
    

 
*(  

   

  
)  

   

 
(            )+  

    
     

 
*  

   

  
 

   

 
+     

     

 
*  

        

  
+  

    
     

 
*  

    

  
+      *  

    

  
+  

      
    

  
          (Due to friction) 

 
    

  
                                 

    

  
   

    
  (      )

  

       

 
    

    
          

   
  

Question 

Show that 𝑥      if force of friction is zero. 

Solution 

Let 𝑥  
  

 
(      ) 

 𝑥  
  

 
*  (     

    

  
 

    

  
  )+  

 𝑥  
  

 
*       

    

  
 

    

  
  +  

  

 
*   

    

  
 

    

  
  +  

 𝑥  
  

 
  *  

   

  
 

    

  
  +  𝑥    *  

   

  
 

    

  
  +  

When force of friction is zero it means k = 0 

 𝑥    [       ]  

 𝑥       

𝑘    

𝑣  𝑣 𝑠𝑖𝑛   

𝑢  𝑣 𝑐𝑜𝑠   

𝑅  
 𝑢 𝑣 
𝑔

 

𝑅  
𝑣 𝑠𝑖𝑛  

𝑔
 

Ideal condition 
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CHAPTER 

         RESISTED MOTION AND  

DAMPED FORCE 

OSCILLATOR 
Motion in a Resisting Medium 

In practice an object is acted upon not only by is weight but by other forces as 

well. An important class of forces are those which tend to oppose the motion of an 

object and reduce the magnitude of successive oscillations about the equilibrium 

position. Such forces, which generally arises because of motion in some medium 

such as air or water, are often called resisting, damping or dissipative force and 

the corresponding medium is said to be a resisting, damping or dissipative 

medium. A useful approximated damping force is given as follows; 

 ⃗     ⃗      ̂    
  

  
 ̂  

Where the descript D stands for the damping force and   is the positive constant 

called the damping coefficient. Note the  ⃗  and  ⃗ are in opposite direction. 

Friction Force   

Friction forces play an important role in damping or retarding motion initiated by 

other forces friction force between two bodies results from the interaction between 

the surface molecules of the two bodies and involves a very large number of such 

iteration. The phenomenon is therefore complex and depends on factor such as the 

condition and nature of the surfaces and their relative velocity.  

 

 

 

 

4 
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Some Useful Definitions 

 Simple Harmonic Motion and Simple Harmonic Oscillator: SHM occur 

when the net force is directly proportional to the displacement from the mean 

position and is always directed towards the mean position. The body 

executing SHM is called Simple Harmonic Oscillator. The motion of simple 

pendulum and the motion of mass spring system is SHM. 

Simple Harmonic Motion is an oscillatory motion that occurs whenever a 

force acts on a body in the opposite direction to its displacement from its 

equilibrium position , with the magnitude of the force , proportional to the 

magnitude of the displacement. i.e.   ⃗   𝑥  or  ⃗    𝑥 

Where   is the constant of proportionality often called the spring constant, 

elastic constant, stiffness factor or modulus of elasticity 

 Restoring Force: A force that always pushes of pulls the object performing 

oscillatory motion towards the mean position. 

 Vibration: One complete round trip of a vibrating body about its mean 

position is called one vibration. 

 Time Period: The time taken by a vibrating body to complete one vibration 

is called time period. 

 Frequency: The number of vibrations or cycles of a vibrating body in one 

second is called its frequency. It is reciprocal of time period. 

 Amplitude: The maximum displacement of a vibrating body on either side 

from its mean position is called its amplitude. 

 Oscillations/Vibrations: A body is said to be vibrating (oscillating)  if it 

moves back and forth or to and fro about a point.  

 Damped forced oscillations/ Damped oscillations: The oscillations of a 

system in the presence of some resistive force. 

 Linear frequency:  The amount of vibrations completed in unit time is 

called linear frequency. Its SI unit is called hertz (Hz). 

 Angular frequency: The amount of rotations completed in unit time is called 

linear frequency. The linear frequency   and the angular frequency   are 

related as   
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Equation of Motion of Simple Harmonic Oscillator 

Consider a block of mass m is attached with one end of a string. The other end of 

spring is fixed to a support. The block is free to move to and fro over a frictionless 

horizontal surface as shown in figure. 

 

The point x = 0 when block is at rest is called mean position because spring is not 

exerting any force on the block. The block attached with spring having constant k 

takes to and fro motion under restoring force F given as 

 ⃗    𝑥    ……………….(1) 

 ⃗    ⃗   
   

   
    ……………….(2)  by Newton‟s 2

nd
 Law 

Comparing (1) and (2) we have   

 
   

   
   𝑥  

 𝑥̈   𝑥    Or  𝑥̈  
 

 
𝑥    

This is called equation of motion of simple harmonic oscillator or linear Harmonic 

Oscillator. This type of motion is often called Simple Harmonic Motion. 
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Damped Harmonic Oscillator 

The oscillator which moves in a resistive medium under a restoring force is called 

the Damped Harmonic Oscillator  and equation of motion of the harmonic 

oscillator is given as 

 
   

   
   𝑥   

  

  
  or  

   

   
  

  

  
  𝑥    

We may write it as follows; 

   

   
 

 

 

  

  
 

 

 
𝑥     

𝑥̈    𝑥̇    𝑥      using 
 

 
      

 

 
     

Remark 

 Damped Harmonic Oscillation 𝑥̈   𝑦𝑥̇    𝑥    represent over damped 

motion if       . i.e.        and in this case equation                                

𝑥̈   𝑦𝑥̇    𝑥    has the general solution of the following form 

𝑥      (          )   where   √      

And A,B are arbitrary constants can be found from the initial conditions.  

 Damped Harmonic Oscillation 𝑥̈   𝑦𝑥̇    𝑥    represent critically 

damped motion if       . i.e.        and in this case equation                                

𝑥̈   𝑦𝑥̇    𝑥    has the general solution of the following form 

𝑥      (    )    

And A,B are arbitrary constants can be found from the initial conditions.  

 Damped Harmonic Oscillation 𝑥̈   𝑦𝑥̇    𝑥    represent under 

damped or damped oscillatory motion if       . i.e.        and in 

this case equation 𝑥̈   𝑦𝑥̇    𝑥    has the general solution of the 

following form 

𝑥      (             )          (    )   where   √      

And where   √      called the amplitude, and   called the phase 

angle or epoch, can be determined from the initial conditions. 
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Equation of Motion of Damped Harmonic Oscillator 

Consider a block of mass m is attached with one end of a string. The other end is 

connected with a mass less vane. The block is free to move to and fro over a 

frictionless horizontal surface as shown in figure. 

 

Now displace the block towards right through some displacement and release. The 

block attached with spring having constant k takes to and fro motion under 

restoring force F given as 

 ⃗    𝑥  

The damping force experienced by vane when it moves in resistive medium is  

 ⃗     ⃗    

           ⃗   ⃗   ⃗    𝑥    ⃗  ……………….(1) 

 ⃗    ⃗   
   

   
     ……………….(2)  by Newton‟s 2

nd
 Law 

Comparing (1) and (2) we have   

 
   

   
   𝑥   

  

  
  or  

   

   
  

  

  
  𝑥    

We may write it as follows; 

   

   
 

 

 

  

  
 

 

 
𝑥     

𝑥̈    𝑥̇    𝑥      using 
 

 
      

 

 
     

This is called equation of motion of damped harmonic oscillator . This type of 

motion is often called damped Harmonic Motion. 
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Simple Pendulum 

The metallic bob suspended by a weightless inextensible string is called simple 

pendulum. The distance between point of suspension and center of bob is called 

length of simple pendulum. The bob at rest when no resultant force acts on it is 

called mean position or equilibrium position. 

Equation of motion of a Simple Pendulum 

Consider a bob of mass m attached with a string. The string is hanged vertically 

from a support as shown in figure; 

 

Pull the pendulum from mean position to position A such that string makes a small 

angle   with vertical. The bob starts moving toward mean position under restoring 

force when released. It gets maximum velocity at mean position and does not stop 

due to inertia but continues to move towards extreme position B. The velocity of 

bob becomes zero at position B due to restoring force. 

 The path followed by bob when it moves from mean position to position A 

is called an arc of circle having radius  . The arc length S and chord length x are 

approximately equal for small angle.  

The forces acting on bob when it is at position A are 

 Weight of bob acting vertically downward 

 Tension acting along the string 
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Resolving weight force into components we get  ⃗            

The negative sign means direction of   ⃗ is opposite to direction of increasing   

and for small amplitude we have        

 ⃗          ……………….(1) 

 ⃗    ⃗      ……………….(2)  by Newton‟s 2
nd

 Law 

Comparing (1) and (2) we have   

  ⃗        ⃗       

The relation   𝑟  for circular path gives 𝑥     then 

 ⃗    (
 

 
)   ⃗   (

 

 
) 𝑥  

   

   
  (

 

 
) 𝑥  

𝑥̈   (
 

 
)    (Equation of motion of a Simple Pendulum) 

Resonance / Resonance Frequency 

Resonant frequency is the oscillation of a system at its natural or unforced 

resonance. Resonance occurs when a system is able to store and easily transfer 

energy between different storage modes, such as Kinetic energy or Potential 

energy as you would find with a simple pendulum. A familiar example is a 

playground swing, which acts as a pendulum.  

Forced Vibrations 

Forced vibration occurs when motion is sustained or driven by an applied periodic 

force in either damped or undamped systems. Vibration of vehicles during the 

running on uneven roads, vibration of air compressors and musical instruments etc. 

are some of the examples for forced vibrations. 
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Question 

Determine the motion of simple pendulum of length   and mass m assuming small 

vibrations and no resisting force. 

Solution  

Let the position of m at any time be determined by s, 

the arc length measured from the equilibrium position O.  

Let   be the angle made by the pendulum string with the  

vertical. If  ⃗⃗ is a unit tangent vector to the circular path of 

the pendulum bob m, then by Newton‟s second law 

 ⃗    ⃗   
   

   
 ⃗⃗   ……………….(1) 

Resolving force into components we get   ⃗            

The negative sign means direction of   ⃗ is opposite to direction of increasing   

and for small amplitude we have                                                                           

 ⃗         ……………….(2) 

Comparing (1) and (2) we have   

 
   

   
 ⃗⃗       

   

   
     

  

   
(  )                                                       

   

   
  

 

 
  

   

   
 

 

 
                                          

Which has solution       √
 

 
      √

 

 
         

Using initial conditions      
  

  
   at     we get          

        √
 

 
 . Here is time period   √    

Energy of a Simple Harmonic Oscillator 

If T is the kinetic energy, V the potential energy and E = T + V the total energy of 

a simple harmonic oscillator then we have 

      
 

 
    

 

 
 𝑥   
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Question 

Prove that the force  ⃗    𝑥 ̂ acting on a simple harmonic oscillator is 

conservative. 

Solution: Given that  ⃗    𝑥 ̂ then 

 ⃗⃗⃗   ⃗  |

 ̂  ̂  ̂
 

  

 

  

 

  

  𝑥   

|   . Thus the force  ⃗   ⃗  𝑟  is conservative. 

Question 

Find the potential energy of a simple harmonic oscillator.  

Solution 

In this case the potential or potential energy is given as  ⃗      

   𝑥 ̂          𝑥 ̂  
  

  
 ̂  

  

  
 ̂  

  

  
 ̂   𝑥 ̂  

 
  

  
  𝑥   ( )    

  

  
     ( )    

  

  
     ( )  

( )    
 

 
 𝑥     

   
 

 
 𝑥     using     for 𝑥    we get     

Question 

Express in symbol the principal of conservation of energy for a simple harmonic 

oscillator. 

Solution 

We know that  
   

   
   𝑥 

  
  

  
   𝑥   

  

  

  

  
   𝑥    

  

  
   𝑥      

       
 

 
    

 

 
 𝑥    after integration 
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CHAPTER 

  CENTRAL FORCES AND 

PLANETARY MOTION 

 
Central Force Fields 

Suppose that a force acting on a particle of mass m is such that 

i. It is always directed from m toward or away from fixed point. 

ii. Its magnitude depends only on the distance from fixed point. 

Then we call the force a central force or central force field. Mathematically it can 

be written as  ⃗   (𝑟)
 ⃗

 
. The central force is one of the attraction towards origin if 

 (𝑟)    or repulsion from origin if   (𝑟)   . 

Or If a particle is moving in an orbit under the influence of a force whose line 

of action passes through some fixed point, then such a force is called a central 

force or central force field and the fixed point is called its centre. The central force 

may be attractive or repulsive. 

Properties of a Central Force Fields 

If a particle moves in a central force field, then the following properties are valid; 

i. The path or orbit of the particle must be a plane curve. i.e. particle moves in 

a plane. 

ii. The angular momentum of the particle is conserved. i.e. constant. 

iii. The particle moves in such a way that the position vector or radius vector 

drawn from Origin to the particle sweeps out equal areas in equal times. In 

other words, the time rate of change in area is constant. This is sometime 

called the law of areas. 

 

5 
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Property 

The path or orbit of the particle must be a plane curve. i.e. particle moves in a 

plane. 

Proof  

Let  ⃗   (𝑟)
 ⃗

 
 be the central force field then 

𝑟   ⃗  𝑟   (𝑟)
 ⃗

 
   𝑟   

  ⃗⃗

  
    

 𝑟  
  ⃗⃗

  
     ……………(i) 

Now  ⃗   ⃗    
  ⃗

  
  ⃗    

 
  ⃗

  
  ⃗      ……………(ii) 

Adding (i) And (ii) we get 

𝑟  
  ⃗⃗

  
 

  ⃗

  
  ⃗     

 
 

  
(𝑟   ⃗)     

 𝑟   ⃗   ⃗⃗  where  ⃗⃗ is a constant vector. 

 𝑟 (𝑟   ⃗)  𝑟  ⃗⃗  𝑟  ⃗⃗        ⃗ ( ⃗   ⃗⃗)    

 𝑟   ⃗⃗  

This shows that the position vector of the particle at any time is perpendicular to 

the fixed constant vector  ⃗⃗ and Thus the path or orbit of the particle must be a 

plane curve. i.e. particle moves in a plane. 
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Property 

The angular momentum of the particle is conserved. i.e. constant. 

Or Prove that for a particle moving in a central force field the angular 

momentum is conserved. 

Proof  

Let  ⃗   (𝑟)
 ⃗

 
 be the central force field then 

𝑟   ⃗  𝑟   (𝑟)
 ⃗

 
   𝑟   

  ⃗⃗

  
    

 𝑟  
  ⃗⃗

  
     ……………(i) 

Now  ⃗   ⃗    
  ⃗

  
  ⃗    

 
  ⃗

  
  ⃗      ……………(ii) 

Adding (i) And (ii) we get 

𝑟  
  ⃗⃗

  
 

  ⃗

  
  ⃗     

 
 

  
(𝑟   ⃗)     

 𝑟   ⃗   ⃗⃗  where  ⃗⃗ is a constant vector. 

  (𝑟   ⃗)    ⃗⃗  𝑟    ⃗    ⃗⃗  𝑟   ⃗⃗    ⃗⃗  

  ⃗⃗    ⃗⃗  

This shows that the angular momentum of the particle is conserved. i.e. constant. 

That is always constant in magnitude and direction. 
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Equation of motion for a particle in a Central Force Fields 

Since we know that the path or orbit of the particle must be a plane curve. i.e. 

particle moves in a plane. Choose this plane to be the xy and the coordinates 

describing the position of the particle at any time t to be polar coordinates (𝑟  ). 

We have  ⃗  (𝑟̈  𝑟 ̇ )𝑟  (𝑟 ̈   𝑟̇ ̇)   then 

 ⃗    ⃗   ⃗   [(𝑟̈  𝑟 ̇ )𝑟  (𝑟 ̈   𝑟̇ ̇)  ]  

  [(𝑟̈  𝑟 ̇ )𝑟  (𝑟 ̈   𝑟̇ ̇)  ]   (𝑟)
 ⃗

 
  (𝑟)𝑟   

Thus the required equations of motion are 

 (𝑟̈  𝑟 ̇ )   (𝑟)  and       (𝑟 ̈   𝑟̇ ̇)    

Property (many questions covered) 

The particle moves in such a way that the position vector or radius vector drawn 

from Origin to the particle sweeps out equal areas in equal times. In other words, 

the time rate of change in area is constant. This is sometime called the law of areas. 

Or Prove that for a particle in central force field the areal velocity is constant. 

Or Show that 𝑟  ̇   , a constant. Or   Show that 𝑟  ̇    ̇. 

Proof  

From equations of motion awe have  (𝑟 ̈   𝑟̇ ̇)    

 
 

 
(𝑟  ̈   𝑟𝑟̇ ̇)    

 

 

 

  
(𝑟  ̇)       ̇   , a constant. 

Also we know that    
 

 
|𝑟   𝑟|  for a parallelogram 

        
  

  
 

 

 
   
    

|𝑟  
  ⃗

  
|   ̇  

 

 
|𝑟   ⃗|  

 

 
𝑟  ̇     ̇    ̇  

 ̇  
 

 
   combining above both equations. 

This proves that for a particle in central force field the areal velocity is constant. 

Here  ̇   ̇ ̂ is called areal velocity. 
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Useful Definitions 

 Orbits: The path of planet or satellite is called its orbit. An orbit is a regular, 

repeating path that one object in space takes around another one. An object 

in an orbit is called a satellite. Orbit comes from the Latin orbita, “course,” 

or “track.”  

 Solar System: A Solar System is composed of a star and objects called 

planets which revolve around it. 

 Satellites: The star is an object which emits its own light, while the planets 

are the objects that do not emit light but can reflect it. And the objects 

revolving about the planets are called satellites. 

 Aphelion and Perihelion: The largest and smallest distances of a planet 

from the sun about which it revolves are called the Aphelion and Perihelion 

respectively. 

 Apogee and Perigee: The largest and smallest distances of a satellite around 

a planet about which it revolves are called the Apogee and Perigee 

respectively. 

 Period/Sidereal Period: The time for one complete revolution of a body in 

an orbit is called its period. Sometime it is called sidereal period to 

distinguish it from other periods such as the period of earth‟s motion about 

its axis, etc. 
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Determination of the Orbit from the Central Force 

If the central force is prescribed. i.e. if  (𝑟) is given, it is possible to determine the 

orbit or path of the particle. This orbit can be obtained in the form 𝑟  𝑟( ) or 

𝑟  𝑟( )      ( ) which are parametric equations in terms of time parameter. 

Determination of Central Force from the Orbit 

If we know the orbit or path of the particle, it is possible to determine the central 

force of the orbit. If the orbit is given by 𝑟  𝑟( ) or    ( ) where   
 

 
, then 

the central force can be found by using the following equations; 

 (𝑟)  
   

  {
   

   
 

 

 
(
  

  
)
 

}  𝑟       Or  (
 

 
)        ,

   

   
  - 

Kepler’s Law of Planetary Motion 

Kepler‟s Three Laws of Planetary Motion are as follows; 

1. Every planet moves in an orbit which is an ellipse with the sun at one focus. 

2. The radius vector drawn from the sun to any planet sweeps out equal areas 

in equal time. (the law of areas) 

3. The square of the periods of revolution of the planets are proportional to the 

cubes of the semi major axes of their orbits. 

 

Remember 

 Equation of Conics is 
 

 
  (      ) or  

 

 
  (      ) 

 If     we have 𝑥  𝑦     a circle. If     we have 𝑥  𝑦  (  𝑥)   

or 𝑦       𝑥 a parabola. If     or     we have 𝑥  𝑦  (   𝑥)  

or (    )𝑥  𝑦       𝑥  which is an ellipse if      and is a 

hyperbola if    . 
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Question (Inverse Square Law of Attraction) 

Prove that if a planet is to revolve around the sun in an elliptical path with the sun 

at a focus, then the central force necessary varies inversely as the square of the 

distance of the planet from the sun. 

Solution 

Consider a fixed point O and a fixed line AB distance D from O. Suppose that a 

point P in the plane of O and AB moves so that the ratio of its distance from point 

O to its distance from line AB is always equal to the positive constant  , then the 

curve described by P  is given by 𝑟  
 

       
.  

 

Similarly if the path is an ellipse with the sun at a focus, then calling r the distance 

from the sun, we have 

𝑟  
 

       
  or    

 

 
 

 

 
 

 

 
     

Where    . Then the central force is given by 

 (
 

 
)        ,

   

   
  -   

     

 
  

 (𝑟)   
   

   
  

 

  
    replacing   by 

 

 
 

Proved  that if a planet is to revolve around the sun in an elliptical path with the 

sun at a focus, then the central force necessary varies inversely as the square of the 

distance of the planet from the sun. 
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Kepler’s First Law of Planetary Motion/Law of Orbit 

Every planet moves in an elliptical orbit with the sun at one focus. 

Proof  
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Kepler’s Second Law of Planetary Motion/ Law of Areas 

The radius vector drawn from the sun to any planet sweeps out equal areas in equal 

time. In other words areal velocity of radius vector is a constant of motion. 

Proof  

From equations of motion awe have  (𝑟 ̈   𝑟̇ ̇)    

 
 

 
(𝑟  ̈   𝑟𝑟̇ ̇)    

 

 

 

  
(𝑟  ̇)       ̇   , a constant. 

Also we know that    
 

 
|𝑟   𝑟|  for a parallelogram 

        
  

  
 

 

 
   
    

|𝑟  
  ⃗

  
|   ̇  

 

 
|𝑟   ⃗|  

 

 
𝑟  ̇     ̇    ̇  

 ̇  
 

 
   combining above both equations. 

This proves that for a particle in central force field the areal velocity is constant. 

Here  ̇   ̇ ̂ is called areal velocity. 

The particle moves in such a way that the position vector or radius vector drawn 

from sun to the particle sweeps out equal areas in equal times. In other words, the 

time rate of change in area is constant. This is sometime called the law of areas. 

Kepler’s Third Law of Planetary Motion/ Law of Periods 

The square of the periods of revolution of the planets are proportional to the cubes 

of the semi major axes of their orbits. 

Proof  

If   and   are the lengths of the semi – major and semi – minor axes, then the area 

of the ellipse is    . Since the areal velocity has the magnitude 
 

 
, the time taken to 

sweep over area    , the period, is  

  
   

   
 

    

 
   

          

    
   using    √         (    )  

   

 
 

    
      

 
  

Hence the square of the periods of revolution of the planets are proportional to the 

cubes of the semi major axes of their orbits. 
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Apsides and Apsidal Angles for Nearly Circular Orbits 

Apsides, Also called: apse. either of two points lying at the extremities of an 

eccentric orbit of a planet, satellite, etc, such as the aphelion and perihelion of a 

planet or the apogee and perigee of the moon. An apsis is the farthest or nearest 

point in the orbit of a planetary body about its primary body. The line of apsides is 

the line connecting the two extreme values.In physics Angle through which the 

radius vector rotates in going between two consecutive apsides is called the apsidal 

angle. 

Motion in an Inverse Square Field 

As we have seen, the planets revolve in elliptical orbits about the sun which is at 

one focus of the ellipse. In a similar manner, satellite (natural or man made) may 

revolve around planets in elliptical orbits. However, the motion of an object in an 

inverse square field of attraction need not always be elliptical but may be parabolic 

or hyperbolic. In such cases the object, such as a comet or meteorite, would enter 

the solar system and then leave but never return again.  

Question  

Prove that the speed v of the particle moving in an elliptical path in an inverse 

square field is given by    
 

 
(
 

 
 

 

 
) where   is the semi major axis. 

Solution 

From theory (Spiegel book) we have   
   

 
  (    )   ( 

     

  ) where 

   
 

  
. And by conservation of energy using    

 

 
 we have 

 

 
         

 

  
 

 

 
  

   
 

 
(
 

 
 

 

 
)  

Similarly we can show for a hyperbola    
 

 
(
 

 
 

 

 
) 

While for a parabola       
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Example 
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Escape velocity / Gravitational Escape  

This is an application of energy conservation method, as an illustration of energy 

conservation methods, we consider the problem of the gravitational escape of a 

particle from the earth. The gravitational potential energy due to earth‟s attraction 

on a particle of mass m at a distance 𝑟  𝑟  (earth‟s radius) from the earth‟s center 

with mass of earth M is   

 (𝑟)   ∫
   

  

 

 
 𝑟   

 (𝑟)   
   

 
    after simplification 

According to the law of conservation of energy         
 

 
    

   

 
     (Constant) 

Using initial 𝑟  𝑟        we have 
 

 
   

  
   

  
   then 

 

 
    

   

 
 

 

 
   

  
   

  
 

 

 
   

  

 
 

 

 
  
  

  

  
  

      
   

  

 
  

  

  
   √  

   
  

 
    

   √  
     (

 

 
 

 

  
)    √  

  
   

  
   when 𝑟         

   
  

   

  
  ⃗  √

   

  
  ……..(1) 

Now weight of a particle is equal to the gravitational force exerted on it by the 

earth. Therefore 
   

  
     which gives     𝑟 

  then  

( )   ⃗  √
    

 

  
  ⃗  √  𝑟   

The particle will escape to infinity and   ⃗  √  𝑟  is called escape velocity of the 

particle. 

Remember the magnitude of the escape velocity of an object from the earth‟s 

surface using            𝑟            is about        . 
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CHAPTER 

  PLANER MOTION 

OF RIGID BODIES 

 
Rigid Body 

A rigid body is defined as a collection of particles such that distance between every 

pair of its constituent particles remains unchanged whatever the forces acting on it. 

This is a body which cannot be deformed by the external force acting on it. 

 When a force is applied to an object/ system of particles, and if the object 

maintains its overall shape, then the object is called a rigid body.   

 Gap between two fixed points on the rigid body remains same regardless of 

external forces exerted on it.   

 We can neglect the deformation of such bodies.   

 A rigid body usually has continuous distribution of mass.   

Rigid Body – I: Those bodies in which angular momentum and angular velocities 

have different directions are called rigid bodies of type I. 

Rigid Body – II: Those bodies in which angular momentum and angular velocities 

have same directions are called rigid bodies of type II. 

Elastic Bodies  

A body that regains its original dimension and shape when the externally applied 

force is removed is an Elastic body.  

When a force is applied to a system of particles, it changes the distance be 

individual particles. Such systems are often called deformable or elastic bodies. 

Examples  

 A spring and rubber band are some common examples of elastic bodies.  

 A wheel is a common example of rigid body. 

6 
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Properties of Rigid Bodies  

Following are some of the properties of the rigid bodies.    

Degree of freedom   

The number of coordinates required to specify the position of a system of one or 

more particles is called the number of degrees of freedom of the system. For 

example a particle moving freely in space requires 3 coordinates, e.g. (x, y, z), to 

specify its position. Thus the number of degrees of freedom is 3.                 

Similarly, a system consisting of N particles moving freely in space requires 3N 

coordinates to specify its position. Thus the number of degrees of freedom is 3N.    

Translations/ Translational Motion of Rigid Body     

Motion of a rigid body in a straight or curved line on the smooth or rough surface. 

A displacement of a rigid body is a direct change of position of its particles. 

Translational motion is the displacement of all particles of the body by the same 

amount and the line segment joining the initial and the final position of the 

particles represented by parallel vectors.  Examples of translational motion are 

particles freely falling down to earth and the motion of a bullet fired from a gun. 

Rotations/ Rotational Motion of Rigid Body       

Motion of a rigid body about a fixed line or fixed point (centre of mass) in the 

space. Circular motion of a body about a fixed point or axis is called rotation.  If 

during a displacement the points of the rigid body on some line remains fixed and 

all other are displaced through the same angle, then this displacement is called 

rotation. A rigid performs rotations around an imaginary line called a rotation axis. 

If the axis of rotation passes through the center of mass of the rigid body then body 

is said to spin or rotate upon itself. If a body rotates about some external fixed 

point is called revolution orbital motion of the rigid body. The example of 

revolution is the rotation of earth around sun and motion of moon around sun.  

Rotational motion concerns only with rigid bodies. The reverse rotation of a body 

(inverse rotation) is also a rotation.  A wheel is common examples of rotation. 
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Introduction to General Plane Motion  

The general plane motion of a rigid body can be considered as:   

 Translational motion along the given fixed plane and rotational motion about a 

suitable axis perpendicular to the plane.   

 This fixed axis is specifically chosen to pass through the center of mass of the rigid 

body.  

Instantaneous Axis of Rotation   

The axis about which the rigid body rotates is called instantaneous axis of rotation, 

where this axis is perpendicular to the plane. The line referred to is called the 

instantaneous axis of rotation. Rotations can be considered as finite or 

infinitesimal. Finite rotations cannot be represented by vectors since the 

commutative law fails. However, infinitesimal rotations can be represented by 

vectors.    

Instantaneous Centre of Rotation  

The point where instantaneous axis meets the fixed plane along which the body 

performs translation motion is described as the instantaneous centre of rotation.  

The Centre of Mass (c.m.) / Centroid of System  

The centre of mass (c.m.) or centroid of system of particles is a hypothetical 

particle such that if the entire mass of the system were concentrated there, the 

mechanical properties would remain the same. In particular expression of linear 

momentum, angular momentum and kinetic energy assume simpler or more 

convenient forms when referred to the coordinated of this hypothetical particle and 

the equation of motion can be reduced to simpler equation of a single particle. 

Centre of Mass is a point where an applied force causes the system to move 

without any rotation. Its formula is 𝑟   
∑     

 
 

∑   
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The Centre of Gravity  

Centre of Gravity is a point where the whole weight of the system acts in the 

downward direction. 

 

Motion of Centre of Mass  

Motion of centre of mass can be examined by considering the following points: 

1. If a system experiences no external force, the center-of-mass of the system 

will remain at rest, or will move at constant velocity if it is already moving.  

2. If there is an external force, the center of mass accelerates according to 

 ⃗    ⃗.  

3. Basically, the centre-of-mass of a system can be treated as a point mass, 

following Newton's Laws.  

4. If an object is thrown into the air, different parts of the object can follow 

quite complicated paths, but the centre-of-mass will follow a parabola.  

 
5. If an object explodes, the different pieces of the object will follow seemingly 

independent paths after the explosion. The centre of mass, however, will 

keep doing what it was doing before the explosion. This is because an 

explosion involves only internal forces. 
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Example 

Find the center of mass of 3 particles having masses 2,4 and 3 grams are placed at 

points with position vectors  ̂   ̂   ̂   ̂    ̂   ̂ respectively. 

Solution 

𝑟   
∑ 𝑟   

 
 

∑   
 
 

 
𝑟    𝑟    𝑟   

        
 

  

 
 ̂  

 

 
 ̂  

  

 
 ̂ 

Center of Mass when body is uniformly (continuous) distributed 

When a body of mass M is uniformly distributed then it c.m is 

 Along x – axis   ̅  
∫   

 
 

∫   

∑   
 
 

 

 Along y – axis   ̅  
∫   

 
 

∫   

∑   
 
 

 

 Along z – axis   ̅  
∫    

 
 

∫    

∑   
 
 

 

Example 

Find the center of mass of rod of length  .  

Solution 

    
∫    
 

 

∫   
 

 

 
∫     
 

 

∫    
 

 

 
∫  

 

 
  

 

 

∫
 

 
  

 

 

 
∫    
 

 

∫   
 

 

 
 

 
  

Example 

Find the center of mass of hollow right circular cone.  

Solution 

    
∫ 𝑥  
 

 

∫   
 

 

 
∫ 𝑥   𝑥   𝑥 𝑥
 

 

∫    𝑥   𝑥 𝑥
 

 

 
∫ 𝑥  𝑥
 

 

∫ 𝑥 𝑥
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Euler’s Theorem 

A rotation of a rigid body about a fixed point of the body is equivalent to a rotation 

about a line which passes through the (fixed) point.    

Proof   

Let O be the fixed point in the body, which we take as a sphere S. Further, we take 

O at the center of the sphere. Let A, B be two distinct points on the sphere. As the 

body moves, the point O (on the axis) remains foxed and A and B suffer 

displacement. 

 

Let    and    be the new locations of the points A and B after an infinitesimal time 

interval    respectively. We join (A, B) and (     ) by great circular areas. Also 

we join (    ) and (    ) by mean of great circular arcs. Let     and     draw axes 

at right angles, which meat at the point C on the sphere. We join C with           

by means of great circular arcs.  

Consider the spherical triangles         and       . Obviously 

i.                 each angle is right angle 

ii.                  is the midpoint of     

iii.      is common to triangle. 

iv.                 (S.A.S) Postulate 

v.          corresponding sides of congruent triangles 

 …………………… (1) 
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Similarly Consider the spherical triangles        and        . Obviously 

i.                 each angle is right angle 

ii.                  is the midpoint of     

iii.      is common to triangle. 

iv.                 (S.A.S) Postulate 

v.          corresponding sides of congruent triangles 

…………………… (2) 

And         distance between the fixed point on the sphere remain fixed 

…………………… (3) 

From (1), (2) and (3) we have 

         

        

        

Then               

The portion of rigid body lying in      has moved to       .  

In this process the point O and C have remained fixed, although the later was at 

rest only instantaneously. Therefore the body has under gone a rotation about the 

axis OC.  

Hence A rotation of a rigid body about a fixed point of the body is equivalent to a 

rotation about a line which passes through the (fixed) point.    
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Chasle’s Theorem/ Mozzi - Chasle’s Theorem 

The most general rigid body displacement can be produced by a translation along a 

line (called its screw axis/ mozzi axis) followed (or preceded) by a rotation about 

that line. 

Or The most general motion of a rigid body is that of translation and rotation. 

Or The most general motion of a rigid body is composed of pure translation 

followed by a rotation about some base point (fixed point). 

Or Let 𝑟 be a position vector of a base point A and  ⃗⃗⃗ is angular velocity of any 

rigid body then motion  ⃗ of rigid body is composed of pure translation 

followed by a rotation about some base point. i.e.   ⃗   ⃗   ⃗⃗⃗  𝑟 

Explanation:  

 A rigid body has six degrees of freedom.  

 By Euler‟s theorem, three of these are associated with pure rotation.  

 The remaining three must be associated with translation.   

 To describe the general motion of a rigid body, think of the general motion 

as translation of a fixed point O in the body to a point O′ followed by the 

rotation about an axis through O′. 

.Proof  

  

Let 𝑟 be a position vector of B from a base point A and  ⃗⃗⃗ is angular velocity of 

rigid body then  

𝑟  𝑟            𝑟          

  ⃗

  
 

  ⃗   

  
 

  ⃗   

  
  

 ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗⃗   ⃗⃗  
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Question (Equation of Axis of Rotation in Screw Motion such that  ⃗⃗⃗   ⃗⃗⃗⃗)  

Explain the term Screw Motion, also show that the general motion of a rigid body 

is screw motion. 

Solution 

The motion which consists of translation and rotation about a line along the 

translation is called Screw Motion. Or the motion of an object in which linear and 

angular velocities are in the same direction (or Parallel) is called Screw Motion. In 

this motion linear velocity of each particle on the axis of rotation is parallel (or 

antiparallel) to the angular velocity. In case of screw motion we have  ⃗⃗   ⃗⃗⃗    ⃗⃗⃗⃗. 

To prove this consider a rigid body in general motion. 

  

Let 𝑟 be a position vector of B from a base point A and  ⃗⃗⃗ is angular velocity of 

rigid body then linear velocity of B is as follows 

 ⃗   ⃗   ⃗⃗⃗  𝑟  ……………..(1) 

In general  ⃗ and  ⃗⃗⃗ are not parallel, that we can choose B such that the linear 

velocity  ⃗  of B is parallel to the angular velocity  ⃗⃗⃗ of the rigid body. 

  ⃗⃗⃗   ⃗   ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)   taking cross product of  ⃗⃗⃗ with (1) 

    ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)    since  ⃗⃗⃗   ⃗  

  ⃗⃗⃗   ⃗  ( ⃗⃗⃗ 𝑟) ⃗⃗⃗  ( ⃗⃗⃗  ⃗⃗⃗)𝑟     ⃗⃗⃗   ⃗  ( ⃗⃗⃗ 𝑟) ⃗⃗⃗    𝑟     

   𝑟   ⃗⃗⃗   ⃗  ( ⃗⃗⃗ 𝑟) ⃗⃗⃗  𝑟  
 ⃗⃗⃗⃗  ⃗⃗ 

  
 

( ⃗⃗⃗⃗  ⃗) ⃗⃗⃗⃗

  
  

  ⃗⃗   ⃗⃗⃗    ⃗⃗⃗⃗  putting   ⃗  
 ⃗⃗⃗⃗  ⃗⃗ 

  
   

( ⃗⃗⃗⃗  ⃗) ⃗⃗⃗⃗

  
 

This is called the Equation of Axis of Rotation in Screw Motion such that  ⃗   ⃗⃗⃗ 



              visit us @ Youtube  Learning with Usman Hamid

 

 

122 

Question 

A particle moves in a plane with constant angular speed (velocity). Show that its 

acceleration is perpendicular to its velocity. 

Solution 

 ⃗   ⃗⃗⃗  𝑟  
  ⃗⃗

  
 

 

  
( ⃗⃗⃗  𝑟)  

  ⃗⃗

  
  ⃗⃗⃗  

  ⃗

  
  ⃗   ⃗⃗⃗   ⃗  

This shows that in rotational motion acceleration is perpendicular to the velocity. 

Question 

A particle moves in a plane elliptical orbit by the position vector 

𝑟          ̂         ̂ , then Find velocity and acceleration.  

Solution 

𝑟          ̂         ̂  
  ⃗

  
  ⃗           ̂          ̂   

 
  ⃗⃗

  
  ⃗             ̂           ̂   

Question Calculate angular speed of the Earth. 

Solution 

Time of Earth relation     hour           sec        sec 

Rotating angle       

Angular speed    
 

 
 

  

     
          rad/sec 

Question Calculate angular speed of the second hand of a watch. 

Solution 

Time      sec ; Rotating angle       

Angular speed    
 

 
 

  

  
       rad/sec 
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Varignon’s Theorem 

The moment of a force about any point is equal to the algebraic sum of the 

moments of its components about that point. 

Or The moment of the resultant of a number of forces about any point is equal 

to the algebraic sum of the moments of all the forces of the system about the same 

point. 

Or Torque acting on the system of particle is equal to the sum of all torque 

acting on each particle. i.e.   ∑   
 
             

This property was originally established by the French mathematician Varignon 

(1654–1722) long before the introduction of vector algebra, is known as 

Varignon‟s theorem.   

Proof 

 

Fig. shows two forces  1 and  2 acting at point O. These forces are represented in 

magnitude and direction by OA and OB. Their resultant R is represented in 

magnitude and direction by OC which is the diagonal of parallelogram OACB. Let 

O‟ is the point in the plane about which moments of  1,  2 and R are to be 

determined. From point   , draw perpendiculars on OA,OC and OB. 

Let 𝑟 = Perpendicular distance between  1 and   . 

d = Perpendicular distance between R and   . 

𝑟  = Perpendicular distance between  2 and   . 
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Then according to Varignon‟s principle; 

Moment of R about    must be equal to algebraic sum of moments of  1 and  2 

about   . 

R × d =  1 × 𝑟  +  2  × 𝑟  

Now refer to Fig. (b). Join     and produce it to D. From points C, A and B draw 

perpendiculars on OD meeting at D,E and F respectively. From A and B also draw 

perpendiculars on CD meeting the line CD at G and H respectively. 

Let  θ1 = Angle made by F; with OD, θ = Angle made by R with OD, and                          

θ2 = Angle made by  2  with OD. 

In Fig.(b), OA = BC and also OA parallel to BC, hence the projection of OA and 

BC on the same vertical line CD will be equal i.e., GD = CH as GD is the 

projection of OA on CD and CH is the projection of BC on CD. 

Then from Fig. (b), we have 

P1sinθ1 = AE = GD = CH 

 1cosθ1 = OE 

 2 sinθ1 = BF = HD 

 2 cosθ2 = OF = ED 

(OB = AC and also OB || AC. Hence projections of OB and AC on the same 

horizontal line OD will be equal i.e., OF = ED) 

Rsin θ =CD 

Rcos θ =OD 

Let the length    = x. 

Then  

xsinθ1 = r1, xsinθ = d and xsin θ2 = r2 
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Now  

Moment of R about    = R × (distance between    and R)  

= R × d = R × xsinθ ( d = xsinθ) = (R sin θ) × x 

= CD × x      

= (CH +HD)× x   ( R sin θ = CD) = (CH +HD)× x 

= ( 1 sinθ1 +  2 sinθ2) × x  (CH =  1 sin θ1 and HD =  2 sin θ2) 

=  1 × x sinθ1 +  2  × x sinθ2 

=  1 × r1 +  2 × r2    ( x sinθ1 = r1 and x sinθ2 = r2) 

= Moment of  1 about    + Moment of  2 about   . 

Hence moment of R about any point in the algebraic sum of moments of its 

components  1 and  2 about the same point. 

Hence Varignon‟s principle is proved. 

The principle of moments (or Varignon‟s principle) is not restricted to only two 

concurrent forces but is also applicable to any coplanar force system, i.e., 

concurrent or non-concurrent or parallel force system. 

 

 

 

 

 

 

 

 

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

126 

The Moment of Inertia  

The moment of inertia of a rigid body is a property which depends upon its mass 

and shape, (i.e. the mass distribution of the body) and determines its behavior in 

rotational motion. In rotational motion, the moment of inertia plays the same role 

as the mass in linear motion. 

Formally the moment of inertia   of the particle of mass   about a line is defined 

by       where   is the perpendicular distance between the particle and the line 

(called the axis).   

Moment of Inertia of System of particles  

The moment of inertia of a system of particles, with masses               

about the axis AB is defined as   ∑     
  

    and for continuous mass 

distribution (sum of partition of a function) we may use it as   ∫ 𝑟    where 𝑟 

is the perpendicular distance between the particle and the line (called the axis).   

In dimensions, the moment of inertia can be expressed as [ ]  [ ][  ]  

Examples of the Moment of Inertia  

 The moments of inertia of a ring of radius   about an axis through center is 

    

 The moment of inertia of a hoop of mass   and radius   about an axis 

passing through its center is     

 The moment of inertia of the sphere is 
 

 
    

 Calculate the moment of inertia of a right circular cone about its axis of 

symmetry is 
 

  
    

 The moment of inertia of a uniform rod of length   about an axis 

perpendicular to the rod and passing through an end point is 
 

 
    

 The moment of inertia of a uniform triangular lamina of mass   about one 

of its sides is 
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Moment of Inertia in Coordinate System   

The moment of inertia of a particle of mass   with coordinates (𝑥 𝑦 𝑧) relative to 

the orthogonal Cartesian coordinate system      about       axes will be  

    ∫(𝑦  𝑧 )    (𝑦  𝑧 )  

    ∫(𝑥  𝑧 )    (𝑥  𝑧 )  

    ∫(𝑥  𝑦 )    (𝑥  𝑦 )  

Product of Inertia  

The product of inertia for the same particle w.r.to the pair of coordinate axes are 

defined as 

    ∫𝑥𝑦    𝑥𝑦       ∫𝑦𝑧    𝑦𝑧       ∫𝑧𝑥    𝑧𝑥  

It may be positive, may be negative or may be zero, depending on coordinate 

axes. These definitions can be easily generalized to a system of particle and a rigid 

body. 

Parallel Axis Theorem 

The rotational inertia about an axis is equal to the inertia about parallel axis 

through centre of mass plus mass time the square of the distance between two 

parallel axis.  

i.e.          

Perpendicular Axis Theorem  

The moment of inertia of a plane rigid body about an axis perpendicular to the 

body is equal to the sum of the moment of inertia about two mutually 

perpendicular axes lying in the plane of the body and meeting at the common point 

with the given axis.  

i.e.             
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Question 

Find moment of inertia of a thin rod of mass M of length 2a about a line through its 

centre and perpendicular to its length. 

Or Calculate the moment of inertia of a uniform (rigid) rod of length   about an 

axis perpendicular to the rod and passing through an end point. 

 

Solution 

y 

A(-a,0)     x dx B(a,0) 

-x ………………………O………………………….. x 

            2a 

-y 

Consider a rod of length 2a along x – axis. Centre of their rod is origin as shown in 

figure. 

Moment of inertia about y – axis for total length    ∫ 𝑥  

  
    ……………..(i) 

Consider a small portion of the rod whose mass is    and length  𝑥, then linear 

mass density is   
  

  
. i.e.      𝑥 

( )     ∫ 𝑥  

  
 𝑥    

 

 
    ……………..(ii) 

For whole mass of the rod   
 

  
. Then  

(  )    
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Question 

Show that moment of inertia of a uniform rectangular plate of sides 2a,2b about a 

corner are 
 

 
    

 

 
   . Also find same quantities at the centre. 

Solution 

We know that for a thin rod or strip,     
 

 
     

    
 

 
(  )       

 

 
      

Moment of inertia of plate about y – axis      
 

 
∫     

 
    ……………..(i) 

Now by using area mass density   
  

  
. i.e.               𝑦 

( )     
 

 
∫     

 
(    𝑦)     

  

 
     ……………..(ii) 

For whole mass of the plate   
 

 
 

 

     
 

 

   
. Then  

(  )     
  

 
 

 

   
          

 

 
     

Moment of inertia of plate about x – axis      
 

 
∫     

 
    ……………..(iii) 

Now by using area mass density   
  

  
. i.e.               𝑥 

(   )     
 

 
∫     

 
(    𝑥)     

  

 
     ……………..(iv) 

For whole mass of the plate   
 

 
 

 

     
 

 

   
. Then  

(  )     
  

 
 

 

   
          

 

 
     

Now by using perpendicular axis theorem 
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Question 

Find moment of inertia of a uniform rectangular plate of mass M and edges of 

lengths 2a,2b about a line passing through its centre, parallel to sides 2a,2b and 

perpendicular to its plane. 

Solution 

 

We know that for a thin rod or strip,    
 

 
    

Moment of inertia of a strip of thickness dy at a distance y to the origin is given by 

    
 

 
∫    

  
    ……………..(i) 

Now by using area mass density   
  

  
. i.e.               𝑦 

( )      
 

 
∫    

  
(    𝑦)    

 

 
     ……………..(ii) 

For whole mass of the plate   
 

 
 

 

     
 

 

   
. Then  

(  )      
 

 
 

 

   
           

 

 
     

Moment of inertia of a strip of thickness dx at a distance x to the origin is given by 

    
 

 
∫    

  
    ……………..(iii) 

Now by using area mass density   
  

  
. i.e.               𝑥 

(   )      
 

 
∫    

  
(    𝑥)    

 

 
     ……………..(iv) 
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For whole mass of the plate   
 

 
 

 

     
 

 

   
. Then  

(  )      
 

 
 

 

   
           

 

 
     

Now by using perpendicular axis theorem 

Moment of inertia perpendicular to the plane                

     
 

 
    

 

 
        

 

 
 (     )  

Question 

Find moment of inertia of a square plate of mass M and length of each edge is 2a 

perpendicular to its plane. 

Solution 

Since we know that for a rectangular plate we have moment of inertia along x,y,z 

axes as follows; 

    
 

 
          

 

 
          

 

 
 (     )   

Then using     in     we have      
 

 
 (     )      

 

 
     

Question 

Find the M.I. of a uniform rod AB of length   at the end of its extreme points. 

Solution 

Consider a uniform rod of length   along x – axis as shown in figure 

 

M.I. about y – axis      ∫𝑥  𝑧    ∫𝑥       𝑧    in xy - plane 

     ∫ 𝑥  

 
  𝑥      
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Question 

Calculate the moment of inertia of a uniform (rigid) rod of length   about an axis 

perpendicular to the rod and passing through a mid-point. 

Solution 

y 

A(-a,0)     x dx B(a,0) 

-x ………………………O………………………….. x 

            2a 

-y 

Consider a rod of length   along x – axis. Centre of their rod is origin as shown in 

figure. 

Moment of inertia about y – axis for total length    ∫ 𝑥  

  
    ……………..(i) 

    ∫ 𝑥  

  
 𝑥    

 

 
    

 

 
      using   

 

  
 

M.I. passing through mid – point  

Using parallel axis theorem          

             
 

 
    

 

 
       

 

  
     

Question 

Calculate the moment of inertia of a uniform (rigid) rod of length   about an axis 

passing through center without using parallel axis theorem. 

Solution 

Moment of inertia about y – axis for total length    ∫ 𝑥 
 

 

 
 

 

    ……………..(i) 

Consider a small portion of the rod whose mass is    and length  𝑥, then linear 

mass density is   
  

  
. i.e.      𝑥 

( )     ∫ 𝑥 
 

 

 
 

 

 𝑥    
 

  
    ……………..(ii) using   
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Question 

Find the moment of inertia of diameters through centre and perpendicular to the 

centre for semicircular lamina of mass m and radius  . 

Solution        

                     

Consider a ring of radius r and thickness dr 

M.I. of ring about its diameter     
 

 
𝑟      

M.I. of semi disk about x – axis    
 

 
∫ 𝑟  

 
    ……………..(i) 

Now by using area mass density   
  

  
. i.e.             𝑟 𝑟 

 ( )    
 

 
∫ 𝑟  

 
   𝑟 𝑟    

  

 
∫ 𝑟  

 
 𝑟    

   
 

 
        using   
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Question 

Find the moment of inertia of diameters through centre and perpendicular to the 

centre for semi elliptical lamina of mass M and semi axes     

Solution                         

About x – axis 

    ∫ ∫ (𝑦  𝑧 )
 

 
  

 

  
  

     ∫ ∫ 𝑦  

 
 𝑥 𝑦

 

  
       ∫ ∫ 𝑦  

 
 𝑦 𝑥

 

 
  

       
 

 

 
   

 ∫ ∫ 𝑦  

 
 𝑦 𝑥

 

 
     

 

 
 

 
 

 
   

 ∫ 𝑦  

 
 𝑥  

     
 

 
 

 
 

 
   

 ∫ *
 

 
√   𝑥 +

  

 
 𝑥   

Using 𝑥         𝑥          

If 𝑥      then     
 

 
  using all these assumptions we have      

 

 
       

About y – axis 

    ∫ ∫ (𝑥  𝑧 )
 

  
  

 

 
  

       ∫ ∫ 𝑥  

 
 𝑥 𝑦

 

 
  

       
 

 

 
   

 ∫ ∫ 𝑥  

 
 𝑥 𝑦

 

 
     

 

 
 

 
 

 
   

 ∫ 𝑥  

 
 𝑦  

     
 

 
 

 
 

 
   

 ∫ *
 

 
√   𝑥 +

  

 
 𝑦  

Using 𝑥         𝑥          

If 𝑥      then     
 

 
  using all these assumptions we have 

     
 

 
        

 

 

𝑥 

𝑎 
 
𝑦 

𝑏 
   

𝑦  
𝑏

𝑎
√𝑎  𝑥  

For ellipse 

𝑥 

𝑎 
 
𝑦 

𝑏 
   

𝑥  
𝑎

𝑏
√𝑏  𝑥  

For ellipse 
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Question 

Find the moment of inertia about an axis through centre and perpendicular to the 

plane of the lamina. 

Solution      

We know that for semi elliptical lamina we have 

    
 

 
       and              

 

 
      (if long Q then find separately) 

Using perpendicular axis theorem 

                
 

 
    

 

 
        

 

 
(     )  

Question 

Find the moment of inertia of a uniform spherical shell of mass M and radius   

about any diameter. 

Solution 

 

Spherical shells consist of circular rings of different radii but same thickness. 

Moment of inertia of one ring about x – axis diameter      𝑦    

 M.I of spherical shell about its x – axis diameter     ∫ 𝑦  

 
     

Using    
  

  
. i.e.         (  𝑦)      (     )(   ) 

      ∫ (     ) 
 

 
(     )(   )  

    
 

 
        using   
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Question 

Find the moment of inertia of a uniform square plate about any axis through its 

centre and lying in the plane of the plate.  

Or  Prove that the moment of inertia about all lines through the centre of mass of 

a uniform square lamina and lying in its plane are equal. 

Solution        

                     

Square plate consists of parallel plates (strips) with thickness  𝑦 with length  .  

M.I. of one strip about y axis     
 

 
       

M.I. of square plate about an axis    
 

 
∫   
 

 
    ……………..(i) 

Now by using area mass density   
  

  
. i.e.              𝑦 

 ( )    
 

 
∫   
 

 
    𝑦    

 

 
∫   
 

 
 𝑦    

   
 

 
        using   

 

 
 

 

  
 

Using parallel axis theorem 

            

           

    
 

 
     (

 

 
)
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Question 
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Question 

Calculate the moment of inertia of a uniform triangular lamina about one of its 

edges (sides). 

Solution  

 

Consider a uniform triangular lamina AOB. Let          . Consider a strip 

of length x and thickness dy at a distance of 𝑟    𝑦. 

M.I. of strip about x – axis      ∫𝑟    ∫(  𝑦)       ……………..(i) 

For uniform triangular lamina using   
  

  
 

  

   
     𝑥 𝑦  

( )      ∫ (  𝑦)   
 

 
 ∫ (  𝑦)  𝑥 𝑦

 

 
  

      ∫ (  𝑦) 𝑥 𝑦
 

 
  ……………..(ii) 

Since      and      are similar, so 
|  |

|  |
 

|  |

|  |
 

 

 
 

 

 
 𝑥  

  

 
 

(  )       ∫ (  𝑦)  
  

 
  𝑦

 

 
  

     
  

 
∫ 𝑦(   𝑦    𝑦)  𝑦
 

 
 

  

 
|    

 
 

  

 
   

  

 
|
 

 

  

     
  

 
(
  

  
)      

 

  
      

For whole triangle using   
 

 
 

 
 

 
  

  

     
 

  
    

 
 

 
  

     
 

 
     



              visit us @ Youtube  Learning with Usman Hamid

 

 

139 

Question 
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Question 

Calculate the moment of inertia of a hoop (circular disk, ring) of mass M and 

radius r about an axis passing through its center.  

Solution 

 

Consider a hoop of radius a and mass M.  

Moment of inertia of the small portion of the hoop of mass    about an axis 

through center and perpendicular to the plane of the ring equals 

  ∫ 𝑟     ……………..(i) 

We consider this hoop to be composed of small masses (  ) each of length   . 

  
 

 
 

 

     
 

  

    
    

 

   
    

( )    ∫ 𝑟 (
 

   
  )  

   
 

   
𝑟 ∫   

  

  
∫    

   
  

  
   𝑟  
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Question 

Find moment of inertia of a uniform circular plate or disk about its any diameter. 

Solution 

 

Disk consists of circular rings. Consider one ring of radius r and thickness dr. 

Moment of inertia of a rings about its any diameter is    
 

 
𝑟    

M.I. of a disk about its x – axis diameter     
 

 
∫ 𝑟  

 
    

  
  

  
 

  

     
       𝑟 𝑟  

    
 

 
∫ 𝑟  

 
(  𝑟 𝑟)  

    
 

   ⁄

 
∫ 𝑟  

 
(  𝑟 𝑟)  

    
 

 
      similarly     
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Question 

Calculate the moment of inertia of annular disk of mass M. The inner radius of the 

annulus is  1 and the outer radius is  2 about an axis passing through its center. 

Solution 

 

Subdivide the annular disk into concentric rings one of which is shown in the fig.  

Let the mass of the ring is   , and the radius be r, then the moment of inertia of 

the ring will be:  

  ∫ 𝑟     ……………..(i) 

The Surface area of the ring is;   Area  (  𝑟) 𝑟    𝑟 𝑟 

Since the surface area of the annulus is  (  
    

 ) 

Therefore, we can have  
  

 
 

     

 (  
    

 )
    

    

(  
    

 )
   

( )    ∫ 𝑟 (
    

(  
    

 )
 )    

  

  
    

 ∫𝑟  𝑟  

Thus the total M.I of the annulur disk will be 

   
  

  
    

 ∫ 𝑟  𝑟
  

    
  

   
 

 
 (  

    
 )  
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Question 

Find the moment of inertia of a uniform circular disk of radius a, and mass M 

about the (axis of the disk) line through its centre and perpendicular to its plane.  

 Solution 

      z  

Consider a uniform circular disk of radius a and mass M. Consider a ring on 

circular disk. Thickness of ring is dr and the distance from the origin is r. 

Moment of inertia about z – axis     ∫ 𝑟  

 
    ……………..(i) 

Now by using area mass density   
  

  
. i.e.              𝑟 𝑟 

( )     ∫ 𝑟  

 
(   𝑟 𝑟)     

 

 
     ……………..(ii)         𝑟  

For whole mass   
 

 
 

 

   
. Then  

(  )     
 

 
 

 

   
        

 

 
     

In case of circular disk          then by using perpendicular axis theorem 

                        

    
 

 
      

 

 
    also    
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Question 

Calculate the moment of inertia of a right circular cone of height h and radius 

about its axis.  

Solution 

   

Let M be the mass,   the radius and h the height of right circular cone. We regard 

the cone as composed of elementary circular cylindrical discs of small thickness 

each parallel to the base of the cone. We choose the z-axis along the axis of 

symmetry, and consider a typical disc of radius r and width  𝑧 at a distance z from 

the base.  

Moment of inertia of disc    
 

 
       

Moment of inertia of disc    
 

 
   𝑧𝑟   ……………..(i)  for our disc 

From figure 
   

 
 

 

 
 𝑟   (

   

 
) 

( )    
 

 
   𝑧 ( (

   

 
))

 

  

Moment of inertia for whole cone about z axis    
 

 

    

  ∫ (  𝑧) 
 

   
 𝑧   

   
 

  
          using   𝑧    with       as 𝑧      

For whole mass of the cone   
 

 
 

 
 

 
    

. Then  
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Question 

Calculate the moment of inertia of a right circular cone about its axis of symmetry.  

Solution 

            

Let M be the mass, 𝑦 the radius and h the height of right circular cone. We regard 

the cone as composed of elementary circular discs of small thickness each parallel 

to the base of the cone. We choose the z-axis along the axis of symmetry, and 

consider a typical disc of radius r and width  𝑧 at a distance z from the base.  

Moment of inertia about z axis      
 

 
∫ 𝑦  

 
    ……………..(i) 

Now by using volume mass density   
  

  
. i.e.            𝑦   𝑧 

From figure 
 

 
 

 

 
 𝑦  

  

 
 

( )      
 

 
∫ 𝑦  

 
   𝑧      

 

 
∫ (

  

 
)
  

 
   𝑧      

 

  
 𝑟     ………..(ii)      

For whole mass of the cone   
 

 
 

 
 

 
    

. Then  

(  )      
 

  
 𝑟  

 
 

 
    

       
 

  
 𝑟    ل اس حصہ تک کیا جاسکتا ہے           پچھلا سوا

If   be the semi vertical angle of the cone then      
 

 
 𝑟          then  

     
 

  
          

In this          then by using perpendicular axis theorem                                           

                               

     
 

 
        

 

  
         also     
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Question 

Prove that the moment of inertia of a uniform right circular cone using parallel axis 

theorem of mass m, height   and semi vertical angle   about a diameter of its base 

is 
 

  
   (        )  

  

  
(       )  

Solution 

     

In the case of M.I about its diameter, we consider the elementary disc of mass    

whose moment of inertia about a diameter will be     
 

 
𝑟   . 

We note that the diameter passes through the center (which is also the centroid) of 

the elementary disc. Hence by parallel axis theorem, the M.I.    of the elementary 

disc about a parallel axis (parallel diameter) at the base is given by   

       (  )𝑧  
 

 
𝑟      𝑧    (

 

 
𝑟  𝑧 )   𝑟   𝑧 (

 

 
𝑟  𝑧 )  

     (
 

 
𝑟  𝑟 𝑧 )  𝑧  

From the similar triangles, we have 

 

 
 

   

 
   or  𝑟   (

   

 
)  

Therefore  

     (
 

 
* (

   

 
)+

 
 * (

   

 
)+

 
𝑧 )  𝑧  
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     *
  

   
(  𝑧)  

  

  
(  𝑧) 𝑧 +  𝑧  

     *
  

   
(  𝑧)  

  

  
(  𝑧    𝑧  𝑧 )+  𝑧  

Therefore M.I of complete right circular cone about a diameter is given by 

    ∫ *
  

   
(  𝑧)  

  

  
(  𝑧    𝑧  𝑧 )+

 

 
 𝑧  

    *
  

   

  

 
 

  

  

  

  
+  

    *
   

  
 

    

  
+  

Since we know that   
 

 

 
    

 therefore 

  
 

  
(       )  

Since the semi vertical angle of the right circular cone is  , So by right triangle 

AOB, we have       
 

 
          then 

  
 

  
( (     )     )  

  
 

  
   (        )   

Question 
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Question 

To find the moment of inertia of a solid circular cylinder of radius a, mass M and 

the height of the cylinder   about the axis of the cylinder.  

Or Calculate the moment of inertia of a uniform circular cylinder of height h and 

radius a with respect to its longitudinal axis. 

Solution 

                

Consider a cylinder of radius a, mass M and the height of the cylinder is  . 

Consider a small disk of cylinder of thickness dz and z length from the origin. 

Moment of inertia about z axis      
 

 
∫    

 
    ……………..(i) 

Now by using volume mass density   
  

  
. i.e.                𝑧 

 ( )      
 

 
∫    

 
   𝑧      

    

 
∫  𝑧
 

 
     

 

 
       ………..(ii)      

For whole mass of the cylinder   
 

 
 

 

    
. Then  

(  )      
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Question 

Use the parallel axis theorem to find the moment of inertia of a solid circular 

cylinder about a line on the surface of the cylinder and parallel to axis of cylinder.  

Solution 

       

Suppose the cross section of cylinder as in figure. Then the axis of the cylinder is 

passing through the point C, while the line on the surface of cylinder is passing 

through A. So, we have to find out M.I of circular cylinder about a line passing 

through the point A whose radius is   (radius of circular cylinder) and mass is M.  

By parallel axis theorem            …………..(1)    

Since    which is the moment of inertia of a solid circular cylinder about an axis 

passing from the center of mass is defined by     
 

 
    where   is the radius of 

a solid circular cylinder.  Then  

( )     
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Question 

Find the moment of inertia of a uniform circular cylinder of length h and radius a 

about an axis through the center and perpendicular to the central axis, namely  xx or 

 yy.  

Or Calculate the moment of inertia of a uniform circular cylinder of height h and 

radius a about an axis through its centre of mass and perpendicular to its axis. 

Solution 

                   

Consider a cylinder of radius a, mass M and the height of the cylinder is  . 

Consider a small disk of cylinder of thickness dz and z length from the origin. 

Moment of inertia about z axis      
 

 
∫    

 
    ……………..(i) 

Now by using volume mass density   
  

  
. i.e.                𝑧 

 ( )      
 

 
∫    

 
   𝑧      

    

 
∫  𝑧
 

 
     

 

 
       ………..(ii)      

For whole mass of the cylinder   
 

 
 

 

    
. Then  

(  )      
 

 
    

 

    
       

 

 
     

In this          then by using perpendicular axis theorem                                           

                               

     
 

 
        

 

 
    also     
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Let c be the centre of mass of the cylinder if the disc considered in the distance z 

from c. 

 

Then moment of inertia about  𝑦  is (by parallel axis theorem) 

               

      
 

 
     𝑧       

 

 
∫     ∫  𝑧   

      ∫ (
 

 
   𝑧 )

 

 

 
 

 

     ………..(iii)      

By using volume mass density   
  

  
. i.e.                𝑧 

(   )       ∫ (
 

 
   𝑧 )

 

 

 
 

 

     𝑧  

          ∫ (
 

 
   𝑧 )

 

 

 
 

 

 𝑧      |
 

 
  𝑧  

 

 
𝑧 |

 
 

 

 

 
  

      
 

  
     (      )  

For whole mass of the cylinder   
 

 
 

 

    
. Then  

      
 

  
 

 

    
     (      )     

      
 

  
(      )  
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Question 
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Question 
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Corollary 

 

Question 
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Question 

Find the moment of inertia of a solid homogeneous sphere with respect to any 

geometrical axis.  

Or Find the moment of inertia of a uniform solid sphere of radius a and mass M 

about an axis (thez-axis) passing through the center. 

Solution 

                                 

Consider a sphere of radius a, mass M. Consider a circular disk of thickness dz and 

z length from the origin. Radius of circular disk is y as shown in figure. 

Moment of inertia about z axis      
 

 
∫ 𝑦  

  
    ……………..(i) 

Now by using volume mass density   
  

  
. i.e.            𝑦   𝑧 

 ( )      
 

 
∫ 𝑦  

  
 𝑦   𝑧      

  

 
∫ 𝑦  𝑧
 

  
    

     
  

 
∫ (   𝑧 )  𝑧
 

  
 

  

 
∫ (   𝑧     𝑧 ) 𝑧
 

  
  

     
 

  
      ………..(ii)    

For whole mass of the sphere   
 

 
 

 
 

 
   

. Then  

(  )      
 

  
    

 
 

 
   

       
 

 
     

For a uniform solid sphere, due to symmetry, we have             
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Question 

A thin uniform hollow sphere has a radius R and mass M. Calculate its moment of 

inertia about any axis through its center.  

Solution 

                                 

In order to calculate the moment of inertia of the hollow sphere, we split the 

hollow sphere into thin hoops (rings), as shown in Figure. We have already derived 

the expression for the moment of inertia of a representative hoop of radius x, which 

is      𝑥  of an elementary ring of mass    and the radius x.                                 

The volume of the elementary ring is       𝑥                                  

and              𝑥       

Moment of inertia of the small ring of radius x          𝑥     𝑥        

Moment of inertia for the whole hollow sphere    ∫       ∫    𝑥      
 

 

 
 

 

  

         ∫ 𝑥   
 

 
 

 

To solve the integral, we need to write x in terms of  .                

From fig we have 𝑥        then the integral becomes, 

         ∫ (     )   
 

 
 

        ∫        
 

 
 

  

          ∫             
 

 
 

        ∫     (       )  
 

 
 

  

   
 

 
        

For whole mass of the sphere   
 

 
 

 

      
. Then   
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Question 

Find the moment and product of inertia about the concurrent edges OX,OY,OZ of 

a uniform regular block with dimensions   𝑥       𝑦       𝑧    . 

Solution 

               

Consider a uniform rectangular block of length 2a, width 2b and height 2c as 

shown in figure. Consider a small portion in this cuboid of mass    and volume 

    𝑥 𝑦 𝑧 then  

Moment of inertia about x axis      ∫
 
(𝑦  𝑧 )    

Moment of inertia about x axis      ∫ ∫ ∫ (𝑦  𝑧 )
  

 

  

 

  

 
    ……………..(i) 

Now by using volume mass density   
  

  
. i.e.             𝑥 𝑦 𝑧 

 ( )      ∫ ∫ ∫ (𝑦  𝑧 )
  

 

  

 

  

 
  𝑥 𝑦 𝑧    

     
     

 
(     )   ………..(ii)    

For whole mass of the sphere   
 

 
 

 

      
 

 

    
. Then  

(  )      
     

 
(     ) 

 

    
       

 

 
 (     )  

Similarly, we have     
 

 
 (     )      

 

 
 (     )  

Now for product of inertia consider     ∫
 
𝑥𝑦   

    ∫ ∫ ∫ 𝑥𝑦
  

 

  

 

  

 
    ……………..(iii) 
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Now by using volume mass density   
  

  
. i.e.             𝑥 𝑦 𝑧 

 (   )      ∫ ∫ ∫ 𝑥𝑦
  

 

  

 

  

 
  𝑥 𝑦 𝑧    

              ………..(iv)    

For whole mass of the sphere   
 

 
 

 

      
 

 

    
. Then  

(  )             
 

    
            

Similarly, we have                   

Moment of Inertia of Rigid Body about any Line through the Origin/ in Space 

Consider a rigid body of mass M rotates along line   ⃗⃗⃗⃗⃗⃗  

as shown in figure. Let   (𝑥  𝑦  𝑧 ) be any point on  

the rigid body then a position vector of   ⃗⃗⃗⃗ ⃗⃗  is  

𝑟  𝑥  ̂  𝑦  ̂  𝑧  ̂  

Let  ⃗ represents the direction of line   ⃗⃗⃗⃗⃗⃗  as follows 

 ⃗    ̂    ̂    ̂  

Where       are direction cosines with               | ⃗|    then 

Moment of inertia about line   ⃗⃗⃗⃗⃗⃗    ∫  
       ………….(i) 

where    is perpendicular distance of line. 

From figure    𝑟       𝑟       |𝑟   ⃗| 

   |𝑟   ⃗|  |
 ̂  ̂  ̂
𝑥 𝑦 𝑧 
   

|  ( 𝑦   𝑧 ) ̂  ( 𝑧   𝑥 ) ̂  ( 𝑥   𝑦 ) ̂  

  
  ( 𝑦   𝑧 )

  ( 𝑧   𝑥 )
  ( 𝑥   𝑦 )

   

   ∫[( 𝑦   𝑧 )
  ( 𝑧   𝑥 )

  ( 𝑥   𝑦 )
 ]     

   ∫[  𝑦 
    𝑧 

     𝑦 𝑧    𝑧 
    𝑥 

     𝑥 𝑧    𝑥 
    𝑦 

  
   𝑥 𝑦 ]     
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     ∫(𝑦 
  𝑧 

 )      ∫(𝑥 
  𝑧 

 )      ∫(𝑥 
  𝑦 

 )    

   ∫𝑥 𝑦       ∫𝑦 𝑧       ∫ 𝑥 𝑧     

                                           

This is the required expression for the Moment of Inertia of a Rigid Body about 

any Line through the Origin (in space) 

Question 

Find moment of inertia of a rectangular block about a diagonal. Dimensions of 

rectangular block are 2a,2b,2c respectively. 

Solution 

Consider a rectangular block of length 2a,width 2b and  

height 2c as shown in figure. Now by using expression  

of M.I about any line   ⃗⃗⃗⃗ ⃗⃗ . i.e. 

                                           

Since we know that M.I and P.I of a rectangular bloc are 

    
 

 
 (     )     

 

 
 (     )     

 

 
 (     )  

                         

For direction cosines       we have a position vector of line  (     ) to 

 (        ) as 𝑟     ̂     ̂     ̂ then 

|𝑟|  √(  )  (  )  (  )   √          

Now direction cosines will become 

  
 

 
 

  

 √        
 

 

√        
    

  

        
  

  
 

 
 

  

 √        
 

 

√        
    

  

        
  

  
 

 
 

  

 √        
 

 

√        
    

  

        
  

Using all above values we have 
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 (     )     

 

 
 (     )     

 

 
 (     )          

                 

   
 

 
 [  (     )    (     )    (     )]    [          

    ]  

   
 

 
 *

  (     )

        
 

  (     )

        
 

  (     )

        
+    *

 

√        

 

√        
    

 

√        

 

√        
    

 

√        

 

√        
   +  

   
 

 
 *

  (     )

        
 

  (     )

        
 

  (     )

        
+    *

(  )(  )

        
 

(  )(  )

        
 

(  )(  )

        
+  

   
 

 
 *

                             

        
+    *

              

        
+  

   
 

 
 *

                 

        
+    *

              

        
+  

     *
                                   

 (        )
+  

   
 

 
 *

              

        
+  
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Position Vector of Center of Mass of the System of Particles 

 Let 𝑟  𝑟  𝑟    𝑟  ∑ 𝑟 
 
     be the position vectors of a system of   particles of 

masses                 ∑   
 
    respectively [see Fig.].  

 

The center of mass or centroid of the system of particles is defined as that point C 

having position vector  ⃗⃗. And 𝑟 
  is a position vector of each particle about centre 

of mass C. then by varignon‟s theorem 

Torque acting on the system of particle is equal to the sum of all torque acting on 

each particle. i.e.   ∑   
 
             

  ⃗⃗   ⃗  𝑟   ⃗  𝑟   ⃗    𝑟   ⃗   

  ⃗⃗    ⃗  𝑟     ⃗  𝑟     ⃗    𝑟     ⃗  

   ⃗⃗   ⃗    𝑟   ⃗    𝑟   ⃗      𝑟   ⃗  

   ⃗⃗   ⃗  (  𝑟    𝑟      𝑟 )   ⃗  

   ⃗⃗    𝑟    𝑟      𝑟  ∑   𝑟    

  ⃗⃗  𝑟  
∑    ⃗⃗  

  ∑    
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Question: Show that ∑   ⃗⃗ 
    

Solution 

     

Solution 

For this we will use the position vector of the system of particles 

  𝑟  
∑    ⃗  

∑    
  ……………..(1) 

By using Head to Tail rule  𝑟  𝑟  𝑟 
  

 𝑟  
∑   ( ⃗   ⃗ 

 ) 

 
  

 𝑟  
(∑    ) ⃗  ∑    ⃗  

 

 
 𝑟  

  ⃗ 

 
 

∑    ⃗  
 

 
 𝑟  𝑟  

∑    ⃗  
 

 
  

 
∑    ⃗  

 

 
    ∑   𝑟  

 
     or ∑   𝑟 

  
      

Note that   ∑   𝑟 
 ̇ 

      or ∑    ⃗ 
 
   

 
    

Then  ∑   𝑟 
 ̈ 

       or  ∑    ⃗ 
 
   

 
   

Uniqueness of the c.m. 

Let 𝑟  
∑    ⃗  

 
 and 𝑟 

  
∑    ⃗  

 
 be p.v. of C and    respectively, then from figure 

   ̅̅ ̅̅̅    ̅̅ ̅̅     ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅     ̅̅ ̅̅̅   𝑟   ⃗  𝑟     ̅̅̅̅̅   
∑    ⃗  

 
  ⃗  

∑    ⃗  

 
   

    ̅̅̅̅̅  
∑   ( ⃗   ⃗ ) 

 
  ⃗     ̅̅ ̅̅̅    ⃗   ⃗     ̅̅ ̅̅ ̅       is the same point as    
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Parallel Axis Theorem / Huygens Steiner Theorem / Steiner Theorem 

The rotational inertia about an axis is equal to the inertia about parallel axis 

through centre of mass plus mass time the square of the distance between two 

parallel axis. i.e.          

This theorem also known as Huygens Steiner Theorem or just Steiner Theorem, 

named after Christian Huygens and Jakob Steiner. 

Importance 

This theorem helps us in calculating moment of inertia matrix of a rigid body at 

any point in terms of information about the same body at some other point. This 

theorem is used to find rotation of Earth about its own axis and sun axis. 
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Proof 

Consider a rigid body of mass M. Let   denotes the moment of inertia of body 

about  . Let us take its i
th

 particle of mass    at a distance of    from the central 

axis then  

  ∑    
   ………………(1) 

Now using     𝑟       | ̂ ||𝑟 |      | ̂  𝑟 | and 𝑟  𝑟  𝑟 
  

    | ̂  (𝑟  𝑟 
 )|  | ̂  𝑟   ̂  𝑟 

 |  

( )    ∑  | ̂  𝑟   ̂  𝑟 
 |   

   ∑  |( ̂  𝑟 )
  ( ̂  𝑟 

 )   ( ̂  𝑟 ) ( ̂  𝑟 
 )|  

   ∑  | ̂  𝑟 |
  ∑  | ̂  𝑟 

 |   | ̂  𝑟 |  ̂  ∑  |𝑟 
 |  

   ∑  ( ̂  𝑟 )
  ∑  ( ̂  𝑟 

 )   ( ̂  𝑟 )  ̂  ∑  𝑟 
   

   ∑    
  ∑    

    ( ̂  𝑟 )  ̂  ( )  

           

          proved 
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Parallel Axis Theorem (another Proof)  

The rotational inertia about an axis is equal to the inertia about parallel axis 

through centre of mass plus mass time the square of the distance between two 

parallel axis. i.e.          

Importance 

This theorem helps us in calculating moment of inertia matrix of a rigid body at 

any point in terms of information about the same body at some other point. This 

theorem is used to find rotation of Earth about its own axis and sun axis. 

     

Proof 

Consider a rigid body of mass M. Let    denotes the inertia of body about its 

central axis. Let us take its i
th
 particle of mass    at a distance of 𝑥  from the 

central axis then    ∑  𝑥 
   

Now consider a parallel axis at a distance   from the central axis. The rotational 

inertia about this parallel axis is given by  

  ∑  (  𝑥 )
  ∑  ( 

  𝑥 
    𝑥 )  (∑  ) 

  ∑  𝑥 
    ∑  𝑥   

           ( )  

          proved 
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Parallel Axis Theorem (another Proof) 

The rotational inertia about an axis is equal to the inertia about parallel axis 

through centre of mass plus mass time the square of the distance between two 

parallel axis. i.e.          

Importance 

This theorem helps us in calculating moment of inertia matrix of a rigid body at 

any point in terms of information about the same body at some other point. This 

theorem is used to find rotation of Earth about its own axis and sun axis. 
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Proof 

Consider a body whose centre of mass is located at the origin    of the prime 

coordinate system that is at point (𝑥  𝑦  𝑧 ) relative to the unprimed system. 

Consider an infinitesimal particle of mass    which is located at   (𝑥  𝑦  𝑧 ) 

relative to the unprime system and   
 (𝑥 

  𝑦 
  𝑧 

 ) relative to the prime system as 

shown in figure. Then  

Moment of inertia about x – axis      ∫(𝑦 
  𝑧 

 )    …………..(1) 

By using head to tail rule  𝑟  𝑟  𝑟 
  

 (𝑥  𝑦  𝑧 )  (𝑥  𝑦  𝑧 )  (𝑥 
  𝑦 

  𝑧 
 )  (𝑥  𝑥 

  𝑦  𝑦 
  𝑧  𝑧 

 )  

 𝑥  𝑥  𝑥 
  𝑦  𝑦  𝑦 

  𝑧  𝑧  𝑧 
   

( )      ∫[(𝑦  𝑦 
 )  (𝑧  𝑧 

 ) ]    

     ∫[𝑦 
  𝑦 

    𝑦 𝑦 
  𝑧 

  𝑧 
    𝑧 𝑧 

 ]    

     ∫[(𝑦 
   𝑧 

 )  (𝑦 
   𝑧 

  )   𝑦 𝑦 
   𝑧 𝑧 

 ]    

     ∫(𝑦 
   𝑧 

 )   ∫(𝑦 
   𝑧 

  )    𝑦 ∫𝑦 
     𝑧 ∫ 𝑧 

     

     ∫(𝑦 
   𝑧 

 )   ∫(𝑦 
   𝑧 

  )    𝑦 ( )   𝑧 ( )  

     (𝑦 
   𝑧 

 ) ∫    ∫(𝑦 
   𝑧 

  )    

     (𝑦 
   𝑧 

 )         

           (𝑦 
   𝑧 

 )    result of parallel axis theorem about x – axis 

Similarly  

           (𝑥 
   𝑧 

 )    result of parallel axis theorem about y – axis 

           (𝑥 
   𝑦 

 )    result of parallel axis theorem about z – axis 

Respectively. 
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Now consider  

Product of inertia about x,y – axis      ∫(𝑥 𝑦 )    …………..(2) 

By using head to tail rule  𝑟  𝑟  𝑟 
  

 (𝑥  𝑦  𝑧 )  (𝑥  𝑦  𝑧 )  (𝑥 
  𝑦 

  𝑧 
 )  (𝑥  𝑥 

  𝑦  𝑦 
  𝑧  𝑧 

 )  

 𝑥  𝑥  𝑥 
  𝑦  𝑦  𝑦 

  𝑧  𝑧  𝑧 
   

( )      ∫(𝑥  𝑥 
 )(𝑦  𝑦 

 )       ∫(𝑥 𝑦  𝑥 𝑦 
  𝑥 

 𝑦  𝑥 
 𝑦 

 )    

     ∫(𝑥 𝑦 )   ∫(𝑥 𝑦 
 )   ∫(𝑥 

 𝑦 )   ∫(𝑥 
 𝑦 

 )    

     𝑥 𝑦 ∫   𝑥 ∫(𝑦 
 )   𝑦 ∫(𝑥 

 )   ∫(𝑥 
 𝑦 

 )    

     𝑥 𝑦 ∫   𝑥 ( )  𝑦 ( )  ∫(𝑥 
 𝑦 

 )         ∑  𝑟    ∫ 𝑟 
      

     ∫(𝑥 
 𝑦 

 )   𝑥 𝑦 ∫    

           𝑥 𝑦     

Similarly           𝑦 𝑧                 𝑧 𝑧   

In vector form we know that    ∫ 𝑟 
    

   ∫(𝑟  𝑟 )   ∫(𝑟  𝑟 
 ) (𝑟  𝑟 

 )    

   ∫(𝑟  𝑟  𝑟  𝑟 
  𝑟 

  𝑟  𝑟 
  𝑟 

 )   ∫(𝑟 
  𝑟 

    𝑟 
  𝑟 )    

   𝑟 
 ∫   ∫𝑟 

      𝑟  ∫ 𝑟 
     

   𝑟 
       𝑟  ( )  
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Parallel Axis Theorem (For discrete mass distribution) 

The moment of inertia of a rigid body in the form of discrete mass distribution (set 

of particles) about a given axis is equal to the sum of moment of inertia of the same 

body about a parallel axis (to the given axis) through the centre of mass of the 

body and moment of inertia due to total mass of the body placed at is centre of 

mass, about the given axis. i.e.           
   

 

Proof: Consider a rigid body of mass M. Let   denotes the moment of inertia 

of body about  . Let us take its i
th
 particle of mass    at a distance of    from the 

central axis then    ∑    
   ………………(1) 

Now using     𝑟       | ̂ ||𝑟 |      | ̂  𝑟 | and 𝑟  𝑟  𝑟 
  

    | ̂  (𝑟  𝑟 
 )|  | ̂  𝑟   ̂  𝑟 

 |  

( )    ∑  | ̂  𝑟   ̂  𝑟 
 |   

   ∑  |( ̂  𝑟 )
  ( ̂  𝑟 

 )   ( ̂  𝑟 ) ( ̂  𝑟 
 )|  

   ∑  | ̂  𝑟 |
  ∑  | ̂  𝑟 

 |   | ̂  𝑟 |  ̂  ∑  |𝑟 
 |  

   ∑  ( ̂  𝑟 )
  ∑  ( ̂  𝑟 

 )   ( ̂  𝑟 )  ̂  ∑  𝑟 
   

   ∑    
  ∑    

    ( ̂  𝑟 )  ̂  ( )            

           proved 



              visit us @ Youtube  Learning with Usman Hamid

 

 

176 

Parallel Axis Theorem (For Continuous mass distribution) 

The moment of inertia of a rigid body in the form of continuous mass distribution 

about a given axis is equal to the sum of moment of inertia of the same body about 

a parallel axis (to the given axis) through the centre of mass of the body and 

moment of inertia due to total mass of the body placed at is centre of mass, about 

the given axis. i.e.           
   

 

Proof: Consider a rigid body of mass   ∫  . Let   denotes the moment 

of inertia of body about  . Let us take its i
th
 particle of mass    at a distance of    

from the central axis then    ∫  
     ………………(1) 

Now using     𝑟      | ̂ ||𝑟|      | ̂  𝑟| and 𝑟  𝑟  𝑟 
  

    | ̂  (𝑟  𝑟 
 )|  | ̂  𝑟   ̂  𝑟 

 |  

( )    ∫| ̂  𝑟   ̂  𝑟 
 |     

   ∫|( ̂  𝑟 )
  ( ̂  𝑟 

 )   ( ̂  𝑟 ) ( ̂  𝑟 
 )|    

   ∫| ̂  𝑟 |
    ∫| ̂  𝑟 

 |     | ̂  𝑟 |  ̂  ∫|𝑟 
 |    

   ∫( ̂  𝑟 )
    ∫( ̂  𝑟 

 )     ( ̂  𝑟 )  ̂  ∫(𝑟 
 )    

   ∫    
  ∫    

    ( ̂  𝑟 )  ̂  ( )            
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Perpendicular Axis Theorem/ Perpendicular Axis Theorem (for a particle) 

/Plane Figure Theorem 

The moment of inertia of a plane rigid body about an axis perpendicular to the 

body is equal to the sum of the moment of inertia about two mutually 

perpendicular axes lying in the plane of the body and meeting at the common point 

with the given axis. i.e.             

Or The moment of inertia of a plane rigid body about a perpendicular axis is 

equal to the sum of the moment of inertias about the orthogonal axes of the plane. 

i.e.             

Importance: This theorem helps us in calculating moment of inertia matrix 

of a rigid body at any point in terms of information about the same body at some 

other point. 

  

Proof 

Let us consider a rectangular frame of reference OXYZ. If there is a distribution of 

matter in xy – plane. i.e. z = 0, then  

Moment of inertia about x – axis      ∫(𝑦  𝑧 )   ∫𝑦        ……..(1) 

Moment of inertia about y – axis      ∫(𝑥  𝑧 )   ∫𝑥        ……..(2) 

Moment of inertia about z – axis      ∫(𝑥  𝑦 )         ……..(3) 

Adding (1) and (2) 

        ∫𝑦    ∫𝑥    ∫(𝑥  𝑦 )    

             similarly we may write                          
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Perpendicular Axis Theorem (for discrete mass distribution) 

The moment of inertia of a plane rigid body in the form of discrete mass 

distribution (set of particles) about an axis perpendicular to the body is equal to the 

sum of the moment of inertia about two mutually perpendicular axes lying in the 

plane of the body and meeting at the common point with the given axis. i.e. 

            

  

Proof 

Let us consider a rectangular frame of reference OXYZ. If there is a distribution of 

matter in xy – plane. i.e. z = 0, then  

Moment of inertia about x – axis      ∑  (𝑦 
  𝑧 

 )  ∑  𝑦 
      ……..(1) 

Moment of inertia about y – axis      ∑  (𝑥 
  𝑧 

 )  ∑  𝑥 
      ……..(2) 

Moment of inertia about z – axis      ∑  (𝑥 
  𝑦 

 )       ……..(3) 

Adding (1) and (2) 

        ∑  𝑦 
  ∑  𝑥 

  ∑  (𝑥 
  𝑦 

 )  

              

Similarly we may write   
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Perpendicular Axis Theorem (for continuous mass distribution) 

The moment of inertia of a plane rigid body in the form of continuous mass 

distribution about an axis perpendicular to the body is equal to the sum of the 

moment of inertia about two mutually perpendicular axes lying in the plane of the 

body and meeting at the common point with the given axis. i.e.             

  

Proof 

Let us consider a rectangular frame of reference OXYZ. If there is a distribution of 

matter in xy – plane. i.e. z = 0, then  

Moment of inertia about x – axis      ∫(𝑦 
  𝑧 

 )    ∫𝑦 
         ……..(1) 

Moment of inertia about y – axis      ∫(𝑥 
  𝑧 

 )    ∫𝑥 
         ……..(2) 

Moment of inertia about z – axis      ∫(𝑥 
  𝑦 

 )          ……..(3) 

Adding (1) and (2) 

        ∫𝑦 
     ∫𝑥 

     ∫(𝑥 
  𝑦 

 )     

              

Similarly we may write   
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Linear and Angular Variables in Scalar Form 

When a body moves along a straight line, then we use linear variables. i.e.  

 

Linear displacement (S), Linear Velocity ( ) and Linear Acceleration ( ) 

When a body moves along a circular path, then we use angular variables. i.e.  

 

Angular displacement ( ), Angular Velocity ( ) and Angular Acceleration ( ) 

Linear and Angular Velocity of a Rigid Body about a Fixed Axis/ Linear and 

Angular Velocity (Speed) in Scalar Form. 

 

Let a body moves along a circular path, moving in a circle with constant radius 

   𝑟 from point A to B length of arc will be  . i.e.       and angle between 

two radii is  . i.e.        then we know that  

  𝑟   

 
  

  
 𝑟

  

  
  

   𝑟   
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Linear and Angular Acceleration of a Rigid Body about a Fixed Axis/ Linear 

and Angular Acceleration in Scalar Form. 

Let a body moves along a circular path, moving in a circle with                      

constant radius    𝑟 from point A to B length of arc will be  .                                        

i.e.       and angle between two radii is  . i.e.                                           

then we know that  

  𝑟  
  

  
 𝑟

  

  
   𝑟  

  

  
 𝑟

  

  
   𝑟   

Total Acceleration produced by a body with moves with Angular Speed. 

 

In case of circular motion body moves with a centripetal acceleration    which is 

towards the centre. We know that        also     
  

 
  therefore       

  

 
 

    
  

 
      

since body moves with angular speed therefore   𝑟  

    
(  ) 

 
    

    

 
    𝑟    

If    is a tangential acceleration and since       then by Pythagoras Theorem 

  
    

    
   

    √  
    

   

This is expression of resultant acceleration in case of circular motion. 
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Linear and Angular Variables in Vector Form 

Since   𝑟  (𝑟     )  therefore  

from figure 𝑟         ⃗⃗⃗⃗ ⃗⃗⃗  𝑟     

  𝑟  (𝑟    )   

    𝑟      

   | ⃗⃗⃗  𝑟|  by Right Hand Rule 

   ̂  | ⃗⃗⃗  𝑟| ̂  

  ⃗   ⃗⃗⃗  𝑟  

Kinetic Energy of Rotation 

A rigid body consists of n – particles, each of 

mass                with position vector of 

each is 𝑟 . Then total kinetic energy of body is 

    
 

 
∑     

  
     

Since rotation is angular so    𝑟    

We use angular velocity as   because it remains same for all particles of a rigid 

body. Then  

    
 

 
∑   𝑟 

  
      

 

 
  ∑   𝑟 

  
     

By using   ∑   𝑟 
  

    which is called rotational inertia of a body or moment of 

inertia of a body w.r.to axes of rotation. It plays same role in angular motion as 

mass in linear motion. So, 
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Result Prove that       

Proof 

In linear motion momentum of force is    𝑟  𝑟(  ) 

In rotational motion momentum of force is       

    𝑟(  )   (
 

 
)  𝑟(  )   using   𝑟  

  

  
 𝑟

  

  
   𝑟  

        

Angular Momentum of System of Particles 

Since we know that moment of linear momentum of a system of particles is called 

angular momentum, therefore 

 ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
      ⃗⃗  ∑ 𝑟    𝑟̇ 

 
      ⃗⃗  ∑   (𝑟  𝑟̇ )

 
     

  ⃗⃗  ∑   *( ⃗⃗  𝑟 
 )  ( ̇⃗⃗  𝑟̇ 

 )+ 
      using 𝑟   ⃗⃗  𝑟 

  𝑟̇   ̇⃗⃗  𝑟̇ 
  

  ⃗⃗  ∑   * ⃗⃗   ̇⃗⃗   ⃗⃗  𝑟̇ 
  𝑟 

   ̇⃗⃗  𝑟 
  𝑟̇ 

 + 
     

  ⃗⃗   ⃗⃗  (∑   
 
   ) ̇⃗⃗   ⃗⃗  ∑   

 
   𝑟̇ 

  (∑   
 
   𝑟 

 )   ̇⃗⃗  ∑ 𝑟 
    𝑟̇ 

  
     

Using  ∑   
 
       ̇⃗⃗   ⃗   ∑   

 
   𝑟̇ 

    ∑   
 
   𝑟 

    

  ⃗⃗   ⃗⃗    ⃗       ∑ 𝑟 
    𝑟̇ 

  
     

  ⃗⃗   ⃗⃗   ⃗⃗   ∑ 𝑟 
   ⃗⃗ 

  
      ⃗⃗   ⃗⃗   ⃗⃗ 

   

Hence total angular momentum  ⃗⃗⃗ of a system of particles is equal to the sum 

of angular momentum  ⃗⃗⃗  about origin and angular momentum  ⃗⃗⃗ 
  about 

centre of mass of a system of particle. 
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Question 

 

 

Question 

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

185 

 

 

Question 
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Solution 
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Question 
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Question 
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Question 

Masses of 1,2and 3kg are located at positions  ̂   ̂   ̂   ̂   ̂   ̂    ̂  

respectively. If their velocities are   ̂    ̂    ̂. Find the position and velocity of 

centre of mass. Also find the angular momentum of the system with respect to the 

origin. 

Solution 

Given that                      

𝑟   ̂   ̂   ̂ 𝑟    ̂   ̂ 𝑟    ̂    ̂  and  ⃗    ̂  ⃗     ̂  ⃗     ̂ 

Radius vector of centre of mass is given by  ⃗⃗  
∑    ⃗ 

 
   

  ∑   
 
   

  

  ⃗⃗  
   ⃗     ⃗     ⃗ 

        
 

  ̂   ̂    ̂

 
  

Velocity of centre of mass is given by  ⃗   
∑    ⃗⃗ 

 
   

  ∑   
 
   

  

  ⃗   
   ⃗⃗     ⃗⃗     ⃗⃗ 

        
 

  ̂   ̂

 
  

Angular momentum of system of particles is given by       ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
    ∑   (𝑟   ⃗ )

 
     

  ⃗⃗    (𝑟   ⃗ )    (𝑟   ⃗ )    (𝑟   ⃗ )  

  ⃗⃗  ( )( ̂   ̂   ̂    ̂)  ( )(  ̂   ̂     ̂)  ( )(  ̂    ̂     ̂)  

  ⃗⃗     ̂     ̂    ̂  

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

191 

Question 

Masses of 4,3and 1kg moves under a force such that their position vectors at time t 

are 𝑟    ̂      ̂ 𝑟     ̂   ̂ 𝑟     ̂     ̂  respectively. Find the position 

vector and velocity of the centre of mass and angular momentum of the system 

with respect to the origin at     . 

Solution 

Given that                      

𝑟    ̂      ̂ 𝑟     ̂   ̂ 𝑟     ̂      ̂  

  ⃗     ̂  ⃗    ̂  ⃗    ̂     ̂  

Radius vector of centre of mass is given by  ⃗⃗  
∑    ⃗ 

 
   

  ∑   
 
   

  

  ⃗⃗  
   ⃗     ⃗     ⃗ 

        
 

   ̂       ̂

 
   at      

Velocity of centre of mass is given by  ⃗   
∑    ⃗⃗ 

 
   

  ∑   
 
   

  

  ⃗   
   ⃗⃗     ⃗⃗     ⃗⃗ 

        
 

   ̂   ̂    ̂

 
  at      

Angular momentum of system of particles is given by       ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
    ∑   (𝑟   ⃗ )

 
     

  ⃗⃗    (𝑟   ⃗ )    (𝑟   ⃗ )    (𝑟   ⃗ )  

  ⃗⃗     ̂    ̂     ̂    at      

 

 

 

 

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

192 

Question 

Particle of Masses 1,2and 4kg moves under a force such that their position vectors 

at time t are 𝑟    ̂      ̂ 𝑟     ̂   ̂ 𝑟        ̂        ̂  respectively. 

Find the angular momentum of the system with respect to the origin at     . 

Solution Given that                      

𝑟    ̂      ̂ 𝑟     ̂   ̂ 𝑟        ̂        ̂   

  ⃗     ̂  ⃗    ̂  ⃗          ̂         ̂  

Angular momentum of system of particles is given by       ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
    ∑   (𝑟   ⃗ )

 
     

  ⃗⃗    (𝑟   ⃗ )    (𝑟   ⃗ )    (𝑟   ⃗ )      ̂     ̂   at      

Question 

The position vectors and velocities of Masses 2,3and 4kg are respectively   ̂    ̂  

 ̂   ̂   ̂   ̂    ̂. If their velocities are    ̂    ̂   ̂    ̂. Find the position and 

velocity of centre of mass. Also find the total angular momentum of the system 

with respect to the origin. 

Solution Given that                      

𝑟    ̂    ̂ 𝑟   ̂   ̂   ̂ 𝑟    ̂    ̂   ⃗     ̂  ⃗     ̂  ⃗    ̂    ̂  

Radius vector of centre of mass is given by  ⃗⃗  
∑    ⃗ 

 
   

  ∑   
 
   

  

  ⃗⃗  
   ⃗     ⃗     ⃗ 

        
 

  ̂    ̂    ̂

 
  

Velocity of centre of mass is given by  ⃗   
∑    ⃗⃗ 

 
   

  ∑   
 
   

 
    ̂    ̂

 
  

Angular momentum of system of particles is given by       ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗     ̂     ̂     ̂   
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Kinetic Energy of System of Particles 

 

For a system of particles      
 

 
∑      

  
     

     
 

 
∑    ( ⃗   ⃗ )

 
     ………………(1) 

From figure by Head to Tail rule   

𝑟   ⃗⃗  𝑟 
  

  ⃗ 

  
 

  ⃗⃗

  
 

  ⃗ 
 

  
  ⃗   ⃗    ⃗ 

   

( )      
 

 
∑    ( ⃗    ⃗ 

 ) ( ⃗    ⃗ 
 ) 

     

     
 

 
∑    ( ⃗    ⃗    ⃗    ⃗ 

   ⃗ 
   ⃗    ⃗ 

   ⃗ 
 ) 

     

     
 

 
∑    (   

    ⃗    ⃗ 
    

  ) 
     

     
 

 
(∑   

 
   )   

  
 

 
  ⃗   ∑   

 
    ⃗ 

  
 

 
∑   

 
     

    

     
 

 
    

  
 

 
  ⃗   ( )  

 

 
∑   

 
     

        
 

 
    

  
 

 
∑   

 
     

    

  ⃗⃗   ⃗⃗   ⃗⃗ 
   

Hence total K.E.  ⃗⃗⃗ of a system of particles is equal to the sum of K.E.   ⃗⃗⃗  of 

centre of mass w.r.to origin and K.E.   ⃗⃗⃗ 
  of i

th
 particle w.r.to centre of mass of 

a system of particle. 
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Remark 

 Translational Motion: Motion of a body in a straight line on the plane or 

rough surface. 

 Rotational Motion: Motion of a body about a fixed axis in the space. 

Kinetic Energy of a Rigid Body in General (Konig Theorem) 

 

For a system of particles        
 

 
∫  

     ………………(1) 

From figure by Head to Tail rule   

𝑟   ⃗⃗  𝑟 
  

  ⃗ 

  
 

  ⃗⃗

  
 

  ⃗ 
 

  
  ⃗   ̇⃗⃗  𝑟 

 ̇  

Now   
   ⃗   ⃗  ( ̇⃗⃗  𝑟 

 ̇)  ( ̇⃗⃗  𝑟 
 ̇)   ̇  𝑟̇ 

     ̇⃗⃗ 𝑟 
 ̇ 

( )    
 

 
∫  

    
 

 
∫ * ̇  𝑟̇ 

     ̇⃗⃗ 𝑟 
 ̇+     

   
 

 
 ̇ ∫   

 

 
∫ 𝑟̇ 

      ̇⃗⃗ ∫ 𝑟 
 ̇     

   
 

 
 ̇   

 

 
∫ 𝑟̇ 

      ̇⃗⃗ ( )    
 

 
  ̇  

 

 
∫ 𝑟̇ 

      

  ⃗⃗   ⃗⃗   ⃗⃗   

  ⃗⃗   ⃗⃗               ⃗⃗          
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Kinetic Energy of a Rigid Body Rotating about a Fixed Point 

Consider a rigid body rotate about a fixed point O. Consider a 

point   (𝑥  𝑦  𝑧 ) which rotate with the motion of rigid body 

then       
 

 
                        

Kinetic Energy for single particle at    of mass    is given by 

   
 

 
                 

For whole body we get ∫   
 

 
∫      

      
 

 
∫      …………………..(i) 

In case of rotation  ⃗   ⃗⃗⃗  𝑟   where  ⃗⃗⃗           is angular velocity 

  ⃗  (   ̂     ̂     ̂)  (𝑥 ̂  𝑦 ̂  𝑧 ̂)  

  ⃗  |
 ̂  ̂  ̂
      

𝑥 𝑦 𝑧
|  

  ⃗  (𝑧   𝑦  ) ̂  (𝑥   𝑧  ) ̂  (𝑦   𝑥  ) ̂  

    (𝑧   𝑦  )
 
 (𝑥   𝑧  )

  (𝑦   𝑥  )
 
  

( )       
 

 
∫ *(𝑧   𝑦  )

 
 (𝑥   𝑧  )

  (𝑦   𝑥  )
 
+     

        

 

 
∫ 0

𝑧   
  𝑦   

   𝑦𝑧     𝑥   
  𝑧   

   𝑥𝑧     𝑦   
 

 𝑥   
   𝑥𝑦    

1      

      
 

 
0
  

 ∫(𝑦  𝑧 )     
 ∫(𝑥  𝑧 )     

 ∫(𝑥  𝑦 )  

      ∫𝑥𝑦        ∫𝑦𝑧        ∫ 𝑧𝑥  
1  

      
 

 
[  

       
       

                               ]  
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In terms of matrix we have       
 

 
[

  

  

  

]

 

*

           
           
           

+ [

  

  

  

]  

Special Case: When the body rotates about the principle axis then  

Product of inertias                then 

      
 

 
[  

       
       

    ]  required expression 

Question 

Find the K.E of homogeneous circular cylinder of mass m and radius a rolling on a 

plane with linear velocity. 

Solution 

Since we know that   ⃗⃗   ⃗⃗               ⃗⃗          
  

  ⃗⃗  
 

 
    

 

 
     ……………….(i) 

In case of cylinder moment of inertia    
 

 
    

( )   ⃗⃗  
 

 
    

 

 
 
 

 
    

  

  
   since   𝑟  

  ⃗⃗  
 

 
    

 

 
     ⃗⃗  

 

 
     

Kinetic Energy in terms of Rotational and Angular Momentum 

Consider a rigid body rotating about an axis passing through a fixed point in it with 

an angular velocity  ⃗⃗⃗ consisting of n – particles of mass    where position vector 

is 𝑟  moving with velocity  ⃗ . Then expressing of kinetic energy is given by 

      
 

 
∑     

  
                      

     
 

 
∑   ( ⃗   ⃗ )

 
    

 

 
∑   ( ⃗⃗⃗  𝑟   ⃗ )

 
    

 

 
 ⃗⃗⃗ ∑ 𝑟     ⃗ 

 
      

     
 

 
 ⃗⃗⃗ ∑ 𝑟   ⃗⃗ 

 
             

 

 
 ⃗⃗⃗⃗    
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Radius of Gyration of Various Bodies 

Radius of gyration of a body is defined as the distance from the reference axis 

at which the given area is assumed to be compressed and kept as a thin strip, 

such that there is no change in its moment of inertia. It specifies the distribution 

of the elements of body around the axis in terms of the mass moment of inertia, As 

it is the perpendicular distance from the axis of rotation to a point mass m that 

gives an equivalent inertia to the original object m The nature of the object does 

not affect the concept, which applies equally to a surface bulk mass.   

Mathematically the radius of gyration is the root mean square distance of the 

object's parts from either its center of mass or the given axis, depending on the 

relevant application.  

Let   ∑    
  be the moment of inertia of a system of particles about AB, and  

   ∑    be the total mass of the system. Then the quantity K such that  

   
 

 
 

∑    
 

∑  
  or    √

 

 
 √

∑    
 

∑  
 

is called the radius of gyration of the system AB.   

Example 

Find the radius of gyration, K, of the triangular lamina of mass M and moment of 

inertia   
 

 
   . 

Solution 

Since formula for radius of gyration is given by  

   
 

 
 

 

 
   

 
  or    √

 

 
   

  
 

√ 
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The Compound Pendulum 
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Question 

Difference between simple and compound pendulums. 

Answer 

 The metallic bob suspended by a weightless inextensible string is called 

simple pendulum. The distance between point of suspension and center of 

bob is called length of simple pendulum. The bob at rest when no resultant 

force acts on it is called mean position or equilibrium position. But a 

physical or compound pendulum is a rigid body that oscillates due to its 

own weight about a horizontal axis that does not pass through the center of 

mass of the body. 

 In simple pendulum we have point mass/single mass particle but in 

compound pendulum we have not a point mass, we have distribution of 

mass. In compound pendulum we first define center of gravity, we define all 

particles distribution by centre of mass.  

Question  

Obtain the equation of motion of compound pendulums. 

Answer 

       

𝑙𝐶𝑜𝑠𝜃 
𝑙𝑆𝑖𝑛𝜃 
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K.E. of rotation    
 

 
   

  
 

 
   ̇

  

P.E. of rotation    
  

  
 ̂  

  

  
 ̂  

  

  
 ̂      ̂ 

P.E. of rotation in component form             

By the principal of conservation of energy       Constant 

 

 
   ̇

            
 

 
  (   ̈)          ̇      

  ̈  
   

  
        after simplification   

Question 

Show that length of simple pendulum is equivalent to compound pendulum. 

Answer 

By equation of motion of simple pendulum we have   ̈  
 

 
       

For small vibration         then   ̈  
 

 
    

 ̈   
 

 
    ……………..(1) 

By equation of motion of compound pendulum we have   ̈  
   

  
       

For small vibration         then   ̈  
   

  
    

 ̈   
   

  
    ……………..(2) 

Comparing (1) and (2) we have    
 

 
   

   

  
  

 

 
 

   

  
  

  
  

  
  which is equal to compound pendulum. 
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         CHAPTER 

          MOTION OF RIGID BODIES  

           IN THREE DIMENSIONS AND  

    MOMEMNT OF INERTIA  

OF RIGID BODIES 
Relation b/w Angular Momentum and Moment of Inertia                     

Or   Angular Momentum in Terms of Moment of Inertia 

Consider a rigid body consisting of n – particles of                which rotate 

and translate then angular momentum about origin is 

 ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
     ⃗⃗  ∑   (𝑟   ⃗ )

 
     

In case of rotation  ⃗   ⃗⃗⃗  𝑟   

  ⃗⃗  ∑   (𝑟  ( ⃗⃗⃗  𝑟 ))
 
     

  ⃗⃗  ∑   [(𝑟  𝑟 ) ⃗⃗⃗  (𝑟   ⃗⃗⃗ )𝑟 ]
 
     

  ⃗⃗  ∑   [𝑟 
  ⃗⃗⃗  (𝑟   ⃗⃗⃗ )𝑟 ]

 
     ……………..(i) 

Consider position vector for each particle is  

𝑟  𝑥  ̂  𝑦  ̂  𝑧  ̂  𝑟 
  𝑥 

  𝑦 
  𝑧 

   and   ⃗⃗⃗     ̂     ̂     ̂ 

𝑟   ⃗⃗⃗  𝑥    𝑦    𝑧      and   ⃗⃗     ̂     ̂     ̂ 

( )     ̂     ̂     ̂  ∑   [(𝑥 
  𝑦 

  𝑧 
 )(   ̂     ̂     ̂)   

   

(𝑥    𝑦    𝑧   )(𝑥  ̂  𝑦  ̂  𝑧  ̂)]  

7 

Since angular velocity 

remains same for each 

particle of a rigid body 
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    ̂     ̂     ̂  

∑   [

{(𝑥 
  𝑦 

  𝑧 
 )   (𝑥    𝑦    𝑧   )𝑥 } ̂

 {(𝑥 
  𝑦 

  𝑧 
 )   (𝑥    𝑦    𝑧   )𝑦 } ̂

 {(𝑥 
  𝑦 

  𝑧 
 )   (𝑥    𝑦    𝑧   )𝑧 } ̂

] 
     

    ̂     ̂     ̂  

∑   [

{(𝑥 
  𝑦 

  𝑧 
 )   𝑥 

    𝑥 𝑦    𝑥 𝑧   } ̂

 {(𝑥 
  𝑦 

  𝑧 
 )   𝑥 𝑦    𝑦 

    𝑦 𝑧   } ̂

 {(𝑥 
  𝑦 

  𝑧 
 )   𝑥 𝑧    𝑦 𝑧    𝑧 

   } ̂

] 
     

    ̂     ̂     ̂  

∑   [

{𝑥 
    𝑦 

    𝑧 
    𝑥 

    𝑥 𝑦    𝑥 𝑧   } ̂

 {𝑥 
    𝑦 

    𝑧 
    𝑥 𝑦    𝑦 

    𝑦 𝑧   } ̂

 {𝑥 
    𝑦 

    𝑧 
    𝑥 𝑧    𝑦 𝑧    𝑧 

   } ̂

] 
     

    ̂     ̂     ̂  ∑   [

{𝑦 
    𝑧 

    𝑥 𝑦    𝑥 𝑧   } ̂

 {𝑥 
    𝑧 

    𝑥 𝑦    𝑦 𝑧   } ̂

 {𝑥 
    𝑦 

    𝑥 𝑧    𝑦 𝑧   } ̂

] 
     

    ̂     ̂     ̂    

[

{∑   (𝑦 
  𝑧 

 )  
 
    ( ∑   𝑥 𝑦 

 
   )   ( ∑   𝑥 𝑧 

 
   )  } ̂

{∑   (𝑥 
  𝑧 

 )  
 
    ( ∑   𝑥 𝑦 

 
   )   ( ∑   𝑦 𝑧 

 
   )  } ̂

{∑   (𝑥 
  𝑦 

 )  
 
    ( ∑   𝑥 𝑧 

 
   )   (∑   𝑦 𝑧 

 
   )  } ̂

]   

    ̂     ̂     ̂  [

{                 } ̂

{                 } ̂

{                 } ̂

]   

    ̂     ̂     ̂  [

{                 } ̂

{                 } ̂

{                 } ̂

]   

 

Product of inertia may 

be positive, may be 

negative or zero. 
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On comparing we have 

                      

                      

                      

Inertia Matrix 

In matrix form we have *

  

  

  

+  *

         
         
         

+ [

  

  

  

]   ⃗⃗⃗    ⃗⃗⃗⃗  

Here    *

         
         
         

+ is called inertia matrix. 

Results 

 M.I about x – axis then  ⃗⃗⃗  (      ) and  

                                    

 M.I about y – axis then  ⃗⃗⃗  (      ) and  

                                    

 M.I about z – axis then  ⃗⃗⃗  (      ) and  

                                    

  is not parallel to   

Rotational Kinetic Energy in terms of Inertia Matrix 

Since we know that        
 

 
 ⃗⃗⃗  ⃗⃗ but  ⃗⃗    ⃗⃗⃗ then  

     
 

 
 ⃗⃗⃗   ⃗⃗⃗  

 

 
 ( ⃗⃗⃗  ⃗⃗⃗)       

 

 
     

Principal Axes: The axes along which angular momentum and angular velocities 

are parallel (coincident) vectors are called principal axes. Or axis relative to which 

products of inertia are equal to zero known as principal axes. 
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Principal Axes and Principal Moments of Inertia 

In Inertia Matrix form we have 

*

  

  

  

+  *

         
         
         

+ [

  

  

  

]   ⃗⃗⃗    ⃗⃗⃗⃗  

Here   *

         
         
         

+ is called inertia matrix. 

In   *

         
         
         

+ the off diagonal elements are zero. i.e. 

                           

Then we get principle axes. 

1
st
 Principle axes (x – axes)         

2
nd

 Principle axes (y – axes)         

3
rd

 Principle axes (z – axes)         

Then the matrix   [

    
    
    

] is called Principal Moments of Inertia Matrix. 

Keep in mind: When a rigid body is rotating about a fixed point O, the angular 

velocity vector  ⃗⃗⃗ and the angular momentum vector  ⃗⃗ (about O) are not in general 

in the same direction. However it can be proved that at each point in the body there 

exists distinct directions, which are fixed relative to the body, along which the two 

vectors are aligned i.e. coincident. Such directions are called principal directions 

and the axes along them are referred to as principal axes of inertia.  The 

corresponding moments of inertia are called principal moments of inertia. Or 

inertia relative to the principal axis is called principal moments of inertia. 
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Remarks 

 Inertia matrix is symmetric. 

 Axes of this coordinate system are called Principal Axes. 

 The origin of the Principle Axis is called Principal Point. 

 The three coordinate planes each passes through the two principal axes is 

called Principal Plane.  

 Why we use          instead of            ? Single subscript use in          

is used to distinguish the moment of inertia about arbitrary axis. 

 Orthogonality of Principal Axes   

If the principal axes at each point of the body exist, then their orthogonality 

can be proved by stating that axes relative to which product of inertia are 

zero are the principal axes. 

 Why          do not change with time? If Principal axes are attached to the 

rigid body then          do not change with time. So they are treated as a 

constant. 

Angular Momentum in Terms of Inertia using Principal Axes 

In case of Principal Axes system we have 

 ⃗⃗                   …………………(1) 

For M.I about x – axis we have   ⃗⃗⃗  (      ) then          

For M.I about y – axis we have   ⃗⃗⃗  (      ) then          

For M.I about z – axis we have   ⃗⃗⃗  (      ) then          

( )   ⃗⃗                          …………………(2) 

Equating (1) and (2) we have 

                                     

In Inertia Matrix form we have 

[
  

  

  

]  [

    
    
    

] [

  

  

  

]   ⃗⃗⃗    ⃗⃗⃗⃗  
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Theorem 

Show that Products of Inertia for Principal Axis are equal to zero. 

Proof 

We know that   ⃗⃗    ⃗⃗⃗  

Also    ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

   ⃗⃗⃗  ∑ 𝑟     ⃗ 
 
      ⃗⃗⃗  ∑   (𝑟   ⃗ )

 
     

   ⃗⃗⃗  ∑   (𝑟  ( ⃗⃗⃗  𝑟 ))
 
     

   ⃗⃗⃗  ∑   [(𝑟  𝑟 ) ⃗⃗⃗  (𝑟   ⃗⃗⃗)𝑟 ]
 
     

   ⃗⃗⃗  ∑   [𝑟 
  ⃗⃗⃗  (𝑟   ⃗⃗⃗)𝑟 ]

 
      ⃗⃗⃗  ∑   𝑟 

  ⃗⃗⃗ 
    ∑   (𝑟   ⃗⃗⃗)𝑟 

 
     

 ∑   (𝑟   ⃗⃗⃗)𝑟 
 
    ∑   𝑟 

  ⃗⃗⃗ 
      ⃗⃗⃗  

 ∑   (𝑟   ⃗⃗⃗)𝑟 
 
    [∑   𝑟 

  
     ] ⃗⃗⃗  …….………..(1) 

Consider  𝑟  𝑥  ̂  𝑦  ̂  𝑧  ̂  𝑟 
  𝑥 

  𝑦 
  𝑧 

    

and   ⃗⃗⃗     ̂     ̂     ̂  then  𝑟   ⃗⃗⃗  𝑥    𝑦    𝑧     

( )  ∑   (𝑥    𝑦    𝑧   )(𝑥  ̂  𝑦  ̂  𝑧  ̂)
 
     

 [∑   (𝑥 
  𝑦 

  𝑧 
 ) 

     ](   ̂     ̂     ̂)  

 [∑   (𝑥 
    𝑥 𝑦 

    𝑥 𝑧 
   )

 
   ] ̂  [∑   (𝑥 𝑦    𝑦 

     
   

𝑦 𝑧   )] ̂  [∑   (𝑥 𝑧    𝑦 𝑧    𝑧 
   )

 
   ] ̂  

 [∑   (𝑥 
  𝑦 

  𝑧 
 ) 

     ]   ̂  [∑   (𝑥 
  𝑦 

  𝑧 
 ) 

     ]   ̂  

[∑   (𝑥 
  𝑦 

  𝑧 
 ) 

     ]   ̂    …….………..(2) 

Comparing coefficients of   ̂ in (2) 

∑   (𝑥 
    𝑥 𝑦 

    𝑥 𝑧 
   )

 
    [∑   (𝑥 

  𝑦 
  𝑧 

 ) 
     ]    

Comparing coefficients of             
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∑   𝑥 
  

    ∑   𝑥 
  

    ∑   (𝑦 
  𝑧 

 ) 
             ∑   (𝑦 

  𝑧 
 ) 

     

And      ∑   𝑥 𝑦 
 
       Also      ∑   𝑥 𝑧 

 
       

Comparing coefficients of   ̂ in (2) 

∑   (𝑥 𝑦    𝑦 
    𝑦 𝑧   )

 
    [∑   (𝑥 

  𝑦 
  𝑧 

 ) 
     ]    

Comparing coefficients of             

∑   𝑦 
  

    ∑   𝑦 
  

    ∑   (𝑥 
  𝑧 

 ) 
            ∑   (𝑥 

  𝑧 
 ) 

     

And      ∑   𝑦 𝑧 
 
        

Hence prove                 

Theorem  

Show that in matrix notation * ̇⃗⃗+  [ ⃗⃗⃗   ⃗⃗]  [ ][ ̇⃗⃗⃗] where   is the inertia matrix. 

Proof 

We know that  [ ⃗⃗]  [ ][ ⃗⃗⃗]  

Also    ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
      ⃗⃗  ∑   (𝑟   ⃗ )

 
     ⃗⃗  ∑   (𝑟  ( ⃗⃗⃗  𝑟 ))

 
     

 [ ][ ⃗⃗⃗]  ∑   (𝑟  ( ⃗⃗⃗  𝑟 ))
 
       

 [ ][ ̇⃗⃗⃗]  ∑   𝑟  ( ̇⃗⃗⃗  𝑟 )
 
      ……………..(1) 

Now    ⃗⃗  ∑ 𝑟   ⃗⃗ 
 
     

  ⃗⃗  ∑ 𝑟     ⃗ 
 
     ⃗⃗  ∑   (𝑟   ⃗ )

 
    

  ⃗⃗

  
 

 

  
[∑   (𝑟   ⃗ )

 
   ]  

  ̇⃗⃗  ∑   (𝑟 
̇   ⃗  𝑟  

  ⃗⃗ 

  
) 

     ̇⃗⃗  ∑   ( ⃗   ⃗  𝑟  
 

  
( ⃗⃗⃗  𝑟 ))

 
     

  ̇⃗⃗  ∑   (  𝑟  ( ⃗⃗⃗   ⃗   ̇⃗⃗⃗  𝑟 ))
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  ̇⃗⃗  ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑   𝑟  ( ̇⃗⃗⃗  𝑟 )

 
     

  ̇⃗⃗  ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    [ ][ ̇⃗⃗⃗]    ……………..(2) using (1) 

Now 

 ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑   𝑟  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟 ))

 
     

 ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑   𝑟  [( ⃗⃗⃗ 𝑟 ) ⃗⃗⃗  ( ⃗⃗⃗  ⃗⃗⃗)𝑟 ]

 
     

 ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑   𝑟  [( ⃗⃗⃗ 𝑟 ) ⃗⃗⃗   ⃗⃗⃗ 𝑟 ]

 
     

 ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑   ( ⃗⃗⃗ 𝑟 )(𝑟   ⃗⃗⃗) 

    ∑    ⃗⃗⃗
 (𝑟  𝑟 )

 
     

 ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑   ( ⃗⃗⃗ 𝑟 )(𝑟   ⃗⃗⃗) 

     ……………..(3)  

Similarly ∑    ⃗⃗⃗  (𝑟   ⃗ )
 
    ∑    ⃗⃗⃗  (𝑟  ( ⃗⃗⃗  𝑟 ))

 
    

 ∑    ⃗⃗⃗  (𝑟   ⃗ )
 
    ∑    ⃗⃗⃗  [(𝑟  𝑟 ) ⃗⃗⃗  (𝑟   ⃗⃗⃗)𝑟 ]

 
     

 ∑    ⃗⃗⃗  (𝑟   ⃗ )
 
    ∑    ⃗⃗⃗  [𝑟 

  ⃗⃗⃗  (𝑟   ⃗⃗⃗)𝑟 ]
 
     

 ∑    ⃗⃗⃗  (𝑟   ⃗ )
 
    ∑   𝑟 

 ( ⃗⃗⃗   ⃗⃗⃗) 
    ∑   (𝑟   ⃗⃗⃗)( ⃗⃗⃗  𝑟 )

 
     

 ∑    ⃗⃗⃗  (𝑟   ⃗ )
 
     ∑   (𝑟   ⃗⃗⃗)( ⃗⃗⃗  𝑟 )

 
     

 ∑    ⃗⃗⃗  (𝑟   ⃗ )
 
    ∑   (𝑟   ⃗⃗⃗)(𝑟   ⃗⃗⃗) 

     

( )  ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
    ∑    ⃗⃗⃗  (𝑟   ⃗ )

 
     

 ∑   𝑟  ( ⃗⃗⃗   ⃗ )
 
     ⃗⃗⃗  ∑ (𝑟     ⃗ )

 
     ⃗⃗⃗  ∑ (𝑟   ⃗⃗ )

 
     ⃗⃗⃗   ⃗⃗  

( )   ̇⃗⃗   ⃗⃗⃗   ⃗⃗  [ ][ ̇⃗⃗⃗]  

 * ̇⃗⃗⃗+  [ ⃗⃗⃗⃗   ⃗⃗⃗]  [ ][ ̇⃗⃗⃗⃗]  
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Theorem: For a rigid body, there exist a set of three mutually orthogonal 

axes called principal axes relative to which the product of inertia are zero and 

angular velocities and angular momentum are oriented along the same direction. 

Or       Prove that there are three principal moments of inertia (eigenvalues)     

            relative to the principal axis. 

Proof: Since we know that   ⃗⃗    ⃗⃗⃗ 

 *

  

  

  

+  *

     
     

     

+ [

  

  

  

]  

                                           ……….(1) 

Also from general theory of angular momentum    ∑       

                      

                        ……….(2) 

                      

Comparing (1) and (2) 

                          

                       

                       

After rearranging we have 

(     )                  

      (     )            

            (     )      

This is the homogeneous system of equations which have the non – trivial solution 

So |

           
           
           

|      which is cubic in I gives three principal M.I. 
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Determination of Principal Axes by Diagonalizing the Inertia Matrix 

How to find the Principal Axes 

Since we know that  

                      

                      

                      

And for Principal Axes we have          ;          ;          

Then  

                        

                        

                        

After rearranging we have 

(      )                  

      (      )            

            (      )      

This is the homogeneous system of equations which have the non – trivial solution 

So |

            
            
            

|      this is the required result to find the 

Principal Axes and the matrix *

            
            
            

+ is called 

diagonalizable inertia matrix. 
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Determination of Principal Axes by Diagonalizing the Inertia Matrix         

(another way) 

Suppose a rigid body has no axis of symmetry. Even so, the tensor that represents 

the moment of inertia of such a body is characterized by a real, symmetric 3 × 3 

matrix that can be diagonalized. The resulting diagonal elements are the values of 

the principal moments of inertia of the rigid body.   

The axes of the coordinate system, in which this matrix is diagonal, are the 

principal axes of the body, because all products of inertia have vanished. Thus, 

finding the principal axes and corresponding moments of inertia of any rigid body, 

symmetric or not, is virtually the same as to diagonalizing its moment of inertia 

matrix.   

Explanation  

There are a number of ways to diagonalize a real, symmetric matrix. We present 

here a way that is quite standard.   

First, suppose that we have found the coordinate system (principal axes) in which 

all products of inertia vanish and the resulting moment of inertia tensor is now 

represented by a diagonal matrix whose diagonal elements are the principal 

moments of inertia.   

Let    be the unit vectors that represent this coordinate system, that is, they point 

along the direction along the three principal axes of the rigid body. If the moment 

of inertia tensor is "dotted" with one of these unit vectors, the result is equivalent to 

a simple multiplication of the unit vector by a scalar quantity, i.e.  

                                                                               (1)  

The quantities    are just the principal M.I about their respective principal axes. 

The problem of finding the principal axes is one of finding those vectors    that 

satisfy the condition  

(    )                                                                   (2)  

In general this condition is not satisfied for any arbitrary set of orthonormal unit 

vectors   . It is satisfied only by a set of unit vectors aligned with the principal axes 

of the rigid body.   
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Any arbitrary xyz coordinate system can always be rotated such that the coordinate 

axes line up with the principal axes. The unit vectors specifying these coordinate 

axes then satisfy the condition in equation (2). This condition is equivalent to 

vanishing of the following determinant   

|    |                                                                  (3)  

Explicitly, this equation reads   

 

It is a cubic in  , namely,                         (4)  

In which A,B, and C are functions of the  's. The three roots   ,    and    are the 

three principal moments of inertia.   

We now have the principal moments of inertia, but the task of specifying the 

components of the unit vectors representing the principal axes in terms of our 

initial coordinate system remains to be solved.   

Here we can make use of the fact that when the rigid body rotates about one of its 

principal axes; the angular momentum vector is in the same direction as the 

angular velocity vector.   

Let the angles of one of the principal axes relative to the initial xyz coordinate 

system be  ,   and   and let the body rotate about this axis. Therefore, a unit 

vector pointing in the direction of this principal axis has components 

(              ).    

Using equation (1),             

where   , the first principal moment of the three (        ), is obtained by solving 

eq (4).  
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In matrix form  

 

 The direction cosines may be found by solving the above equations.   

 The solutions are not independent. They are subject to the constraint 

                     

 In other words the resultant vector    specified by these components is a unit 

vector. 

Question 

Find the moment of inertia and product of inertia of a homogeneous cube of side   

and for an origin at corner with axes directly along the edges and write down the 

inertia matrix. 

Solution 

Since inertias of cube of side   are 

                         

M.I. about x axis      ∫
 
(𝑦  𝑧 )   ∫ ∫ ∫ (𝑦  𝑧 )

 

 

 

 

 

 
       ……..(i) 

Now by using volume mass density   
  

  
. i.e.             𝑥 𝑦 𝑧 

 ( )      ∫ ∫ ∫ (𝑦  𝑧 )
 

 

 

 

 

 
  𝑥 𝑦 𝑧        (

   

 
)  

For whole mass of the cube   
 

 
 

 

     
 

 

  
. Then  

     
 

  
  (

   

 
)       

 

 
     

For cubical shape (with equal length and edges),             
 

 
     

 

 

When mass is not given then use 

integration in solution 
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Product of inertia      ∫
 
𝑥𝑦   ∫ ∫ 𝑥𝑦

 

 

 

 
       ……..(ii) 

Now by using volume mass density   
  

  
. i.e.             𝑥 𝑦 𝑧 

 (  )      ∫ ∫ 𝑥𝑦
 

 

 

 
  𝑥 𝑦 𝑧       (

  

 
)  

For whole mass of the cube   
 

 
 

 

     
 

 

  
. Then  

     
 

  
 (

  

 
)       

 

 
     

For cubical shape (with equal length and edges),             
 

 
     

Now inertia matrix will be written as    *

         
         
         

+ 

   

[
 
 
 
 
 

 
    

 
    

 

 
   

 

 
    

 
    

 

 
   

 

 
    

 
    

 
   

]
 
 
 
 

  

Question 

Four particles of masses m,2m,3m,4m are located at 
(     ) (       ) (       ) and (       ) respectively. Calculate its 

principal moment of inertia. 

Solution 

Given masses are                       . Given points for each 

masses  (     )  (       )  (       ) and  (       ) and Required 

Principal moment of inertia are         . First of all we find all moment of inertia. 

M.I. about x axis      ∑   (𝑦 
  𝑧 

 ) 
     

       (𝑦 
  𝑧 

 )    (𝑦 
  𝑧 

 )    (𝑦 
  𝑧 

 )    (𝑦 
  𝑧 

 )  

      (     )    (     )    (     )    (     )  

              

And in this case                    
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Product of Inertia       ∑   (𝑥 𝑦 )
 
     

       (𝑥 𝑦 )    (𝑥 𝑦 )    (𝑥 𝑦 )    (𝑥 𝑦 )  

      (   )    (    )    (    )    (     )  

      (  )    (   )    (   )    (  )  

          

Also     ∑   (𝑦 𝑧 )
 
     

       (𝑦 𝑧 )    (𝑦 𝑧 )    (𝑦 𝑧 )    (𝑦 𝑧 )  

      (   )    (     )    (    )    (    )  

      (  )    (  )    (   )    (   )  

              

And      ∑   (𝑧 𝑥 )
 
     

       (𝑧 𝑥 )    (𝑧 𝑥 )    (𝑧 𝑥 )    (𝑧 𝑥 )  

      (   )    (     )    (     )    (    )  

      (  )    (  )    (  )    (   )  

             

Now inertia matrix will be written as     *

         
         
         

+ 

    [
          

           

              

]         [
   
     
     

]  

     [
   
     
     

]     [

   
       
       

]  using        

Now for Principal Moment of Inertia we have |

           
           
           

|    



              visit us @ Youtube  Learning with Usman Hamid

 

 

218 

 |

       
         
         

|    (     )[(     )     ]     

 (     )    (     )         

                √                 √          √    

              (   √ )        (   √ )        using        

Question 

A square of side 2a has particles of masses m,2m,3m,4m at its vertices. Calculate 

its principal moment of inertia at the centre of square. 

Solution 

 

Given masses are                       . Given points for each 

masses  (   )  (    )  (     ) and  (    ) and Required Principal 

moment of inertia are         . First of all we find all moment of inertia. 

In case of square 𝑧    

M.I. about x axis      ∑   (𝑦 
  𝑧 

 ) 
    ∑   𝑦 

  
     

       𝑦 
    𝑦 

    𝑦 
    𝑦 

   

                         

              

And in this case                

M.I. about z axis      ∑   (𝑥 
  𝑦 

 ) 
     or using perpendicular axis theorem 
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Product of Inertia       ∑   (𝑥 𝑦 )
 
     

       (𝑥 𝑦 )    (𝑥 𝑦 )    (𝑥 𝑦 )    (𝑥 𝑦 )  

      (  )    (   )    (  )    (   )  

              

Also                 In case of square 𝑧    

Now inertia matrix will be written as     *

         
         
         

+ 

    [
           
           

       

]         [
    
    
    

]  

     [
    
    
    

]     [

     
    
     

]  using        

Now for Principal Moment of Inertia we have |

           
           
           

|    

 |

       
      
       

|    (     )[(    )    ]     

 (     )    (    )        

                                         

              (    )        (    )        using        
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Question 

Find the moment of inertia for a cube of mass M and side   and for an origin at 

one corner. 

Solution 

Since inertias of cube of side   are 

                         

M.I. about x axis      ∫
 
(𝑦  𝑧 )   ∫ ∫ ∫ (𝑦  𝑧 )

 

 

 

 

 

 
       ……..(i) 

Now by using volume mass density   
  

  
. i.e.             𝑥 𝑦 𝑧 

 ( )      ∫ ∫ ∫ (𝑦  𝑧 )
 

 

 

 

 

 
  𝑥 𝑦 𝑧        (

   

 
)  

For whole mass of the cube   
 

 
 

 

     
 

 

  
. Then  

     
 

  
  (

   

 
)       

 

 
     

For cubical shape (with equal length and edges),             
 

 
     

Product of inertia      ∫
 
𝑥𝑦   ∫ ∫ 𝑥𝑦

 

 

 

 
       ……..(ii) 

Now by using volume mass density   
  

  
. i.e.             𝑥 𝑦 𝑧 

 (  )      ∫ ∫ 𝑥𝑦
 

 

 

 
  𝑥 𝑦 𝑧       (

  

 
)  

For whole mass of the cube   
 

 
 

 

     
 

 

  
. Then  

     
 

  
 (

  

 
)       

 

 
     

For cubical shape (with equal length and edges),             
 

 
     

Now inertia matrix will be written as    *

         
         
         

+ 
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[
 
 
 
 
 

 
    

 
    

 

 
   

 

 
    

 
    

 

 
   

 

 
    

 
    

 
   

]
 
 
 
 

    
 

  
   [

   
   
   

]  

     [
   
   
   

]     [

      
      
      

]  using   
 

  
    

Now for Principal Moment of Inertia we have |

           
           
           

|    

 |

        
        
        

|     

 |
     (    )  
        
        

|                

 (    ) |

    
        
        

|    

 (    )        |

    
        
        

|     

 (    )        |

   
         
        

|                  

 (    )[(     )(    )     ]     

 (    )    (     )(    )         

 (    )    (    )(     )     

                  

    
 

  
       

 

  
       

 

 
        using   
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Question 

A uniform square plate OABC which has sides of length    is cut in half along the 

diagonal OB. Calculate Principal M.I. of triangular plate OAB relative to the 

corner. 

Solution 

Consider A uniform square plate OABC  

which has sides of length    is cut in half along  

the diagonal OB as shown in figure. 

Since square plate is in xy – plane, so z = 0 and           

M.I. about x axis      ∫
 
(𝑦  𝑧 )   ∫ ∫ (𝑦  𝑧 )

  

 

  

 
    

M.I. about x axis in xy – plane       ∫
 
𝑦    ∫ ∫ 𝑦   

 

  

 
       ……..(i) 

Now by using area mass density   
  

  
 

  
 

 
    

. i.e.    
 

 
 𝑥 𝑦 

 ( )      
 

 
∫ ∫ 𝑦   

 

  

 
 𝑥 𝑦      

 

 
     

For whole mass   
 

 
 

 
 

 
(     )

 
 

   
. Then  

     
 

 
  (

 

   )       
 

 
    and In case of square          

 

 
     

By using Perpendicular axis theorem             
 

 
    

Product of inertia      ∫
 
𝑥𝑦   ∫ ∫ 𝑥𝑦

  

 

  

 
       ……..(ii) 

Now by using area mass density    
  

  
 

  
 

 
    

. i.e.    
 

 
 𝑥 𝑦 

 (  )      
 

 
∫ ∫ 𝑥𝑦

  

 

  

 
 𝑥 𝑦            

For whole mass   
 

 
 

 
 

 
(     )

 
 

   
. Then  

         (
 

   )          . Here             
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Now inertia matrix will be written as    *

         
         
         

+ 

   

[
 
 
 
 
 

 
       

    

 
    

  
 

 
   

]
 
 
 
 

    
 

 
   [

   
   
   

]  

     [
   
   
   

]     [

     
     
    

]  using   
 

 
    

Now for Principal Moment of Inertia we have |

           
           
           

|    

 |

       
       
      

|    (    ) |
      
      

|     

 (    )     |
      
      

|    (    )    (    )  (  )     

 (    )    (       )(        )     

 (    )    (   )(    )                   

    
 

 
       

 

 
       

 

 
        using   
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Question 

Find the inertia matrix for a uniform square plate of length   about a pair of 

adjacent edges taken as OX,OY axes and calculate the principal moments and 

principal axes at the origin of the coordinate system OXYZ. 

Solution 

M.I. about x axis      ∫
 
(𝑦  𝑧 )   

M.I. about x axis      ∫ ∫ (𝑦  𝑧 )
 

 

 

 
    

M.I. about x axis in xy – plane       ∫
 
𝑦    ∫ ∫ 𝑦  

 

 

 
       ……..(i) 

Now by using area mass density   
  

  
 

  

    
. i.e.      𝑥 𝑦 

 ( )       ∫ ∫ 𝑦  

 

 

 
 𝑥 𝑦      

 

 
     using   

 

 
 

 

(   )
 

 

  
 

In case of square          
 

 
     

By using Perpendicular axis theorem             
 

 
    

Product of inertia       ∫
 
𝑥𝑦    ∫ ∫ 𝑥𝑦

 

 

 

 
       ……..(ii) 

Now by using area mass density    
  

  
 

  

    
. i.e.      𝑥 𝑦 

 (  )        ∫ ∫ 𝑥𝑦
 

 

 

 
 𝑥 𝑦       

 

 
        using   

 

 
 

 

(   )
 

 

  
 

Here            for xy – plane. 

Now inertia matrix will be written as    *

         
         
         

+ 

   

[
 
 
 
 

 

 
    

 

 
    

 
 

 
    

 
    

  
 

 
   

]
 
 
 
 

    

[
 
 
 
 

 

 
  

 

 
  

 
 

 
 

 

 
  

  
 

 
 ]
 
 
 
 

  using       
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Now for Principal Moment of Inertia we have |

           
           
           

|    

 |
|

 

 
    

 

 
  

 
 

 
 

 

 
    

  
 

 
   

|
|     

    
 

 
     

 

 
  

 

  
√      

 

 
  

 

  
√      

For  Directions  of  Principal  Axes 

Directions for first Principal Axes 

(     )                  

      (     )             ……………….(1) 

            (     )      

Using   
 

 
  in (1) also using       in previously find axes 

(
 

 
    

 

 
   )   

 

 
           

 

 
                

 
 

 
      (

 

 
    

 

 
   )        

 

 
              

    (
 

 
    

 

 
   )     

 

 
              

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗    ̂  

Similarly find Directions for second, third Principal Axes 
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Question 

Find the principal moments and principal axes of inertia matrix for a uniform 

rectangular plate of sides     at its centre. 

Solution 

M.I. about x axis      ∫
 
(𝑦  𝑧 )   

M.I. about x axis      ∫ ∫ (𝑦  𝑧 )
 

 

 

 
    

M.I. about x axis in xy – plane       ∫
 
𝑦    ∫ ∫ 𝑦  

 

 

 
       ……..(i) 

Now by using area mass density   
  

  
 

  

    
. i.e.      𝑥 𝑦 

 ( )       ∫ ∫ 𝑦  

 

 

 
 𝑥 𝑦      

 

 
     using   

 

 
 

 

(   )
 

 

  
 

M.I. about y axis      ∫
 
(𝑦  𝑧 )   

M.I. about y axis      ∫ ∫ (𝑦  𝑧 )
 

 

 

 
    

M.I. about y axis in xy – plane       ∫
 
𝑥    ∫ ∫ 𝑥  

 

 

 
       ……..(ii) 

Now by using area mass density   
  

  
 

  

    
. i.e.      𝑥 𝑦 

 (  )       ∫ ∫ 𝑥  

 

 

 
 𝑥 𝑦      

 

 
     using   

 

 
 

 

(   )
 

 

  
 

By using Perpendicular axis theorem             
 

 
 (     ) 

Product of inertia       ∫
 
𝑥𝑦    ∫ ∫ 𝑥𝑦

 

 

 

 
       ……..(iii) 

Now by using area mass density    
  

  
 

  

    
. i.e.      𝑥 𝑦 

 (   )        ∫ ∫ 𝑥𝑦
 

 

 

 
 𝑥 𝑦       

 

 
        using   

 

 
 

 

(   )
 

 

  
 

Here            for xy – plane. 

Now inertia matrix will be written as    *

         
         
         

+ 
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[
 
 
 
 

 

 
    

 

 
    

 
 

 
   

 

 
    

  
 

 
 (     )]

 
 
 
 

    solve yourself 

Now for Principal Moment of Inertia solve yourself 

|

           
           
           

|     

For  Directions  of  Principal  Axes solve following 

equations  

(     )                  

      (     )              

            (     )      
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Question 

Three uniform rods OA,OB and OC are each of unit length and unit mass relative 

to coordinate system OXYZ, the coordinates of A,B and C are respectively (     )  

(     ) and ( 
√ 

 
 
 

 
  ). Show their principal moment of inertia. 

Solution 

M.I. of rod about x axis      
 

 
∑   (𝑦 

  𝑧 
 ) 

     

     
 

 
( )( )  

 

 
( )( )  

 

 
( ) (

 

 
)      

 

  
    

M.I. of rod about y axis      
 

 
∑   (𝑥 

  𝑧 
 ) 

     

     
 

 
( )( )  

 

 
( )( )  

 

 
( ) (

 

 
)      

  

  
  

M.I. of rod about z axis      
 

 
∑   (𝑥 

  𝑦 
 ) 

     

     
 

 
( )( )  

 

 
( )( )  

 

 
*( ) (

 

 
)  (

 

 
) ( )+      

 

 
  

Product of Inertia        
 

 
∑   (𝑥 𝑦 )

 
     

      
 

 
( )( )  

 

 
( )( )  

 

 
( ) (

√ 

 
)      

√ 

  
  

      
 

 
∑   (𝑦 𝑧 )

 
               

 

 
∑   (𝑥 𝑧 )

 
            

Now inertia matrix will be written as    *

         
         
         

+    

   

[
 
 
 
 
 

  

√ 

  
 

√ 

  

  

  
 

  
 

 ]
 
 
 
 

   *

  √   

√      
    

+  using   
 

  
 

Now for Principal Moment of Inertia we have |

           
           
           

|     

         √  
 

 
 

 

 
√          √  

 

 
 

 

 
√       
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Question 

A square of side   has particles of masses            at its vertices. Calculate 

Principal M.I. also find direction of principal axes. 

Solution 

M.I. about x axis      ∑   (𝑦 
  𝑧 

 ) 
     

     ∑   𝑦 
  

     for xy – plane z = 0 

       𝑦 
    𝑦 

    𝑦 
    𝑦 

   

      (
  

 
)    (

  

 
)    (

  

 
)    (

  

 
)  

     
 

 
       

M.I. about y axis      ∑   (𝑥 
  𝑧 

 ) 
     

     ∑   𝑥 
  

     for xy – plane z = 0  

       𝑥 
    𝑥 

    𝑥 
    𝑥 

    

      (
  

 
)    (

  

 
)    (

  

 
)    (

  

 
)  

     
 

 
     

Using perpendicular axis theorem                   

Product of Inertia        ∑   (𝑥 𝑦 )
 
     

      [  (𝑥 𝑦 )    (𝑥 𝑦 )    (𝑥 𝑦 )    (𝑥 𝑦 )]  

       (
  

 
 
  

 
)    ( 

  

 
 
  

 
)    ( 

  

 
  

  

 
)    (

  

 
  

  

 
)  

       (
  

 
)    (

  

 
)    (

  

 
)    (

  

 
)  

     
 

 
       

In this case             
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Now inertia matrix will be written as    *

         
         
         

+ 

   [

 

 
    

 
    

 

 
    

 
    

      

]    [

    
    
     

]  using   
 

 
    

Now for Principal Moment of Inertia we have |

           
           
           

|    

 |

      
      
       

|    (     ) [(    )  ( ) ]     

 (     )    (    )  ( )     

 (     )    (      )(      )     

 (     )    (    )(    )                     

                             using   
 

 
    

For  Directions  of  Principal  Axes 

Directions for first Principal Axes 

(     )                  

      (     )             ……………….(1) 

            (     )      

Using       in (1) also using   
 

 
    in previously find axes 

(      )            

    (      )         

    (       )      



              visit us @ Youtube  Learning with Usman Hamid

 

 

231 

Put        any arbitrary constant we get 

             ;            

            ;           since     

            ;             multiplying by 5 

                      subtracting and solving 

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗    ̂  

Directions for second Principal Axes 

Using      in (1) also using   
 

 
    in previously find axes 

(     )            

    (     )         

    (      )           

And              ;           

                   arbitrary constant 

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗     ̂     ̂  

Directions for third Principal Axes 

Using      in (1) also using   
 

 
    in previously find axes 

(     )            

    (     )         

    (      )           

And               ;           

                 arbitrary constant 

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗     ̂     ̂  
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Question 

Find the principal moments of inertia and the principal axes of a uniform solid 

hemisphere about a point on its rim. 

Solution 

Let M be the mass and   be the radius. 

Inertia matrix at A 

M.I. at the base A                 
 

 
     

P.I. at the base A                     

    
 *

         
         
         

+  

     
 

[
 
 
 
 
 

 
     

 
 

 
    

  
 

 
   

]
 
 
 
 

  

     
 [

   
   
   

]  using   
 

 
    

Inertia matrix at C  

Using parallel axis theorem                
       

 

 
               

             
  

 

 
     (

 

 
 )

 
 

  

   
               

 

 
  

             
       

 

 
               

P.I. at C due to symmetry                    

     
 

[
 
 
 
 
 

 
     

 
  

   
    

  
 

 
   

]
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Inertia matrix at O  

Using parallel axis theorem                
 
 
      

 

 
            

    

             
 
 
 

  

   
    

  

  
    

 

 
                

             
 

 
  

             
 
 
 

 

 
        

 

 
               

If (𝑥̅    𝑦̅    𝑧̅  
 

 
 )  denote the coordinate of the centroid w.r.to  𝑥𝑦𝑧 then 

           𝑥̅𝑦̅         

           𝑥̅𝑧̅    
 

 
     

 

 
      

           𝑦̅𝑧̅         

     
 

[
 
 
 
 

 

 
     

 

 
   

 
 

 
    

 
 

 
    

 

 
   

]
 
 
 
 

  

     
 [

        
     

        
]   using   

 

  
    

Now for Principal Moment of Inertia about O, the rim we have 

|

              

              

              
|    |

          
       

          
|    

 (     )(     )  (    )(    )(     )     

 (     )(     )  (   ) (     )     

 (     )[(     )(     )       ]      

 (     )(             )     
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Eigenvector or Directions for  Principal Axes about ring O 

Directions for first Principal Axes 

(     )                  

      (     )             ……………….(1) 

            (     )      

Using       in (1) also using previously find axes 

(       )                                 

  (       )             

         (       )                   

Put        any arbitrary constant we get 

                ;              

               ;              since     

                 ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗    ̂  [     ]   

Directions for second Principal Axes 

Using       in (1) also using previously find axes 

(       )                               

  (       )                 

         (       )                         

Put      then 

              ;                

             ;             since     

 
  

 
 

  

 
                      

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗      ̂     ̂  [        ]
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Directions for third Principal Axes 

Using       in (1) also using previously find axes 

(       )              

  (       )         

         (       )      

We get 

                     

                  

                    

Put      then 

                ;               

           ;           since     

 
  

 
 

  

 
                      

  ⃗⃗⃗     ̂     ̂     ̂  

  ⃗⃗⃗     ̂      ̂  [        ]
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Theorem (Inclination of Principal Axes with Coordinate Axes) 

Show that for two dimensional Lamina one of the principal axes is in inclined at an 

angle   to the x – axis then       
    

       
 

Solution: 

Consider two dimensional plate in xy – plane which rotate with an angle  . 

Then      
  

  
  and       

Using the following by Principal Axis theorem  

(     )                  ………..(1) 

      (     )           ………..(2) 

            (     )      ………..(3) 

Using      and with product of inertia            

( )  (     )            ………..(4) 

( )        (     )     ………..(5) 

( )  (     )           

           
  

  
     ………..(6) 

( )  (     )           

           
  

  
  ………..(7) 

Subtracting (6) and (7) 

                 
  

  
    

  

  
  

            (
  

  
 

  

  
)             (

  
    

 

    
)  
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 (

               

          
)    using                   

 
       

   
  (

           

         
)  

       

   
  (

     

     
)  

     

     
 

    

       
  

       
    

       
  

Question 

For a uniform rectangular lamina ABCD  with sides of length           , find 

the direction of principal axis at the corner A. 

Solution 

 

Consider a uniform rectangular lamina ABCD with sides of length            

as shown in figure. For rectangular plate we have 

M.I. about x axis      ∫
 
(𝑦  𝑧 )   

M.I. about x axis in xy – plane       ∫
 
𝑦    ∫ ∫ 𝑦   

 

  

 
       ……..(i) 

Now by using area mass density   
  

  
. i.e.             𝑥 𝑦 

 ( )      ∫ ∫ 𝑦   

 

  

 
  𝑥 𝑦      

  

 
      

For whole mass of the lamina    
 

 
 

 

     
 

 

   
. Then  

     
  

 
   (

 

   
)       

 

 
     

Similarly      
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Product of inertia      ∫
 
𝑥𝑦   ∫ ∫ 𝑥𝑦

  

 

  

 
       ……..(ii) 

Now by using area mass density   
  

  
. i.e.             𝑥 𝑦 

 (  )      ∫ ∫ 𝑥𝑦
  

 

  

 
  𝑥 𝑦              

For whole mass of the lamina    
 

 
 

 

     
 

 

   
. Then  

           (
 

   
)          . Here             

For the direction of principal axis at the corner A we use       
    

       
 

       
    

 

 
    

 

 
   

       
 

 
(

  

     )    
 

 
     (

 

 
(

  

     ))  

Question 

Show that in a plane rectangular lamina the direction of the principal axes at a 

corner is given by       
 (

   

 
)

 

 
    

 

 
   

 

Solution 

M.I. about x axis      ∫ ∫ (𝑦  𝑧 )
 

 

 

 
    

M.I. about x axis in xy – plane       ∫
 
𝑦    ∫ ∫ 𝑦  

 

 

 
       ……..(i) 

Now by using area mass density   
  

  
 

  

    
. i.e.      𝑥 𝑦 

 ( )       ∫ ∫ 𝑦  

 

 

 
 𝑥 𝑦      

 

 
     using   

 

 
 

 

(   )
 

 

  
 

M.I. about y axis      ∫ ∫ (𝑦  𝑧 )
 

 

 

 
    

M.I. about y axis in xy – plane       ∫
 
𝑥    ∫ ∫ 𝑥  

 

 

 
       ……..(ii) 

Now by using area mass density   
  

  
 

  

    
. i.e.      𝑥 𝑦 

 (  )       ∫ ∫ 𝑥  

 

 

 
 𝑥 𝑦      

 

 
     using   

 

 
 

 

(   )
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Product of inertia       ∫
 
𝑥𝑦    ∫ ∫ 𝑥𝑦

 

 

 

 
       ……..(iii) 

Now by using area mass density    
  

  
 

  

    
. i.e.      𝑥 𝑦 

 (   )        ∫ ∫ 𝑥𝑦
 

 

 

 
 𝑥 𝑦  

      
 

 
        using   

 

 
 

 

(   )
 

 

  
 

For the direction of principal axis at the corner A we use       
    

       
 

       
  (

   

 
)

 

 
    

 

 
   

  

       
 (

   

 
)

 

 
    

 

 
   

  

Question 

A triangular plate is made up of uniform material and has sides of lengths 

     √  . Calculate Principal M.I. about the 30  corner and find the direction of 

the Principal Axis. 

Solution 

Consider a triangular plate OAB which has sides of  

length      √   as shown in figure. 

M.I. about x axis      ∫
 
(𝑦  𝑧 )   ∫ ∫ (𝑦  𝑧 )

 

 

√  

 
    

M.I. about x axis in xy – plane       ∫
 
𝑦    ∫ ∫ 𝑦  

 

√  

 
       ……..(i) 

Now by using area mass density   
  

  
 

  
 

 
    

. i.e.    
 

 
 𝑥 𝑦 

 ( )      
 

 
∫ ∫ 𝑦  

 

√  

 
 𝑥 𝑦      

√ 

 
     

For whole mass   
 

 
 

 
 

 
(√    )

 
  

√   
. Then  

     
√ 

 
  (

  

√   )            
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M.I. about y axis      ∫
 
(𝑥  𝑧 )   ∫ ∫ (𝑥  𝑧 )

 

 

√  

 
    

M.I. about y axis in xy – plane       ∫
 
𝑥    ∫ ∫ 𝑥  

 

√  

 
       ……..(ii) 

Now by using area mass density   
  

  
 

  
 

 
    

. i.e.    
 

 
 𝑥 𝑦 

 (  )      
 

 
∫ ∫ 𝑥  

 

√  

 
 𝑥 𝑦      

√ 

 
     

For whole mass   
 

 
 

 
 

 
(√    )

 
  

√   
. Then  

     
√ 

 
  (

  

√   )       
 

 
     

By using Perpendicular axis theorem             
 

 
    

Product of inertia      ∫
 
𝑥𝑦   ∫ ∫ 𝑥𝑦

 

 

√  

 
       ……..(ii) 

Now by using area mass density    
  

  
 

  
 

 
    

. i.e.    
 

 
 𝑥 𝑦 

 (  )      
 

 
∫ ∫ 𝑥𝑦

 

 

√  

 
 𝑥 𝑦      

 

 
     

For whole mass   
 

 
 

 
 

 
(√    )

 
  

√   
. Then  

     
 

 
   (

  

√   )       
√ 

 
   . Here             

Now inertia matrix will be written as    *

         
         
         

+ 

   

[
 
 
 
    √ 

 
    

√ 

 
    

 
    

  
 

 
   

]
 
 
 
 

    
 

 
   *

  √  

 √   
   

+  
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     *
  √  

 √   
   

+     *

   √   

 √     
    

+  using   
 

 
    

Now for Principal Moment of Inertia we have |

           
           
           

|    

 |

     √   

 √       
      

|    (    ) |
     √  

 √      
|    exp.by    

 (    )       |
     √  

 √      
|    (    )    (    )(    )     

                 

    
 

 
       

 

 
       

 

 
        using   

 

 
    

For the direction of principal axis at the corner A we use       
    

       
 

       
√ 

 
   

    
 

 
   

       
√ 

 
   

 

 
   

       
 √ 

 
 

   
 

 
     (

 √ 

 
)           

Question 

Find the M.I. of solid sphere about its any diameter.  

Solution 

Consider a sphere of diameter of length    as shown in figure.  

Now consider small disk of thickness  𝑧with mass    at a distance 

𝑧 from the origin and radius of disk is y. then 

M.I. about z – axis (diameter)      
 

 
∫ 𝑦     
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Theorem  

Prove that   ⃗⃗⃗        ⃗⃗⃗⃗  

Proof   

 ⃗⃗  𝑟   ⃗⃗  𝑟    ⃗  𝑟   𝑟 ⃗⃗⃗   𝑟  ⃗⃗⃗    ⃗⃗⃗  

Theorem  

Prove that          

Proof   

      𝑟    
  

  
           (  𝑟)    

   (𝑟   )             
  

  
         

Theorem  

Prove that        

Proof   

  
  

  
 

  

  

  

  
 

  

  

  

  
  

Using        implies 
  

  
   and   

  

  
 we have 

      

 

 

 

 

 

 

 

 

 



              visit us @ Youtube  Learning with Usman Hamid

 

 

243 

Equimomental Systems 

Two systems are said to be Equimomental if they have the same moment of inertia 

bout any line in space. 

Theorem 

Two systems are said to be Equimomental iff  

i. They have the same mass 

ii. They have the same centroid 

iii. They have the same moment of inertia at the centre of mass. 

Proof 

Consider two system satisfy the given conditions. i.e. 

i. They have the same mass 

ii. They have the same centroid 

iii. They have the same moment of inertia  

at the centre of mass. 

Then we have to show these are Equimomental. Let  

M   the mass of each system  

    line through common centroid 

     any line in space parallel to   

    perpendicular distance between parallel lines 

Moment of inertia of first system    about a line   with direction cosines (     ) is  

                                           

For Principal Axis               ;  So 

                      

Now M.I. of first system    about a line   by using Parallel Axis Theorem  
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Similarly M.I. of second system    about a line   by using Parallel Axis Theorem  

             

Implies                  

This show that two systems are in Equimomental Condition. 

Conversely  

Suppose that two systems are in Equimomental. i. e.              

i. Same mass 

Consider    and    are the masses of two systems. 

Now M.I. of first system    about a line   by using Parallel Axis Theorem  

           
   

Similarly M.I. of second system    about a line   by using Parallel Axis Theorem  

           
   

            

       
        

   

       
        

    by Supposition               

        

ii. Same centroid 

Consider    and    be the centroid of two systems. 

     line passes through the1
st
 system at    

     line passes through the 2
nd

 system at    

     M.I. of    about    

     M.I. of    about    
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By using Parallel Axis Theorem M.I. of    about    

           

Now      M.I. of    about    

     M.I. of    about    

By using Parallel Axis Theorem M.I. of    about    

           

                  using           

         

       

 |    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

 
    

 |    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |     

        

This shows that systems have same centroid. 

iii. Same moment of inertia at the centre of mass. 

As both systems are Equimomental and have the same principal axis, therefore 

principal moment of inertia remains same for both systems. 

Momental Ellipsoid 

A surface all of whose cross sections are elliptical or circular is called ellipsoid. 

For momental ellipsoid the moment of inertia about any line   is equal to  . 

In this case direction cosines of line   are (     )  (𝑥 𝑦 𝑧)  
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Equation of Momental Ellipsoid 

We know that the moment of inertia of a rigid body about line a line L having 

direction cosines (     ) is given by 

                                           ……………..(1) 

Let 
 ̂

√ 
 be a vector along a line L and  (𝑥 𝑦 𝑧) be a point on L such that    ⃗⃗⃗⃗ ⃗⃗  

 ̂

√ 
 

and |  ⃗⃗⃗⃗ ⃗⃗ |  
 

√ 
 with   ⃗⃗⃗⃗ ⃗⃗  𝑥 ̂  𝑦 ̂  𝑧 ̂ then 

Direction cosines of   ⃗⃗⃗⃗ ⃗⃗  are 

   
 

|  ⃗⃗ ⃗⃗ ⃗⃗ |
 𝑥√     

 

|  ⃗⃗ ⃗⃗ ⃗⃗ |
 𝑦√     

 

|  ⃗⃗ ⃗⃗ ⃗⃗ |
 𝑧√   

Since the direction cosines of line L and   ⃗⃗⃗⃗ ⃗⃗  are same so 

  𝑥√    𝑦√    𝑧√   

Then equation (1) becomes 

  𝑥      𝑦      𝑧       𝑥𝑦      𝑦𝑧      𝑧𝑥      

                                          

This is the required equation. 

Momental Ellipsoid of the Centre of Elliptical Disk 

We know that  

    
 

 
        

 

 
     

    
 

 
 (     )  by Perpendicular Axis Theorem 

For Product of inertia 

    ∫
 
𝑥𝑦     ∬𝑥𝑦 𝑦 𝑥   using area mass density formula 
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Since 
  

  
 

  

  
 

  

  
   is an equation of ellipsoid for elliptical disk, so putting 

𝑧    we get 
  

  
 

  

  
   

 𝑦    (  
  

  )  𝑦    √(  
  

  )   

Then       ∫ ∫ 𝑥𝑦
 √(  

  

  )

  √(  
  

  )

 

  
 𝑦 𝑥 

       ∫ |
  

 
|
  √(  

  

  )

 √(  
  

  ) 

  
 𝑥  

       ∫ *  (  
  

  )    (  
  

  )+
 

  
 𝑥  

          

similarly              

Now by using equation of momental ellipsoid 

𝑥     𝑦     𝑧      𝑥𝑦     𝑦𝑧     𝑧𝑥       

 𝑥 (
 

 
   )  𝑦 (

 

 
   )  𝑧 (

 

 
 (     ))           

 
  

  
 

  

  
 𝑧 (

 

  
 

 

  )  
 

     
  

 
  

  
 

  

  
   (

 

  
 

 

  )            
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Momental Ellipsoid of the Uniform Rectangular Parallalopiped 

We know that for a Parallalopiped with dimensions 

  𝑥           𝑦           𝑧      

We have 

    
 

 
 (     )     

 

 
 (     )  

    
 

 
 (     )                               

Now by using equation of momental ellipsoid 

𝑥     𝑦     𝑧      𝑥𝑦     𝑦𝑧     𝑧𝑥       

 𝑥 (
 

 
 (     ))  𝑦 (

 

 
 (     ))  𝑧 (

 

 
 (     ))   𝑥𝑦(   )  

 𝑦𝑧(   )   𝑧𝑥(   )     

  (     )    (     )    (     )               

                

Question 

Write Inertia Matrix of Equation of Momental of the form 

 𝑥   𝑦   𝑧  𝑥𝑦   𝑦𝑧   𝑧𝑥     

Solution 

Given that   𝑥   𝑦   𝑧  𝑥𝑦   𝑦𝑧   𝑧𝑥    

 
 

 
𝑥  𝑦  

 

 
𝑧  

 

 
𝑥𝑦  

 

 
𝑦𝑧  

 

 
𝑧𝑥     

Comparing with     
 

 
            

 

 
      

 

 
      

 

 
      

 

 
 

Now inertia matrix will be written as    *

         
         
         

+  

[
 
 
 
 

 

 
 

 

 

 

 

 
 

 
 

 

 
 

 

 

 

 

 ]
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Question 

Find an Equimomental system of particles for a uniform rod AB of mass M. 

Solution 

Consider a uniform rod of length   . if   be the centre of mass of the rod then let 

the mass          are located at points A,O,B respectively. 

 

The system of particles will be Equimomental with rod if its moment of inertia 

about any line is equal to the moment of inertia about the same line then M.I. about 

y – axis (axis passing through the centroid of the rod) is 

   
 

 
     

And the moment of inertia of the system of particles about y – axis is 

    (  )  (    )( )            

If both systems are Equimomental then       

 
 

 
           

 

 
  

Hence if we take two particle each of mass   
 

 
 at end points of rod and 

particles of mass        
 

 
 

 

 
  at the centre of the rod then this system 

of three particles will be in the Equimomental with the given rod of mass M. 
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CHAPTER 

     EULER EQUATION 

OF MOTION OF  

A RIGID BODY 
Coriolis/ Coriolis Force 

The Coriolis force is an inertial or fictitious force that acts on objects in motion 

within a frame of reference that rotates with respect to an inertial frame. In a 

reference frame with clockwise rotation, the force acts to the left of the motion of 

the object. 

Infinitesimal (So Small) Rotation of a Body 

 

Consider the change in the position vector 𝑟 of the point M produced by an 

infinitesimal anticlockwise rotation through an angle    about the axis of rotation 

as shown in figure. 

Since we know that   (𝑟     )  …………..(1) 

Therefore from figure 𝑟         ⃗⃗⃗⃗⃗⃗⃗⃗  𝑟         𝑟         

( )   𝑟  𝑟         𝑟  |   𝑟|   𝑟 ̂  |   𝑟| ̂   𝑟     𝑟 

 
  ⃗

  
 

  

  
 𝑟   ⃗   ⃗⃗⃗  𝑟                                                     

In operator form  
 

  
( )  

  

  
 ( )                     

Generalized for a vector  ⃗ we have   
  ⃗

  
 

  

  
  ⃗ 

8 
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Question (Addition of Angular Displacement and Velocities)  

Show that finite rotation of the rigid body do not commute but infinite time 

rotation commute. Also show that sum of angular velocities is an angular velocity. 

Proof 

 

 

 

 

 

Consider the rotation of a rigid body about an axis passes through a common point 

O. Let a particle P with position vector 𝑟 be displaced through an angle     about 

the axis specified by the unit vector  ̂ . Then the linear displacement will be 

𝑟  𝑟   𝑟  …………………(1)    

 𝑟  𝑟  (    ̂  𝑟)  ………………(2)   where  𝑟      ̂  𝑟 

Let the same particle naming Q with position vector 𝑟  be displaced through an 

angle     about the axis specified by the unit vector  ̂ . Then the linear 

displacement will be 𝑟   𝑟   𝑟   …………………(3)    

 𝑟   𝑟  (    ̂  𝑟 )  where  𝑟      ̂  𝑟  

 𝑟   𝑟  (    ̂  𝑟)  (    ̂  (𝑟  (    ̂  𝑟)))   using (2) 

 𝑟   𝑟      ̂  𝑟      ̂  𝑟         ̂  ( ̂  𝑟)  ………………(4)  

If we reverse the order of rotation then 

 𝑟   𝑟      ̂  𝑟      ̂  𝑟         ̂  ( ̂  𝑟)  ………………(5)  
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Comparing (4) and (5) we have  𝑟   𝑟     (Rotation is not Commute) 

If         are finite then the sum of angular displacement is not same. In other 

words finite displacement do not satisfy the vector law of addition. i.e.   

   ̂      ̂       

If the angular displacements are infinitesimal (very very small) then          

then from (4) and (5) we have  𝑟   𝑟     (Infinitesimal Rotation is Commute)        

i.e. Angular displacement satisfy the vector law of addition 

When the angular displacements are infinitesimal then we have   

𝑟   𝑟   𝑟      ̂  𝑟      ̂  𝑟    

𝑟   𝑟      ̂  𝑟      ̂  𝑟  

 𝑟      ̂  𝑟      ̂  𝑟  

       
  ⃗

  
        

   

  
 ̂  𝑟         

   

  
 ̂  𝑟  

  ⃗

  
 

   

  
 ̂  𝑟  

   

  
 ̂  𝑟  

 ⃗     ̂  𝑟     ̂  𝑟  

 ⃗⃗⃗  𝑟  ( ⃗⃗⃗   ⃗⃗⃗ )  𝑟  

 ⃗⃗⃗⃗   ⃗⃗⃗⃗   ⃗⃗⃗⃗     

Which shows the addition of angular velocities. 
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In order to derive the relationship between fixed and rotating frames of reference, 

we will study the following theorem; 

Rotating Axes Theorem (Find velocity in a moving coordinate system) 

Or Rotate of Change of Vector in a Rotating Frame 

Or Transformation Equation of the Time Derivative between the Body 

Fixed and the Space Fixed coordinates 

Or Relationship between the Fixed and the rotating coordinates 

If a time dependent vector function  ⃗ is represented by  ⃗  and  ⃗  in fixed and 

rotating coordinate system, then  

(
  ⃗⃗⃗

  
)
 
 (

  ⃗⃗⃗

  
)
 
  ⃗⃗⃗⃗   ⃗⃗⃗   

Where it is understood that the origins of the two systems coincide at    . 

Proof 

Let  𝑥𝑦𝑧 be a body fixed coordinate system for a rotating body and  𝑥 𝑦 𝑧  be a 

space fixed coordinate system. Let  (𝑥 𝑦 𝑧) be a position of particles in both 

frames. 
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For body fixed system; 

Let 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂ be a position vector in 𝑥𝑦𝑧   system with  ̂  ̂  ̂ constant unit 

vectors then  

(
  ⃗

  
)
 
 

  

  
 ̂  

  

  
 ̂  

  

  
 ̂  

For Space fixed system; 

Let 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂ be a position vector in 𝑥 𝑦 𝑧   system with  ̂  ̂  ̂ changing 

unit vectors with respect to time then  

(
  ⃗

  
)
 
 

 

  
(𝑥 ̂  𝑦 ̂  𝑧 ̂)  

(
  ⃗

  
)
 
 (

  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  (𝑥

  ̂

  
 𝑦

  ̂

  
 𝑧

  ̂

  
)  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
 (𝑥

  ̂

  
 𝑦

  ̂

  
 𝑧

  ̂

  
)  

Using operator form 
  ⃗

  
  ⃗⃗⃗   ⃗ implies 

  ̂

  
  ⃗⃗⃗   ̂ 

  ̂

  
  ⃗⃗⃗   ̂ 

  ̂

  
  ⃗⃗⃗   ̂ 

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
 [𝑥( ⃗⃗⃗   ̂)  𝑦( ⃗⃗⃗   ̂)  𝑧( ⃗⃗⃗   ̂)]  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  (𝑥 ̂  𝑦 ̂  𝑧 ̂)  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  𝑟    

Hence by replacing 𝑟 with  ⃗  we have (
  ⃗⃗⃗

  
)
 
 (

  ⃗⃗⃗

  
)
 
  ⃗⃗⃗⃗   ⃗⃗⃗  
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Question Show that using operators, the fixed and rotating coordinate systems can 

be related as        ⃗⃗⃗⃗  , where    and    stands for 
 

  
 in the fixed and 

rotating coordinates systems. 

Solution: Using rotating axes theorem (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗   ⃗  

    ⃗     ⃗   ⃗⃗⃗   ⃗     ⃗  (    ⃗⃗⃗  ) ⃗         ⃗⃗⃗    

Question 

Show that the angular acceleration  ̇⃗⃗⃗ is the same in both the coordinate systems. 

Solution: Using rotating axes theorem (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗   ⃗ 

 (
  ⃗⃗⃗⃗

  
)
 
 (

  ⃗⃗⃗⃗

  
)
 
  ⃗⃗⃗   ⃗⃗⃗  (

  ⃗⃗⃗⃗

  
)
 
 (

  ⃗⃗⃗⃗

  
)
 
   or  ( ̇⃗⃗⃗)

 
 ( ̇⃗⃗⃗)

 
 

Hence the angular acceleration  ̇⃗⃗⃗ is the same in both the coordinate systems. 

Question 

Show that the centripetal acceleration term  ⃗⃗⃗  ( ⃗⃗⃗  𝑟) can be written as     

where   is the distance of the particle from the axis of rotation. 

Solution:  

 ⃗⃗⃗  𝑟   𝑟     ̂  

  ⃗⃗⃗  ( ⃗⃗⃗  𝑟)   𝑟    ( ⃗⃗⃗   ̂)  

  ⃗⃗⃗  ( ⃗⃗⃗  𝑟)   𝑟    (        )  

  ⃗⃗⃗  ( ⃗⃗⃗  𝑟)    𝑟      

  ⃗⃗⃗  ( ⃗⃗⃗  𝑟)       
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Question 

A coordinate system OXYZ is rotating with angular velocity  ⃗⃗⃗    ̂    ̂     ̂ 

relative to a fixed coordinate system      both systems having the same origin. 

Find the velocity of a particle at rest in the         system at the point (      ) 

as seen by an observer in the fixed system. 

Solution 

Given that  ⃗⃗⃗    ̂    ̂     ̂ and we to find  ⃗  at (      ) 

Using rotating axes theorem (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  𝑟 

 (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  𝑟   ⃗   ⃗   ⃗⃗⃗  𝑟  

  ⃗   ⃗⃗⃗  𝑟    ⃗    as particle at rest in         system 

  ⃗  |
 ̂  ̂  ̂
      
𝑥 𝑦 𝑧

|  (  𝑧    𝑦) ̂  (   𝑥   𝑧) ̂  ( 𝑦   𝑥) ̂  

 ( ⃗ )(      )     ̂     ̂     ̂  

Question   

A coordinate system OXYZ is rotating with angular velocity  ⃗⃗⃗       ̂       ̂   ̂ 

relative to a fixed coordinate system      both systems having the same origin. 

Position vector of the particle is given by 𝑟       ̂       ̂    ̂. Determine the 

apparent and true acceleration of the particle. 

Solution 

Given that  ⃗⃗⃗       ̂       ̂   ̂ and 𝑟       ̂       ̂    ̂ 

We to find  ⃗  and  ⃗  

For  ⃗⃗⃗  

 ⃗  
  ⃗

  
      ̂       ̂   ̂  and then  ⃗  

  ⃗⃗ 

  
 

   ⃗

   
       ̂       ̂    ̂ 
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For  ⃗⃗⃗  

Using rotating axes theorem (
  

  
)
 
 (

  

  
)
 
  ⃗⃗⃗      

 (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  𝑟   ⃗   ⃗   ⃗⃗⃗  𝑟  using   𝑟 

  ⃗  (     ̂       ̂   ̂)  |
 ̂  ̂  ̂

         
         

|  

  ⃗  (     ̂       ̂   ̂)  [(          ) ̂  (          ) ̂  

(           ) ̂]  

  ⃗  (               ) ̂  (                ) ̂  (        

     ) ̂  

  ⃗  (     ) ̂  (      ) ̂  (           ) ̂  

  ⃗⃗⃗        ̂        ̂         ̂  

Again Using rotating axes theorem (
  

  
)
 
 (

  

  
)
 
  ⃗⃗⃗      

 (
  ⃗⃗ 

  
)
 
 (

  ⃗⃗ 

  
)
 
  ⃗⃗⃗   ⃗   ⃗   ⃗   ⃗⃗⃗   ⃗   using    ⃗ 

  ⃗  
 

  
(      ̂        ̂         ̂)  |

 ̂  ̂  ̂
         
                 

|  

  ⃗  [(          ) ̂  (           ) ̂            ̂]  [(           

     ) ̂  (            ) ̂  (              ) ̂]  

  ⃗  [(                           ) ̂  (                   

     ) ̂  (                        ) ̂]  

  ⃗⃗⃗  (                      ) ̂  (                  ) ̂  

(            ) ̂  
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Equation of Motion in terms of a Rotating System 

Equation of Motion in Space Body and Fixed Body System 

Let  𝑥𝑦𝑧 be a body fixed coordinate system for a rotating body and  𝑥 𝑦 𝑧  be a 

space fixed coordinate system. Let  (𝑥 𝑦 𝑧) be a position of particles in both 

frames then 

 ⃗   ⃗    ( ⃗⃗⃗   ⃗ )   ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))  

 ⃗   ⃗   (  𝑟        𝑟  )  (    𝑟         𝑟  )  

Proof 

Let  𝑥𝑦𝑧 be a body fixed coordinate system for a rotating body and  𝑥 𝑦 𝑧  be a 

space fixed coordinate system. Let  (𝑥 𝑦 𝑧) be a position of particles in both 

frames. 

 

For body fixed system; 

Let 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂ be a position vector in 𝑥𝑦𝑧   system with  ̂  ̂  ̂ constant unit 

vectors then  

(
  ⃗

  
)
 
 

  

  
 ̂  

  

  
 ̂  

  

  
 ̂  
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For Space fixed system; 

Let 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂ be a position vector in 𝑥 𝑦 𝑧   system with  ̂  ̂  ̂ changing 

unit vectors with respect to time then  

(
  ⃗

  
)
 
 

 

  
(𝑥 ̂  𝑦 ̂  𝑧 ̂)  (

  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  (𝑥

  ̂

  
 𝑦

  ̂

  
 𝑧

  ̂

  
)  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
 (𝑥

  ̂

  
 𝑦

  ̂

  
 𝑧

  ̂

  
)  

Using operator form 
  ⃗

  
  ⃗⃗⃗   ⃗ implies 

  ̂

  
  ⃗⃗⃗   ̂ 

  ̂

  
  ⃗⃗⃗   ̂ 

  ̂

  
  ⃗⃗⃗   ̂ 

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
 [𝑥( ⃗⃗⃗   ̂)  𝑦( ⃗⃗⃗   ̂)  𝑧( ⃗⃗⃗   ̂)]  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  (𝑥 ̂  𝑦 ̂  𝑧 ̂)  (

  ⃗

  
)
 
  ⃗⃗⃗  𝑟    

 ⃗   ⃗   ⃗⃗⃗  𝑟  this is the relation between velocities of fixed body and space body system 

Generalized for a vector  ⃗ we have (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗   ⃗ 

 (
  ⃗⃗ 

  
)
 
 (

  ⃗⃗ 

  
)
 
  ⃗⃗⃗   ⃗    Put  ⃗   ⃗   

 (
  ⃗⃗ 

  
)
 
 (

 

  
( ⃗   ⃗⃗⃗  𝑟))

 
   ( ⃗   ⃗⃗⃗  𝑟)           ⃗   ⃗   ⃗⃗⃗  𝑟 

  ⃗  (
  ⃗⃗ 

  
)
 
 (

 

  
( ⃗⃗⃗  𝑟))

 
  ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

  ⃗   ⃗  ( ⃗⃗⃗  
  ⃗

  
 

  ⃗⃗⃗⃗

  
 𝑟)

 
  ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

  ⃗   ⃗   ⃗⃗⃗   ⃗   ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)           ⃗⃗⃗             
  ⃗⃗⃗⃗

  
   

  ⃗   ⃗   ( ⃗⃗⃗   ⃗ )  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))                     

this is the relation between accelerations of fixed body and space body system 
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   ⃗    ⃗    ( ⃗⃗⃗   ⃗ )   ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))  

  ⃗   ⃗    ( ⃗⃗⃗   ⃗ )   ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))  

  ⃗   ⃗   (  𝑟        𝑟  )  (    𝑟         𝑟  )    required 

Where Coriolis Forces and Centrifugal Forces are Fictitious/Newtonian forces. 

Coriolis Force is a negligible force. It moves the body up and down during rotation 

of a body about its axis. 

Centrifugal force is reactive force of the rotating system which produced by 

increasing the centripetal force. Centrifugal force is directed away from the centre 

of rotation. Coriolis force is perpendicular to the velocity of moving particles. 
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Coriolis Theorem 

Let 𝑟  𝑥 ̂  𝑦 ̂  𝑧 ̂ be a position vector in 𝑥 𝑦 𝑧   system with  ̂  ̂  ̂ changing 

unit vectors with respect to time then  

(
  ⃗

  
)
 
 

 

  
(𝑥 ̂  𝑦 ̂  𝑧 ̂)  (

  

  
 ̂  

  

  
 ̂  

  

  
 ̂)  (𝑥

  ̂

  
 𝑦

  ̂

  
 𝑧

  ̂

  
)  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
 (𝑥

  ̂

  
 𝑦

  ̂

  
 𝑧

  ̂

  
)  

Using operator form 
  ⃗

  
  ⃗⃗⃗   ⃗ implies 

  ̂

  
  ⃗⃗⃗   ̂ 

  ̂

  
  ⃗⃗⃗   ̂ 

  ̂

  
  ⃗⃗⃗   ̂ 

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
 [𝑥( ⃗⃗⃗   ̂)  𝑦( ⃗⃗⃗   ̂)  𝑧( ⃗⃗⃗   ̂)]  

(
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗  (𝑥 ̂  𝑦 ̂  𝑧 ̂)  (

  ⃗

  
)
 
  ⃗⃗⃗  𝑟    

 ⃗   ⃗   ⃗⃗⃗  𝑟  this is the relation between velocities of fixed body and space body system 

Generalized for a vector  ⃗ we have (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗   ⃗ 

 (
  ⃗⃗ 

  
)
 
 (

  ⃗⃗ 

  
)
 
  ⃗⃗⃗   ⃗    Put  ⃗   ⃗   

 (
  ⃗⃗ 

  
)
 
 (

 

  
( ⃗   ⃗⃗⃗  𝑟))

 
   ( ⃗   ⃗⃗⃗  𝑟)           ⃗   ⃗   ⃗⃗⃗  𝑟 

  ⃗  (
  ⃗⃗ 

  
)
 
 (

 

  
( ⃗⃗⃗  𝑟))

 
  ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

  ⃗   ⃗  ( ⃗⃗⃗  
  ⃗

  
 

  ⃗⃗⃗⃗

  
 𝑟)

 
  ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

  ⃗   ⃗   ⃗⃗⃗   ⃗   ⃗⃗⃗   ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)           ⃗⃗⃗             
  ⃗⃗⃗⃗

  
   

  ⃗⃗⃗   ⃗⃗⃗   ( ⃗⃗⃗⃗   ⃗⃗⃗ )  ( ⃗⃗⃗⃗  ( ⃗⃗⃗⃗   ⃗⃗))                     

this is the relation between accelerations of fixed body and space body system 
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Equation of Motion of a Particle relative to an observer on Earth’s surface 

 

Assuming the earth to be sphere with centre at O rotating about Z – axis with a 

angular velocity  ⃗⃗⃗    ̂ neglecting the effect of earth‟s rotation about sun, XYZ 

can be taken as inertial frame. 

Since the rotation of earth about its axis is with constant angular speed so  ̇⃗⃗⃗    

The acceleration of Q(origin of moving system) w.r.to O is centripetal, so                     

 ̈⃗⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

By Newton‟s Law of Gravitation  ⃗    
  

  
 ⃗ 

  
   ⃗⃗⃗

   
   

  

  
 ⃗  

   ⃗⃗⃗

   
   

 

  
 ⃗  
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Since 
   ⃗⃗⃗

   
  ̈⃗⃗  𝑟̈  ( ̇⃗⃗⃗  𝑟)   ( ⃗⃗⃗  𝑟̇)  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟)) 

 𝑟̈  
   ⃗⃗⃗

   
  ̈⃗⃗  ( ̇⃗⃗⃗  𝑟)   ( ⃗⃗⃗  𝑟̇)  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))  

 𝑟̈  
   ⃗⃗⃗

   
  ̈⃗⃗   ( ⃗⃗⃗  𝑟̇)  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))   since  ̇⃗⃗⃗    

 𝑟̈    
 

  
 ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)   ( ⃗⃗⃗  𝑟̇)  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))   using  ̈⃗⃗ 

   ⃗⃗⃗

   
 

Where other forces acting on mass like air resistance etc are neglected 

Define  ⃗    
 

  
 ⃗   ⃗⃗⃗  ( ⃗⃗⃗  𝑟) then 

 𝑟̈   ⃗   ( ⃗⃗⃗  𝑟̇)  ( ⃗⃗⃗  ( ⃗⃗⃗  𝑟))  

Near earth surface  ⃗⃗⃗  ( ⃗⃗⃗  𝑟) can be neglected, so 

 𝑟̈   ⃗   ( ⃗⃗⃗  𝑟̇)  

Which is required equation to a high degree of approximation. 
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Acceleration in a Moving Coordinate System 

Let 𝑟 be a position vector in      system (in space) then  

  
 𝑟    (  𝑟)    (  𝑟   ⃗⃗⃗  𝑟)  

  
 𝑟  (    ⃗⃗⃗  )(  𝑟   ⃗⃗⃗  𝑟)  

  
 𝑟    (  𝑟   ⃗⃗⃗  𝑟)   ⃗⃗⃗  (  𝑟   ⃗⃗⃗  𝑟)  

  
 𝑟    

 𝑟    ( ⃗⃗⃗  𝑟)   ⃗⃗⃗    𝑟   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)   ………(1) 

  ( ⃗⃗⃗  𝑟)     ⃗⃗⃗  𝑟   ⃗⃗⃗    𝑟  

( )    
 𝑟    

 𝑟     ⃗⃗⃗  𝑟   ⃗⃗⃗    𝑟   ⃗⃗⃗    𝑟   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

   
 𝑟    

 𝑟     ⃗⃗⃗  𝑟   ( ⃗⃗⃗    𝑟)   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

   
 𝑟    

 𝑟     ⃗⃗⃗  𝑟    ⃗⃗⃗    𝑟   ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  

So the acceleration of particle relative to the moving system is 

   ⃗

   
 

   

   
 ̂  

   

   
 ̂  

   

   
 ̂  

And the acceleration of particle relative to the fixed system is 

(
   ⃗

   
)
 
 (

   ⃗

   
)
 

 
  ⃗⃗⃗⃗

  
 𝑟    ⃗⃗⃗  (

  ⃗

  
)
 

  ⃗⃗⃗  ( ⃗⃗⃗  𝑟)  
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Question: Express the components of equation of motion in terms of rotating 

coordinate system. 

Solution: Rotating coordinate system is a space coordinate system, so we have 

 ⃗    ⃗   ⃗   (
  ⃗⃗

  
)
 
  ………………(1) 

Using rotating axes theorem we have (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗   ⃗  

 (
  ⃗⃗

  
)
 
 (

  ⃗⃗

  
)
 
  ⃗⃗⃗   ⃗   

( )   ⃗   ((
  ⃗⃗

  
)
 
  ⃗⃗⃗   ⃗ )    ………………(2) 

Now   ⃗     ̂     ̂     ̂     (
  ⃗⃗

  
)
 
 

   

  
 ̂  

   

  
 ̂  

   

  
 ̂ 

Also   ⃗⃗⃗   ⃗  |
 ̂  ̂  ̂
      

      

| 

 ⃗⃗⃗   ⃗  (         ) ̂  (         ) ̂  (         ) ̂  

( )     ̂     ̂     ̂   (
   

  
 ̂  

   

  
 ̂  

   

  
 ̂  (         ) ̂  

(         ) ̂  (         ) ̂)  

    ̂     ̂     ̂   *
   

  
 (         )+  ̂   *

   

  
 (         )+  ̂  

 *
   

  
 (         )+  ̂  

    *
   

  
 (         )+  

    *
   

  
 (         )+    Required equations 

    *
   

  
 (         )+  
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Euler’s Dynamical Equations of Motion for a Rigid Body Fixed at a 

Point/General Motion of a Rigid Body 

Consider a rotation of a rigid body (earth, sum, moon or other galaxy system) in 

two systems. i. Body fixed system,  ii. Space system 

Body rotates in the space system. Then the angular momentum of a rotating body 

w.r.to the origin is given by 

 ⃗⃗  𝑟   ⃗⃗  𝑟    ⃗  

 
  ⃗⃗

  
 

 

  
(𝑟    ⃗)  

  ⃗

  
   ⃗  𝑟   

  ⃗⃗

  
  ( ⃗   ⃗)  𝑟    ⃗  

 
  ⃗⃗

  
 𝑟   ⃗  (

  ⃗⃗

  
)
 
  ⃗ ……………(1) 

By using rotating axes theorem (
  ⃗

  
)
 
 (

  ⃗

  
)
 
  ⃗⃗⃗   ⃗ 

 (
  ⃗⃗

  
)
 
 (

  ⃗⃗

  
)
 
  ⃗⃗⃗   ⃗⃗  ……………(2) 

As we know that   ⃗⃗    ⃗⃗⃗ 

 [
  

  

  

]  [

    
    
    

] [

  

  

  

]  [
  

  

  

]  [
    

    

    

]  

                                       …………………(3) 

And  
  ⃗⃗

  
  

  ⃗⃗⃗⃗

  
  where I is constant in this case. 

(
  ⃗⃗

  
)
 
   ̇⃗⃗⃗   ( ̇  ̂   ̇  ̂   ̇  ̂)     …………………(4) 

Also   ⃗⃗⃗   ⃗⃗  |
 ̂  ̂  ̂
      

      

| 

  ⃗⃗⃗   ⃗⃗  (         ) ̂  (         ) ̂  (         ) ̂  

  ⃗⃗⃗   ⃗⃗  (             ) ̂  (             ) ̂  (             ) ̂  
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  ⃗⃗⃗   ⃗⃗  [    (     )] ̂  [    (     )] ̂  [    (     )] ̂   ………(5) 

Using (1), (4),(5) in (2) 

 (
  ⃗⃗

  
)
 
  ⃗   ( ̇  ̂   ̇  ̂   ̇  ̂)  [    (     )] ̂  [    (     )] ̂  

[    (     )] ̂  

    ̂     ̂     ̂  [  ̇      (     )] ̂  [  ̇      (     )] ̂  

[  ̇      (     )] ̂  

On comparing we have 

     ̇      (     )  

     ̇      (     )  

     ̇      (     )  

These are called Euler Dynamical equations of motion. 

Symmetrical Top  

A rigid body is called Symmetrical Top if its two Principal Moment of Inertia are 

equal. i.e.          or         . 

Spherical Top  

A rigid body is called Spherical Top if any three mutually perpendicular axes can 

be selected as the Principal Axes. i.e.          or         . 

Remark 

 A rigid body is called Oblate Symmetrical Top if         . 

 A rigid body is called Prolate Symmetrical Top if         . 

 A rigid body is called Rotator if         but     . 

 The motion of an object in which linear and angular velocities are in the same 

direction (or Parallel) is called Screw Motion. 
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Force Free Motion of a Symmetrical Top  

Free Rotation of a Rigid Body with an axis of Symmetry 

Torque Free Motion of a Symmetrical Top 

Euler Equation of Motion for Symmetrical Case 

Consider a symmetrical top as shown in figure. Symmetrical 

Top rotate about z – axis. In the case of principal axis we have 

a condition for inertia           . 

We have to find angular velocity  ⃗⃗⃗ by using                                                            

Euler Torque Free Equations. i.e. 

      ̇      (     )     ……………..(1) 

      ̇      (     )     ……………..(2) 

      ̇      (     )     ……………..(3) 

Put         in (3) we get    ̇    

         ̇          

Put         in (1), (2)  

( )    ̇      (    )     ̇      (
    

 
)     

  ̇         ……………..(4)  using   (
    

 
)    

( )    ̇      (    )     ̇      (
    

 
)     

  ̇         ……………..(5)  using   (
    

 
)    

   ̇          ……………..(6)  multiplying (5) by   

Adding (4) and (6) 

  ̇    ̇             
 

  
(      )                
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(      )    (      )     

 
  

  
         using          

 
  

  
     ∫

  

 
   ∫                               

    (            )                         

                           

These are parametric equations of circle of radius   √  
    

  

Since we know that  ⃗⃗⃗     ̂     ̂     ̂  therefore       
    

    
  

             using   √  
    

  and       

   √        this is the equation of cone (Symmetrical Top) 

Results 

 Angle of the Cone/ Symmetrical Top 

In triangle OPQ 

     
 

 
 

√  
    

 

  
        (

√  
    

 

  
)  

 Time Period of the Cone/ Symmetrical Top 

Since   
  

 
   

  

  (
    

 
)
   

   

(    )  
 

 Frequency of the Cone/ Symmetrical Top 

Since   
 

 
   

(    )  

   
 

 Kinetic Energy of the Cone/ Symmetrical Top 

Since       
 

 
 ⃗⃗⃗  ⃗⃗ 

   
 

 
(   ̂     ̂     ̂) (     ̂       ̂       ̂)  

   
 

 
(    

      
      

 )  
 

 
( (  

    
 )      

 )   using         

   
 

 
(        

 )  

            
   



              visit us @ Youtube  Learning with Usman Hamid

 

 

270 

 Angular Momentum of the Cone/ Symmetrical Top 

Since  ⃗⃗       ̂       ̂       ̂ 

      
   

    
   

    
   

   

      (  
    

 )    
   

   using         

          
   

   

Radius B and Angular Velocity  ⃗⃗⃗⃗  using Angular Momentum and K.E. of the 

Cone/ Symmetrical Top 

Since we know that   

           
   …………….(1) 

         
   

     …………….(2) 

Multiplying  (1) by      

              
   …………….(3) 

         
   

     …………….(2) 

Subtracting (3) and (2) we have 

 ⃗⃗⃗  √
      

  (    )
  

Multiplying  (1) by       

         
    

   
   …………….(4) 

         
   

     …………….(2) 

Subtracting (4) and (2) we have 

  √
       

 (    )
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Example 

A body moves about a point O under no force (torque free). The principal moment 

of inertia at O being 3A,5A,6A. Initially the angular velocity has components 

               about the corresponding principal axis. Show that at time 

t, we have     
  

√ 
    

  

√ 
 if ∫

  

     
 

 

 
      (

 

 
). Also show that the body 

rotates about the mean axis where     

Solution: 

Given that the principal moment of inertia are                  . Initially 

the angular velocity has components                about the 

corresponding principal axis. In the torque free case the Euler equations are 

   ̇      (     )      

   ̇      (     )     ……………..(1) 

   ̇      (     )      

Put                    in (1) 

   ̇      (     )      

   ̇      (      )      

   ̇      (     )      

After simplification we get 

  ̇         ……………..(2) 

  ̇         ……………..(3) 

  ̇         ……………..(4) 

Multiplying (2) by     and (3) by    then adding we have      ̇      ̇    

On integrating 
 

 
  

  
 

 
  

    

    
     

        
     

       ……………..(5) 
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Initially using                we get        

( )     
     

        
  

 

 
  

        

   
     

 

 
  

    ……………..(6) 

Multiplying (2) by    and (4) by    then subtracting we have     ̇     ̇    

On integrating 
 

 
  

  
 

 
  

    

   
    

       
    

       ……………..(7) 

Initially using                we get      

( )    
    

      
    

     

         ……………..(8) 

Using       in (3) 

   ̇          ̇     
    ̇      

 

 
  

   using   
     

 

 
  

  

    ̇         
  

  

 
∫

   
 

 
     

 
 ∫    ∫

   

(
 

√ 
 )

 
   

 
      

  
 

(
 

√ 
 )

      .
  

(
 

√ 
 )

/         using ∫
  

     
 

 

 
      (

 

 
) 

Initially using             we get     

 
√ 

 
      .

  

(
 

√ 
 )

/          .
  

(
 

√ 
 )

/  
  

√ 
 

  

(
 

√ 
 )

     (
  

√ 
)  

   ( )  
  

√ 
    (

  

√ 
)  after time t 

   ( )  
  

√ 
    (

   

√ 
)  when     

   ( )  
  

√ 
( )  

𝑡𝑎𝑛 (
𝜔𝑡

√ 
)  

𝑒

𝜔𝑡

√  𝑒
 
𝜔𝑡

√ 

𝑒

𝜔𝑡

√  𝑒
 
𝜔𝑡

√ 

  

𝑡𝑎𝑛 (
𝜔𝑡

√ 
)  

  𝑒
 
 𝜔𝑡

√ 

  𝑒
 
 𝜔𝑡

√ 

  

𝑡𝑎𝑛 (
𝜔  

√ 
)  

  𝑒 ∞

  𝑒 ∞     
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   ( )  
  

√ 
  

Since    
     

 

 
  

  

    √   
 

 
  

    ( )  √   
 

 
(
  

√ 
)
 
   ( )  √   

 

 
 

 

 
    

   ( )  √        ( )     

   ( )        since       and      

Question  

A body moves about a point O under no force (torque free). The principal moment 

of inertia at O being 6A,3A,A. Initially the angular velocity has components 

                about the corresponding principal axis. Show that at 

time t, we have     √      (√   ). Also show that the body rotates about the 

mean axis where     

Solution: 

Given that the principal moment of inertia are                 . Initially 

the angular velocity has components                 about the 

corresponding principal axis. In the torque free case the Euler equations are 

   ̇      (     )      

   ̇      (     )     ……………..(1) 

   ̇      (     )      

Put                   in (1) 

   ̇      (    )      

   ̇      (     )      

  ̇      (     )      

After simplification we get 
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  ̇        ……………..(2) 

  ̇          ……………..(3) 

 ̇         ……………..(4) 

Multiplying (2) by     and (3) by    then adding we have      ̇     ̇    

On integrating 
 

 
  

  
 

 
  

    

    
    

        
    

       ……………..(5) 

Initially using                we get        

( )     
    

        
  

 

 
  

        

   
     

 

 
  

    ……………..(6) 

Multiplying (2) by     and (4) by    then subtracting we have   

    ̇     ̇     

On integrating 
 

 
  

  
 

 
  

    

    
    

        
    

       ……………..(7) 

Initially using                 we get      

( )     
    

       
    

     

          ……………..(8) 

Using        in (3) 

   ̇           ̇       
   ̇      

   

  ̇    (   
 

 
  

 ) using   
     

 

 
  

  

  ̇         
   ̇  

   

  
  *(√  )

 
   

 +  

 ∫
   

(√  )
 
   

 
  ∫    
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√  
      (

  

√  
)          using ∫

  

     
 

 

 
      (

 

 
) 

Initially using             we get     

 
 

√  
      (

  

√  
)           (

  

√  
)   √    

  

√  
     ( √   )  

   ( )  √      ( √   ) after time t 

   ( )  √      ( √    )  when     

   ( )  √  (  )  

   ( )   √    

Since    
     

 

 
  

  

    √   
 

 
  

    ( )  √   
 

 
( √  )

 
  

   ( )  √   
 

 
      

   ( )  √        ( )     

   ( )        since        and      

 Hence prove that the body rotates about the mean axis where     

 

 

 

 

 

 

 

𝑡𝑎𝑛 ( √ 𝑛𝑡)  
𝑒 √ 𝑛𝑡 𝑒√ 𝑛𝑡

𝑒

𝜔𝑡

√  𝑒
 
𝜔𝑡

√ 

  

𝑡𝑎𝑛 ( √ 𝑛𝑡)  
𝑒  √ 𝑛𝑡  

𝑒  √ 𝑛𝑡  
  

𝑡𝑎𝑛 ( )  
𝑒 ∞  

𝑒 ∞  
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Question  

An ellipsoid free to move about its centre is set in rotation at t = 0 with component 

of angular velocity (      ). The principal M.I. at the centre are 6A,3A,A. Find 

the component of angular velocity after time „t‟ and show that for     velocity 

is  √ . 

Solution: 

Given that the principal moment of inertia are                 . Initially 

the angular velocity has components                 about the 

corresponding principal axis. In the torque free case the Euler equations are 

   ̇      (     )      

   ̇      (     )     ……………..(1) 

   ̇      (     )      

Put                   in (1) 

   ̇      (    )      

   ̇      (     )       ……………..  (A*) 

  ̇      (     )      

After simplification we get 

  ̇        ……………..(2) 

  ̇          ……………..(3) 

 ̇         ……………..(4) 

Multiplying (2) by     and (3) by    then adding we have      ̇     ̇    

On integrating 
 

 
  

  
 

 
  

    

    
    

        
    

       ……………..(5) 

Initially using                      we get        
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( )     
    

         
        

   

    
 

 
√      

    ……………..(6) 

Multiplying (2) by     and (4) by     then subtracting we have   

    ̇      ̇     

On integrating 
 

 
  

  
 

 
  

    

    
     

        
     

       ……………..(7) 

Initially using                      we get         

( )     
     

          
          

     

    
 

 
√        

    ……………..(8) 

Using (7), (8) in (A*) 

    ̇      (     )       ̇            

   ̇          ̇   
 

 
 

 

 
√      

  
 

 
√        

   

  ̇         
   ̇  

   

  
  *(√  )

 
   

 +  ∫
   

(√  )
 
   

 
  ∫    

 
 

√  
      (

  

√  
)          using ∫

  

     
 

 

 
      (

 

 
) 

Initially using             we get     

 
 

√  
      (

  

√  
)           (

  

√  
)   √    

  

√  
     ( √   )  

   ( )  √      ( √   ) after time t 

   ( )  √      ( √    )  when     

   ( )  √  (  )  

   ( )   √    

𝑡𝑎𝑛 ( √ 𝑛𝑡)  
𝑒 √ 𝑛𝑡 𝑒√ 𝑛𝑡

𝑒

𝜔𝑡

√  𝑒
 
𝜔𝑡

√ 

  

𝑡𝑎𝑛 ( √ 𝑛𝑡)  
𝑒  √ 𝑛𝑡  

𝑒  √ 𝑛𝑡  
  

𝑡𝑎𝑛 ( )  
𝑒 ∞  

𝑒 ∞  
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( )     
 

 
√      

   

    
 

 
√    (√      ( √   ))

 
    

 

 
√    (√      (√   ))

 
  

         (√   )  

        when     

( )     
 

 
√        

   

    
 

 
√      (√      ( √   ))

 
  

    
 

 
√      (√      (√   ))

 
  

          (√   )  

         when     

The components of velocity are 

             ( )   √                

  ⃗⃗⃗     ̂     ̂     ̂  

  ⃗⃗⃗    ̂  √   ̂     ̂  

 | ⃗⃗⃗|    √            √    
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Question  

A circular disk of radius   and mass m is supported on a needle point at its centre. 

It is set spinning with angular velocity    about a line making an angle   with the 

normal to the disk. Find the angular velocity of the disk at any subsequent time. 

Solution: 

We know that the principal M.I. of circular disk are       
 

 
       

 

 
   . 

Initially at t = 0 the angular velocity has components (             ) about 

the corresponding principal axis. In the torque free case the Euler equations are 

   ̇      (     )     ……………..(i) 

   ̇      (     )     ……………..(ii) 

   ̇      (     )     ……………..(iii) 

For symmetrical torque put        in (iii) 

    ̇        constant    

Initially given that           

Multiplying (ii) by   and adding in (i) we have   

  ( ̇    ̇ )  (          )(     )     

   𝑦̇  (            )(     )      where 𝑦̇   ̇    ̇  

   𝑦̇   (      )  (     )      𝑦̇    𝑦  (     )     

 𝑦̇    𝑦  (
     

  
)     

 𝑦̇    𝑦     using     (
     

  
) 

 𝑦̇     𝑦  
  

  
    𝑦  

 

 
 𝑦        𝑦          

 𝑦    𝑥 0  .  (
     

  
)/  1  
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 𝑦    𝑥 0 .  (
     

  
)/  1  

 𝑦    𝑥 [    ]     if        then 
     

  
   

 𝑦    𝑥 [       ]   ……………..(iv) 

 𝑦      using t = 0 

            ( )     ( )     

           

(  )                𝑥 [       ]  

              [   (      )      (      )]  

                 (      )           (      )  

Comparing real and imaginary parts 

            (      )  

            (      )  
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Question  

A body moves about a point O under no force (torque free). The principal moment 

of inertia at O being A,3A,6A. Initially the angular velocity has components 

                 about the corresponding principal axis. Show that at 

time t, we have                
  

√ 
         

  

√ 
       where                  

        √ . 

Solution: 

Given that the principal moment of inertia are                 . Initially 

the angular velocity has components                  about the 

corresponding principal axis. In the torque free case the Euler equations are 

   ̇      (     )      

   ̇      (     )     ……………..(1) 

   ̇      (     )      

Put                   in (1) 

  ̇      (     )      

   ̇      (     )      

   ̇      (    )      

After simplification we get 

 ̇          ……………..(2) 

  ̇         ……………..(3) 

  ̇         ……………..(4) 

Multiplying (2) by     and (3) by     then adding  

we have      ̇      ̇    

On integrating 
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       ……………..(5) 

Initially using                  we get         

( )     
     

         
  

 

 
  

  
  

 
      

   
  

  

 
   

 

 
  

    ……………..(6) 

Multiplying (2) by    and (4) by     then subtracting we have   

   ̇      ̇     

On integrating 
 

 
  

  
 

 
  

    

   
     

       
     

       ……………..(7) 

Initially using                 we get      

( )    
     

      
     

     

          ……………..(8) 

Using    
 

 
   in (3)  

   ̇          ̇      
 

 
    ̇  

 

 
  

   

  ̇  
 

 
(
  

 
   

 

 
  

 ) using   
  

  

 
   

 

 
  

  

  ̇        
   ̇  

   

  
 [(  )    

 ]  

 ∫
   

(  )    
  ∫    

 
 

  
      (

  

  
)         using ∫

  

     
 

 

 
      (

 

 
) 

Initially using              we get   
 

  
  √  

 
 

  
      (

  

  
)    

 

  
  √        (

  

  
)        √   

𝑡𝑎𝑛   (
𝑥

𝑎
)  

 

 
𝑙𝑛 |

𝑎 𝑥

𝑎 𝑥
|  

𝑡𝑎𝑛   (
 

 
)  

 

 
𝑙𝑛 |

   

   
|  

𝑡𝑎𝑛   (
 

 
)  

 

 
𝑙𝑛  𝑙𝑛√   
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     (      √ )           (      √ )  

             put         √  

( )    
  

  

 
   

 

 
  

    
  

  

 
   

 

 
(       )   

   
  

  

 
   

  

 
           

  
  

 
  (        )    

  
  

 
          

    
  

√ 
       

    
  

√ 
         using        

Question  

A body moves about a point O under no force (torque free). The principal moment 

of inertia at O being 7,25,32. Initially t = 0 and the angular velocity has 

components    
 

 
         

 

 
 about the corresponding principal axis. Show 

that    
 

 
    (

  

 
) then find       after time t. 

Solution: 

Given that the principal moment of inertia are                 . Initially          

t = 0 and the angular velocity has components    
 

 
         

 

 
 about the 

corresponding principal axis. In the torque free case the Euler equations are 

   ̇      (     )      

   ̇      (     )     ……………..(1) 

   ̇      (     )      

Put                   in (1) 

  ̇      (     )      

   ̇      (     )      

   ̇      (    )      
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After simplification we get 

 ̇         ……………..(2) 

 ̇         ……………..(3) 

   ̇          ……………..(4) 

Multiplying (2) by    and (3) by    then adding we have     ̇     ̇    

On integrating 
 

 
  

  
 

 
  

    

   
    

       
    

       ……………..(5) 

Initially using         
 

 
      we get    

  

  
 

( )    
    

  
  

  
   

  
  

  
   

    ……………..(6) 

Multiplying (2) by     and (4) by    then subtracting we have   

    ̇       ̇     

On integrating 
 

 
  

  
  

 
  

    

    
      

        
      

       ……………..(7) 

Initially using         
 

 
    

 

 
 we get      

( )     
      

       
      

     

    
 

 
     ……………..(8) 

Using    
 

 
   in (3)  

  ̇        ̇     
 

 
    ̇  

 

 
  

   

  ̇  
 

 
(
  

  
   

 ) using   
  

  

  
   

  

  ̇  
   

  
 

 

 
[(

 

 
)
 
   

 ]  ∫
   

(
 

 
)
 
   

 
 

 

 
∫    
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(
 

 
)
      .

  

(
 

 
)
/  

 

 
       using ∫

  

     
 

 

 
      (

 

 
) 

Initially using             we get     

 
 

 
      .

  

(
 

 
)
/  

 

 
        .

  

(
 

 
)
/  

 

 
   

 
  

(
 

 
)
     (

 

 
 )     

 

 
    (

  

 
)  

 ( )    
  

  

  
   

    
  

  

  
 (

 

 
    (

  

 
))

 

  

   
  

  

  
 

  

  
     (

  

 
)    

  
  

  
(       (

  

 
))    

  
  

  
     (

  

 
)  

    
 

 
    (

  

 
)  

    
 

 
    (

  

 
)     using    

 

 
   

Question  

If     
 

 
        

 

 
        

 

 
    . Show that body rotate about its 

intermediate principal axes for     and     
 

 
    (

  

 
). 

Solution: 

If     then     (
  

 
)    

As     (
  

 
)  

 
(
  
 
)
  

 (
  
 
)

 
(
  
 
)
  

 (
  
 
)
 

  
 
 (

  
 
)

 
(
  
 
)

  
 
 (

  
 
)

 
(
  
 
)

 

  
 

 
(
  
 
)

  
 

 
(
  
 
)

 
   

   
   

As          (
  

 
)     then    

 

 
  also    

 

 
     

 

 
    (

  

 
) 

    
 

 
          

 

 
     

 

 
    

 

 
         using   

 

 
 

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗  
 

 
 ̂  | ⃗⃗⃗|    

 

 
  



              visit us @ Youtube  Learning with Usman Hamid

 

 

286 

Question  

In the absence of an external torque in a body prove that  

i. K.E. is constant for torque free motion 

ii. The magnitude of the square of the angular momentum    is constant. 

Solution: 

In the torque free case the Euler equations are 

   ̇      (     )     ……………..(1) 

   ̇      (     )     ……………..(2) 

   ̇      (     )     ……………..(3) 

Multiplying (1) by    , (2) by     ( )       then adding 

     ̇        (     )       ̇        (     )       ̇  

      (     )     

      ̇       ̇       ̇        (                 )     

      ̇       ̇       ̇     

 
 

 
    

  
 

 
    

  
 

 
    

     

 
 

 
[    

      
      

 ]     

 
 

 
[                    ]     

 
 

 
[(   ̂     ̂     ̂) (     ̂       ̂       ̂)]     

 
 

 
 ⃗⃗⃗  ⃗⃗     

        Constant 

Multiplying (1) by      , (2) by       ( )         then adding 

  
    ̇        (         )    

    ̇        (         )    
    ̇  

      (         )     



              visit us @ Youtube  Learning with Usman Hamid

 

 

287 

   
    ̇    

    ̇    
    ̇        (                         

    )     

   
    ̇    

    ̇    
    ̇     

 
 

 
  
   

  
 

 
  
   

  
 

 
  
   

      

 
 

 
[  

   
    

   
    

   
 ]      

   
   

    
   

    
   

         

     Constant   

    Constant   we may write it 
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Question  

Show directly from Euler dynamical equations of motion that if  ⃗⃗⃗    and 

        then angular velocity   is constant. 

Solution: 

Given that  ⃗⃗⃗    (torque is zero). In the torque free case the Euler equations are 

    ̇      (       )     ……………..(1) 

    ̇      (       )     ……………..(2) 

    ̇      (       )     ……………..(3) 

Using          in (3) we have 

    ̇             ̇             ……………..(4) 

Multiplying (1) by    , (2) by    then adding 

      ̇        (       )        ̇        (       )     

      ̇        ̇        (               )     

      ̇        ̇        (        )     

      ̇        ̇      using         

   (   ̇     ̇ )             (   ̇     ̇ )       ̇     ̇     

 
 

 
  

  
 

 
  

       
    

        
    

      ……………..(5) 

Adding (4) and (5) 

   
    

    
       

    
    

    
           

  ⃗⃗⃗⃗   Constant 
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Question  

A rigid body is rotating abut a fixed point with angular velocity  ⃗⃗⃗. If coordinate 

axis coincide with the principal axis then prove that 
  

  
  ⃗  ⃗⃗⃗ where T is K.E. and 

 ⃗ is an external torque acting on the body. 

Solution: 

For a rotating body we have rotational K.E.    
 

 
 ⃗⃗⃗  ⃗⃗ 

   
 

 
(   ̂     ̂     ̂) (     ̂       ̂       ̂)  

   
 

 
(    

      
      

 )  

 
  

  
 

 

 
(       ̇         ̇         ̇ )  

 
  

  
 (   ̇ )   (   ̇ )    (   ̇ )     …………..(1) 

With external torque the Euler dynamical equations are 

   ̇      (     )       

   ̇      (     )       

   ̇      (     )      

Using above values we have 

( )  
  

  
 (    (     )    )   (    (     )    )    

(    (     )    )     

 
  

  
 (     )            (     )            (   

  )             

 
  

  
 (                 )                       

 
  

  
                (   ̂     ̂     ̂) (   ̂     ̂     ̂)  

 
  

  
  ⃗⃗⃗  ⃗⃗⃗⃗  
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Question  

A circular disk of radius   and mass m is set spinning motion with angular velocity 

   about a line making angle   with the normal to the disk in yz – plane. Find 

angular velocity  ⃗⃗⃗ of the disk at any time.  

Solution: 

 

Given that initially at    ;                           

Also we know that principal moment of inertia of a disk is       
 

 
    

By perpendicular axis theorem          
 

 
           

Using the torque free case of the Euler equations  

   ̇      (     )     ……………..(1) 

   ̇      (     )     ……………..(2) 

   ̇      (     )     ……………..(3) 

After using given values we have 

( )     ̇           ̇                 

Initially at     we have            
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Using      in (1) and (2) 

   ̇      (     )     ……………..(4) 

   ̇      (     )     ……………..(5) 

Taking addition in form ( )   ( ) 

[   ̇      (     )]   [   ̇      (     )]     

   ( ̇    ̇ )    (     )(       )     

   ( ̇    ̇ )    (      )( 
       )     

   ( ̇    ̇ )       (      )     

    ̇             using          

   ( ̇      )            ̇              

 
  

  
          ∫

  

 
        ∫                   

                                            

                     ……………..(6) 

Initially at     using                  we have           

( )                           

               [                      ]  

                                              

                                            

Comparing real and imaginary parts 

                                             

  ⃗⃗⃗     ̂     ̂     ̂  

  ⃗⃗⃗⃗                    ̂                   ̂         ̂  
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Question  

A circular disk of radius   and mass m is set spinning motion with constant 

angular velocity    about a line making angle   with the normal to the disk in yz – 

plane. Find torque  ⃗⃗⃗ of the body.  

Solution: 

 

Given that initially at    ;                           

Also    ⃗⃗⃗            ̇⃗⃗⃗     ̇   ̇   ̇     

The principal moment of inertia of a circular disk is       
 

 
    

By perpendicular axis theorem          
 

 
           

Using the Euler Dynamical equations  

   ̇      (     )      ……………..(1) 

   ̇      (     )      ……………..(2) 

   ̇      (     )      ……………..(3) 

After using given values we have 

( )        (
 

 
 

 

 
)          

 

 
        

 

 
     

         

( )              and  ( )               

  ⃗⃗⃗     ̂     ̂     ̂   ⃗⃗⃗  
 

 
     

       ̂  
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Question  

A rectangular plate spins at its centre with constant angular velocity about 

diagonal. Find torque which must act on the plane in order to maintain its motion. 

Solution: 

 

Consider a rectangular plate of dimensions 2a and 2b. Let diagonal AB makes an 

angle   with x – axis. Then moments of inertia are 

About x – axis         
 

 
    

About y – axis         
 

 
    

About z – axis         
 

 
 (     ) 

From triangle OCB:                         

Also    ⃗⃗⃗            ̇⃗⃗⃗     ̇   ̇   ̇     

Using the Euler Dynamical equations  

   ̇      (     )      ……………..(1) 

   ̇      (     )      ……………..(2) 

   ̇      (     )      ……………..(3) 
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After using given values we have  

( )              and  ( )               

( )        (
 

 
    

 

 
   )      

        (
 

 
    

 

 
   )  

              (
 

 
    

 

 
   )  

    
 

 
 (     )            

    
 

 
 (     )   

 

√     
 

 

√     
  

    
 

 
    

  (     )

     
  

  ⃗⃗⃗     ̂     ̂     ̂  

  ⃗⃗⃗  
 

 
    

  (     )

     
  

Theorem  

A particle moves in an elliptical part with constant angular speed. At what points 

the magnitude of the acceleration (a) maximum and (b) minimum? If the major and 

minor axes of the elliptical part are 4 and 2 feet respectively determine the 

magnitude of these accelerations. 

Solution: 

For elliptical part we have 

Length of the major axis      

Length of the minor axis      

And its parametric equations are  

𝑥                 𝑦                 where        
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Let 𝑟 be the position vector of  (𝑥 𝑦) then  

𝑟  𝑥 ̂  𝑦 ̂         ̂         ̂  

 
  ⃗

  
  ⃗           ̂          ̂  

 
   ⃗

   
  ⃗            ̂           ̂     (       ̂         ̂)  

 | ⃗|      √(      )  (      )    √  (
        

 
)    (

        

 
)  

 | ⃗|    √(
     

 
)  (

     

 
)         

Maximum Acceleration 

Using          

          ( )                             

        √(
     

 
)  (

     

 
)            

Minimum Acceleration 

Using           

          (  )                   
 

 
 
  

 
 
  

 
    

         √(
     

 
)  (

     

 
) (  )             

Further given that           and            thus 
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The Eulerian Angles
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Tops and Gyroscope 
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Example 
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Equations of Motion for a Spinning Top having fixed point 

 

Let xyz be a fixed coordinate system in space with origin O. Let 𝑥 𝑦 𝑧  be a 

moving coordinate system (due to rotation of earth) having same origin, which is at 

earth. 

The angular velocity due to rotation of 𝑥 𝑦 𝑧  is as follows; 

 ⃗⃗⃗                  

The angular momentum in component form due to rotation of 𝑥 𝑦 𝑧  is as follows; 

 ⃗⃗                  (    )    where        ̇   

 ⃗⃗                (        )     

By using rotating axes theorem (
  ⃗

  
)
 
 (

  ⃗

  
)
 

  ⃗⃗⃗   ⃗ 

 (
  ⃗⃗

  
)
 
 (

  ⃗⃗

  
)
 

  ⃗⃗⃗   ⃗⃗  

 (
  ⃗⃗

  
)
 
 

 

  
(              (        )  )  (              )  

 (              (        )  ) 

 (
  ⃗⃗

  
)
 
    ̇       ̇       ̇       ̇   |

      
      

                
|  
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 (
  ⃗⃗

  
)
 
    ̇       ̇       ̇       ̇     (                   )  

   (                   )    (             )  

  ⃗     ̇       ̇       ̇       ̇     (                   )  

   (                   )    (             )  

                   ̇       ̇       ̇       ̇     (       

            )    (                   )    (             )  

                [   ̇  (     )          ]   [   ̇  

(     )          ]   [   ̇  (     )        ̇]    

………………(1) 

Since  ⃗  𝑟   ⃗             (    ̂) 

 ⃗         ((     )   (     )   (     )  )  

 ⃗  

       ((|  ||  |      )   (|  ||  |   (     ))   (|  ||  |    )  )  

 ⃗         ((     )   (        )   (        )  )   

 ⃗         (             )                 

 ⃗                            ………………(2) 

Comparing (1) and (2) and using       we have   

   ̇      (     )                 

   ̇      (     )           

  ( ̇   ̇)       (             ) 
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Relationship between the time rate of change of Angular Momentum of a 

Rigid Body relative to axes Fixed in space and in the body respectively 

If the axes of rigid body are choosen as principal axes (rotating) then 

The angular velocity due to rotation of 𝑥 𝑦 𝑧  is as follows; 

 ⃗⃗⃗                  

The angular momentum in component form due to rotation of 𝑥 𝑦 𝑧  is as follows; 

 ⃗⃗                         

By using rotating axes theorem (
  ⃗

  
)
 
 (

  ⃗

  
)
 

  ⃗⃗⃗   ⃗ 

 (
  ⃗⃗

  
)
 
 (

  ⃗⃗

  
)
 

  ⃗⃗⃗   ⃗⃗  

 (
  ⃗⃗

  
)
 
 

 

  
(                    )  (              )  

 (                    ) 

 (
  ⃗⃗

  
)
 
    ̇       ̇       ̇    |

      
      

            

|  

 (
  ⃗⃗

  
)
 
    ̇       ̇       ̇      (             )  

   (             )    (             )  

 (
  ⃗⃗

  
)
 
 [   ̇  (     )    ]   [   ̇  (     )    ]   

[   ̇  (     )    ]    
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