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Lecture # 1         

Introduction: 

It is the branch of applied mathematics which deals with fluid at rest or in 
motion. 

There are three categories of fluid mechanics 

(i) Fluid Statistics   →   It deals fluid at rest 

(ii) Fluid Kinematics  → It deals fluid in motion without 

considering the force which cause or accompany the motion e.g. 

speed, velocity, acceleration & displacement etc. 

(iii) Fluid Dynamics  → It deals with the study of fluid which are 

in motion. 

If one asks why we study the fluid mechanics? We casually look around 
most things seem to be solids but when one thinks of the oceans, the 
atmosphere and on out into space it becomes rather obvious that a large 
portion of the earth surface and of the entire universe is in a fluid state. 
Therefore, it becomes essential for sciences and engineers to know 
something about fluid mechanics. 

Applications of Fluid Mechanics: 

There are many applications of fluid mechanics make it one of the most 
important and fundamental in almost all engineering and applied scientific 
studies such as applied mathematics, plasma physics, geo-physics, bio 
physics and physical chemistry etc. The experimental aspects of fluid 
mechanics are the studied through various discipline of engineering. The 
flow of fluids in pipes and channel makes fluid mechanics of importance to 
civil engineer. They utilize the results of fluid mechanics to understand the 
transport of river, irrigation channels, the pollution of air and water & to 
design pipe line systems, flood control systems and dams etc. 

The study of fluid machinery such as pumps, fans, blowers, air compressors, 
heat exchangers, jet and rocket engines, gas turbines, power plants, pollution 
control equipment etc. 

We define a fluid as something which has the property of flowing freely. 
They are classifying liquid and gases. 
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Fluid Mechanics: 
“The branch of science which is concerned with the study of motion of fluids 
or those bodies in contact with fluids is called fluid mechanics or 
hydrostatics”. 

Or   

“The study of forces and flows in fluid is called mechanics”. 

Fluid: 
 A substance that has no fixed shape and yields easily to external pressure; 
a gas or (especially) a liquid. 

Historical development of Fluid Mechanics: 

Some basic properties of fluids are 

(i) Density: 

Mass per unit volume is called density 

 � =
∆�

∆�
   (∆ rate of change) 

And � = F(x,y,z,t)  

Where (x,y,z) are the coordinates of a point and t is the temperature. 

(ii) Specific Weight:  

It is defined as the weight per unit volume and is denoted by  

   � = ��  

(iii) Specific Volume: 

It is defined as volume per unit mass. 
�

�
=

�

�
	  

(iv) Pressure: 

Force per unit area is called pressure. 

P = lim
∆�→�

∆�

∆�
 

Where F is normal force due to fluid in elementary area. 

(v) Viscosity: 

It is the property of fluid by which it offers the resistance to sheer (the 

tangent force per unit area) acting on it i.e. the property of fluid which 

control the flow of fluid.  

***Viscosity of liquids decreases with temperature and viscosity of 

gases increases with temperature***. 
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   (vi)    Bulk modulus and compressibility:  

 It is denoted as  

  dp ∝ 
��

�
   i.e. variation of its density 

  dp = � 
��

�
  where K is called Bulk Modulus 

Motion of fluid particles: 

A fluid consists of innumerable (countless) whose relative position never fix 
whenever fluid is in motion the particle moves along certain line depending 
upon the characteristics of fluid and shape of the passage through which the 
fluid particle moves. It is necessary to observe the motion of fluid particle at 
various time and point. 

Fluid mechanics have two method of fluid motion 

(i) Lagrange’s method 

(ii) Eulerian Method 
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Lecture # 2        

Different types of flow: 

(i) Uniform and Non-uniform flow: 

The flow in which the velocity of the fluid particle at all section of the particle 
of pipe and channel are equal i.e. constant. 

On the other hand, the fluid particles are said to be non-uniform it the velocity 
of the particles is not equal i.e. not constant. 

(ii) Steady and Unsteady flow: 

The flow in which the properties and condition associated with the motion of 

fluid particle are independent of time where *
�r

��
= 0 

In this flow � is density and pressure remain same with the passage of time 
steady flow may be uniform or non-uniform. 

On the other hand, the flow in which the property and condition associated with 
the dependent of time. In this case the flow pattern changes with time. 

(iii) Laminar and Non-Laminar flow or Stream line flow 

and Turbulent flow: 

A flow in which fluid particle have definite path of particle and the two paths of 
two individuals does not cut each other is called Laminar or stream line flow. 

On the other hand, if the flow of each other particle does not trace out a definite 
path. The path of individuals particle also crosses each other is called non-
laminar or turbulent flow. 

(iv) Rotational flow & Irrational flow: 

Rotational flow is that flow in which fluid particle rotate about their own axis 
have the same angular velocity. 

On the other hand, the fluid particle does not rotate about their own axis and 
retain their original orientation is called irrational flow. 

(v) Compressible and Non-compressible flow: 

A flow in which volume and density of fluid changes during the flow is said to 
be compressible flow. 
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On the other hand, if volume and density of fluid does not change during the 
flow is said to be non-compressible flow or incompressible flow. 

*Note: All liquids are generally considered to have incompressible flow. 

Different types of flow line: 

We have discussed that one ever fluid is in motion. Its innumerable particle 
moves along the central line depending upon the condition of flow as there are 
many types of flow line that following are important for subject view point. 

(i) Path line: 

Followed by fluid particles in motion is called a path line. The path line shows 
the direction of motion of a particle. For a certain period of time or between two 
given section. 

(ii) Stream lines: 

The imaginary line drawn in the fluid where the velocity along the tangent. 

(iii) Filament lines: 

The instantaneous pictures of the position of all particle which have passed 
through a given point at previous time are called filament line. 

For example, the line finds by smoke particle exerted from a nozzle of 
rocket.  

(iv) Potential and Equipotential lines: 

We know that there is always a loss of head of fluid particles as we proceed 
along the flow line. If we draw the line joining the points of equipotential on the 
adjacent flow lines, we get the potential lines. The points where lines    
A,B,C,D,E,F,G,H are the potential line and i,j,k,l,m,n are the equipotential line. 
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(v) Flow nets: 

The intersection of potential line and stream line of two set of lines are called 
flow line i.e. intersection with the help of flow nets we can analysis of the 
behavior of certain phenomenon which cannot be mathematical means. Such a 
phenomenon is generally analyzed and studied with the joint flow nets. 

Some results of Vector Analysis: 

�

��
�̂ +

�

��
�̂ +

�

��
��  is called del ∇ operator 

∇ = 
�

��
�̂ +

�

��
�̂ +

�

��
��  = �

�

��
,

�

��
,
�

��
	� 

Scalar point function: 

 (x,y,z) is said to be a scalar point function for a region R or of three 

dimensional space. If corresponding to each point P of R are definite value (P) 

of a scalar  can be determined then  is called scalar function or scalar point 
function of position or a scalar field.      

 Similarly, if corresponding to each point P(r) a               
definite value A(P) of a vector A can be determined.        
Then A is said to be vector function or vector point          
function or a vector field. As the point P is usually               
specified P(x,y,z) by the coordinate (x,y,z) then the             
position vector is equal to   

  � =  ��̂ + ��̂ + ���  

So,  =  (x,y,z) and A = A(x,y,z) = A(r) 

If  is a scalar point function then  = (x,y,z) = k where k is a constant 

represents a surface called a level surface of a scalar function . But gradient, 
divergence, curl is denoted as 

 = 
�f

��
�̂ +

�f

��
�̂ +

�f

��
��  

.A = 
���

��
�̂ +

���

��
�̂ +

���

��
�� 

×A = �

� � �
�

��

�

��

�

��

�� �� ��

� 

P 
x 

y 

z 

R 
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Divergence of gradient is called a Laplace operator. 

. = 
��f

���
 +	

��f

���
 + 

��f

���
 

The Laplacian operator is   	�= 
��

���
 +	

��

���
 + 

��

���
 

Some Identities: 

(i) () =  +  

(ii) (u.v) = (u.)v+(v.)u + u×curlv + v×curly 

(iii) (�) = � + � 

(iv) .(u×v) = vcurlu – ucurlv 

(v) ×(u) = curlu+ucurl 

(vi) ×(u×v) = u.v v.u+(v.)u(u.)v 

(vii) ×() = 0 

(viii) ×(×u) = (.u) 	�u 

(ix) .(×u) = 0 

Some Statements: 

(i) ∫�. ���
�

= 	∫Ñ. ���
�

	 

Where s denotes the surface bounded by volume V and n is a unit vector 
normal to surface s. 

(ii) ∫ �. ��
�

= 	∫ ����	�. ���
�

	; stokes theorem 

Where s is a surface bounded by a close curve C and n is unit vector normal 
to surface s. 

*Note: If 	� = 0 then  is called harmonic function. 

Real Fluid: 

A fluid in which the finite viscosity exists and therefore we can exert tangential 
or sheering stress on a surface with which it is in contact. Real fluid is called 
viscous fluid. Real fluid can be further divided into Newtonian fluid and Non-
Newtonian fluid. 

A fluid in which viscosity is independent of the velocity gradient due to single 
variable. Water and air are Newtonian fluid. They obey law of viscosity      

																																													� = 	�
��

��
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If we draw the graph then we get a straight line. Blood, milk, jellies, butter are 
example of Newtonian fluid. 

 

     

     

    

A fluid in which viscosity at a given temperature and pressure for which a 
viscosity is a function of velocity gradient is called Non-Newtonian fluid is not 
a straight line. Non-Newtonian fluid are very important in fluid mechanics. 
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Lecture # 03         

Non-Viscous and Inviscid Fluid: 

A non-viscous and inviscid fluid has zero velocity such that there are no sheers 
i.e. no deformation. Therefore, an inviscid flow whether are in motion or rest 
exert only normal stress. Consequently, the sheer stresses in this case is zero. 
Water and air are treated as inviscid fluid. Non-viscous and inviscid fluid may 
or may not incompressible. 

Ideal fluid: 

Ideal fluid is a fluid in which both inviscid and incompressible fluid are 
involved is called Ideal fluid or it is a perfect fluid. These are non-Newtonian 
fluid. *In ideal fluid the viscosity is zero. There is no internal resistance 
between them. 

Velocity of fluid particle: 

PQ = r 

And therefore, of a fluid particle denoted as ‘q’. 

0
lim

t

r dr
q

t dt 


 




 

In cartesian coordinates 

     q ui v j wk  

  

     r xi y j zk  

  

  d
q xi y j zk

dt
  


  

   dx dy dz
ui v j wk i j k

dt dt dt
       

    On comparing  

    , ,
dx dy dz

u v w
dt dt dt

    

Material, local and convective derivative: Let a fluid particle moves 

from P(x,y,z) at time ‘t’ to point Q(x+x, y+y, z+z) at time t+t. Further let 

P 

Q 

O 
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F(x,y,z,t) associated with some scalar properties of fluid. Let the total change in 
F due to the motion of fluid particle from P to Q. 

   f f f f
F x y z t

x y z t

   
        

   
 

Divide by t 

F f x f y f z f

t x t y t z t t

       
   

       
 

0
lim

t
Taking both side

 
 

  
0 0 0 0

lim lim lim lim
t t t t

F f x f y f z f

t x t y t z t t       

       
   

       
 

DF df f dx f dy f dz f

Dt dt x dt y dt z dt t

   
    

   
 

, ,
dx dy dz

u v w
dt dt dt

    

f f f f
u v w

x y z t

   
   
   

 

df f f f f
u v w

dt t x y z

   
   
   

 

   .
df f

q f q ui v j wk
dt t


     





  .
D d

q
Dt dt t


   


 

Where  

*
D

Dt
is called material derivative. 

*
t




is called local derivative. It is associated with the variation at the fix 

position. 

* .q is called convective derivative. It is associated with the change of 

physical quantity F due to motion of fluid particle. 
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*
d

dt
is called the differentiation following with the motion of fluid. 

D d
and

Dt dt
signifies also the differentiation following with the motion of fluid. 

The rate of change of physical quantity F associated with some fluid particle is 
treated as above. 

Acceleration of Matrix of fluid particle: 

Let a fluid particle moves from point P(x,y,z) at time ‘t’ to Q(x+x , y+y, 

z+z) at time t+t respectively. The particle is at P in time t and after t+t the 
particle is at point Q. Then ‘q’ is the velocity of the fluid particle of P at time t 

and q+q is the velocity of fluid particle at point Q in time t+t. Total change in 
q is 

   q q q q
q x y z t

x y z t

   
        

   
 

Divide by t 

q q x q y q z q

t x t y t z t t

       
   

       
 

0
lim

t
Taking both side

 
 

  
0 0 0 0

lim lim lim lim
t t t t

q q x q y q z q

t x t y t z t t       

       
   

       
 

dq q dx q dy q dz q

dt x dt y dt z dt t

   
   
   

 

, ,
dx dy dz

u v w
dt dt dt

    

dq q q q q
u v w

dt t x y z

   
   
   

 

   .
df f

q f q ui v j wk
dt t


     





  . ...( )
dq q

q q i
dt t


  


 

Now for acceleration component 
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Let   q ui v j wk  

   

  ( )
dq

a axi ay j azk Put in eq i
dt

     

       u v w
axi ay j azk ui v j wk ui v j wk

t x y z

    
              

    

      
u u v w

ax u
t x y z

    
    
    

 

v u v w
ay v

t x y z

    
        

 

w u v w
az w

t x y z

    
    
    

 

Example: Find the acceleration components at (2,-1,3) of  

      2 2 2 2 2 2q x y i x yt j x y t k     

Solution: 

  Given    2 2 2 2 2 2q x y i x yt j x y t k     

  As   q ui v j wk  

  

On comparing 

  2 2 2 2 2 2, ,u x y v x yt w x y t     

22 , , 0
u v w

x x t
x y z

  
  

  
 

2 2 20 , , 2
u v w

x y x y t
t t t

  
  

  
 

At (2,1,3)  u = 3 , v = 4t  , w = 4t2 

4 , 4 , 0
u v w

t
x y z

  
  

  
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0 , 4 , 8
u v w

t
t t t

  
   

  
 

Now    
u u v w

ax u
t x y z

    
    
    

 

   = 0 +3(4+4t+0)  

   = 12+12t   12(1+t) 

v u v w
ay v

t x y z

    
    
    

 

4 ( 4 )(4 4 0)t t      

24 16 16t t    

w u v w
az w

t x y z

    
        

 

2

2 3

8 4 (4 4 0)

8 16 16

t t t

t t t

   

  
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Lecture # 04         

Equation of stream line or stream flow: 

As we know that stream line is a curve drawn in the fluid so that tangent at each 
point is in the direction of motion. 

i.e.  Fluid velocity at a point. 

Let P(r) where r = x�̂+y�̂+z��  so that position vector of the point P on a stream 

line and let q = u�̂+v�̂+w��  be the fluid velocity and point P then q // dr. 

Therefore, equation of stream line is  

     q × dr = 0 

0

i j k

u v k

dx dy dz

  

   ( ) ( ) ( ) 0 0 0vdz wdy i wdx udz j udy vdx k i j k          

On comparing  

0
dz dy

vdz wdy vdz wdy
w v

        ______(i) 

0
dx dz

wdx udz wdx udz
u w

        ______(i) 

0
dy dx

udy vdx udy vdx
v u

        ______(i) 

From (i),(ii) & (iii) we have 

* dx dy dz

u v w
    are the equation of stream line. 

Example: 

Find the equation of stream line       2 2 2q x y i x yz j yz k    
 

Solution: As we know that equation of stream line 

dx dy dz

u v w
   
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     2 2 2q x y i x yz j yz k    
 

And q = u�̂+v�̂+w��   

On comparing 

2 2 2, ,u x y v x yz w yz      

2 2 2

dx dy dz

x y x yz yz
 

 
 

Equation of path line: 

Path line is a curve are trajectory along which a particle travel during its motion 
is called path line. 

Differential equation of path line is dr
q

dt
  

Where q = u�̂+v�̂+w��  and r = x�̂+y�̂+z��  

    
d xi y j zk

ui v j wk
dt

 
  




 

   dx dy dz
i j k ui v j wk

dt dt dt
       

* , ,
dx dy dz

u v w
dt dt dt

    

is the required equation of path line. 

Difference between stream line and path line: 

(i) The stream line is not in general same as the path line. 

(ii) Stream line show how each particle is moving at given instant of time 

whereas path line represents the motion of fluid particle at each 

instant. 

(iii) If the flow is steady the stream lines remain unchanged as the time 

progressed and hence they are also the path line. 

Example: The velocity of fluid is given by 

     2 2 2q x y i x yz j yz k    
 find the equation of path line. 
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Solution:      2 2 2q x y i x yz j yz k    
 

And  q ui v j wk    On comparing 2 2 2, ,u x y v x yz w yz      

As , ,
dx dy dz

u v w
dt dt dt

    

 2 2 2, ,
dx dy dz

x y x yz yz
dt dt dt

      

Equation of Continuity or Conservation of mass or Law of 
conservation of mass: 

“Law of conservation of mass state that fluid mass can neither created nor 
destroyed.”  

The equation of continuity gives the law of conservation of mass in 
analytical form or mathematical form 

 . 0q
t

r
r


 


 

q is the velocity of fluid. Therefore, in a continuous motion the equation of 
continuity expresses the fact that increase in the mass of fluid with any closed 
surface drawn in the fluid at any time must be equal to the access of the mass 
that flows ‘in’ over the mass of that flows ‘out’. Inward flow is equal to outward 
flow. 

Equation of Continuity in velocity form or Equation of Continuity 
by Euler Method or show that the fluid is incompressible or not. 

As    . 0q
t

r
r


 


 

Explanation: Let S be an arbitrary small close surface drawn in the 
compressible fluid and closing volume V. Let P(x,y,z) be any point of  S and 
P(x,y,z,t) be the  

density of the fluid at point P at any time t and the 

element of the surface �S and q be the velocity of 

the fluid. Normal component of q is q.��  

 

S 

V 

n 

�S 
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Therefore, the set of mass that flows across �S = (q.��) 	�S . Total rate of mass 

flows across    ( . )
S

S q n dS r   

( ) int int int
V

S div q dV change surface egral o volume egral r   

Therefore, the total rate of mass flows into volume V ( )
V

div q dVr      ___(i) 

*Outward flow is positive and inward flow is negative. Again, the mass of fluid 

in S at time t is given as 
V

dVr  

Total rate of mass increase with in S is  
V V

dV dV
t t

r
r

 


           ____(ii) 

Let the region V of fluid contains neither source nor sink i.e. not Inlet not outlet. 
Therefore, from eq (i) & (ii)  

.( )
V V

dV q dV
t

r
r


 

   

.( ) 0
V V

dV q dV
t

r
r


  

   

.( ) 0
V

q dV
t

r
r

 
  

 
       ___(iii) 

As V is an arbitrary value in which is known as the equation of continuity of 
Euler form. 

    *  . 0q
t

r
r


  


  

is the equation of Continuity in velocity form. 

*Remark: 

For incompressible and homogenous fluid, we know  is constant  

0
t

r



 



Collected by: Muhammad Saleem         Composed by: Muzammil Tanveer 
 

18 

Equation (iii) becomes          . 0qr   

( .q) 0r    

.q 0   

0
u v w

x y z

  
  

  
 

This is called incompressible fluid. 

Equation of Continuity in Cartesian coordinate OR differential 
form of continuity: 

Let a fluid particle be at point P. Let  and P(x,y,z,t) be the density of at any 

time t. 

Let u,v,w be the velocity component of fluid parallel to x-axis, y-axis and z-

axis. We construct a parallelogram with edges x,y,z parallel to three 

respective axes with point P shown in fig-1. 

 

 

    

 

 

 

  

             

 

 

Therefore, we have the mass of fluid passes through the face PQRS is  

=  (xyz) u  

= F(x,y,z)  _____ (i) 

Mass of fluid that passes out through the opposite side �������� is  

    = F(x+x, y, z)    _____(ii) 

Q 

S 

z 

x 

y 

Fig-1 

�� 

�� 
P(x,y,z) 

�� 

x  u  v  y 

R �� 
z 

 

w 
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As x+x per unit time along x-axis. By using Taylor theorem. 

  = ( , y,z) x ( , y,z) ....F x F x
x




 


 

Again, the net mass per unit time within the element (rectangular 

parallelepiped) due to the flow through the face PQRS and ��������  

By using (i) and (ii)  

The net rate of mass of the out flow in the x-direction equal to the mass entered 

through the face PQRS  the mass that leaves through the face ��������  

( , , ) ( , y, z) x ( , y, z) ....F x y z F x F x
x


 

     
 

x ( , y,z)F x
x




 


 

 x y z u
x

   r


 


         ______(iii) By (i) 

Similarly, Net rate of mass out in y-axis 

 x y z v
y

   r


 


    _____(iv) 

And in z-axis  x y z w
z

   r


 


         ___(v) 

Therefore, total rate of mass flow through element of parallelepiped is  

Total net rate of flow       x y z u v w
x y z

   r r r
   

       
____(vi) 

Again, in the mass of fluid within the chosen element is = (x,y,z)  

Total rate of mass increase within the element  x y z
t
r   





 

x y z
t

r
  





        _____(vii) 

From equation (vi) and (vii)  

By the law of conservation of mass 



Collected by: Muhammad Saleem         Composed by: Muzammil Tanveer 
 

20 

     x xy z y z u v w
t x y z

r
      r r r

    
        

 

     u v w
t x y z

r
r r r

    
        

 

      0u v w
t x y z

r
r r r

    
        

               ______(viii) 

Now     
u

u u
x x x

r
r r

  
 

  
 

 
v

v v
y y y

r
r r

  
 

  
 

 
w

w w
y z w

r
r r

  
 

  
 

Put in (viii) 

0
u v w

u v w
t x x y y z w

r r r r
r r r
       

              
 

0
u v w

u v w
t x y w x y z

r r r r
r

         
         

         
 

   . . 0q q
t

r
r r


    


 

Which is the equation of Continuity in cartesian form. 

*Note: If the fluid is incompressible then  is constant 

0
t

r



 

. 0q    
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Lecture # 05         

Question:  

A pulse travelling along a fine straight  

uniform tube causes the density at time t at  

a distance ‘x’ from the origin. Then the velocity 

 is 0u to become 0 ( )vt xr f  .Prove that u at any 

 time t and distance from origin is given by 

     0( ) ( )

( )

u v vt
v

vt x

f

f





 

Proof: Let u be the velocity and  be the density at a distance x then we are 
given 

0 ( )vt xr r f                _______(1) 

    As we know that 

0
u

u
t x x

r r
r

  
  

  
   ______(2) 

Diff. equation (1) w.r.t ‘t’ 

 0 ( )vt x
t t

r
r f

 
 

 
 

'
0 ( ) vvt x

t

r
r f


 


       _______(3) 

Diff. equation (1) w.r.t ‘x’ 

 0 ( )vt x
x x

r
r f

 
 

 
 

'
0 ( )( 1)vt x

x

r
r f


  


       _____(4) 

Put (3) and (4) in (2) 

' '
0 0( ) v ( )( 1) 0

u
vt x u vt x

x
r f r r f


       

 

Y 

v 

u x 

w 

Z 

X 
O 
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' '
0 0( ) v ( ) 0

u
vt x u vt x

x
r f r r f


    


 

Put the value of from (1) 

' '
0 0 0( ) v ( ) ( ) 0

u
vt x vt x u vt x

x
r f r f r f


     


 

 '
0 0( ) ( ) 0

u
vt x v u vt x

x
r f r f


    


 

 '
0 0( ) ( )

u
vt x v u vt x

x
r f r f


    


 

' ( ) 1

( )

vt x u

vt x v u x

f

f

  


  
 

' ( ) 1

( )

vt x
x u

vt x v u

f

f

 
  

 
 

' ( ) 1
0

( )

vt x
x u

vt x v u

f

f


   

 
 

On integrating both sides 

'( 1) ( ) ( 1)
( 1) ( 1) 0

( )

vt x
x u

vt x v u

f

f

  
     

     

lo g ( ) lo g ( ) lo gvt x v u Af       

 log ( )( ) logvt x v u Af      

 ( )( )vt x v u Af                _______(5) 

Now by the condition 0u u when x = 0 

Equation (5)     0( 0)( )vt v u Af     

0( )( )vt v u Af       put in (5) 

0( )( ) ( )( )vt x v u vt v uf f     

0( )( )

( )

vt v u
v u

vt x

f

f


 


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0( )( )

( )

vt v u
u v

vt x

f

f


 


 

0( )( v)

( )

vt u
u v

vt x

f

f


 


   As required. 

Question:  

Air obeying Boyles law is in motion in 

a uniform tube in a small section. Prove  

that if  be the density and v be the velocity  

of a distance x and from a fixed point at time 

t then show that  

  
2 2

2

2 2
( k)v

t x

r
r

 
    

 

Solution: 

 According to Boyles law 

P∝
1

v
 

1
.P k
v

  

Let P kr        ______(i)   
m

v
r   

We know that  

  0v
t x

r
r

 
 

 
              _______(ii)    in one dimension 

 v
t x

r
r

 
 

 
 

We know general form of Euler equation 

1v v P
v

t x xr

   
 

  
   ______(iii) 

Diff. (i) w.r.t ‘x’ 

Y v 

u 
x 

w 

Z 

X 

O 
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k
x x

r r 


 
 

Put in (iii) 

v v k P
v

t x xr

   
 

  
    ______(iv) 

Diff. (ii) w.r.t ‘t’ 

  0
P v

v
t t x

r
   

     
 

 
2

2
0v

t t x

r
r

   
     

 

2

2
0

v
v

t t x x

r r
r

    
       

 

Using (iii) and (iv) 

 
2

2
0

k v
v v v

t t x x x

r r
r r

r

        
        

        
 

 
2

2
0

k v
v v v

t t x x x

r r
r r

r

       
       

        
 

   
2

2

v v
v v v k

t x x x x

r r
r r

     
        

 

 
2

2
.v v k

t x x x

r r
r

    
      

 

 
2 2

2

2 2
v k

t x

r
r

 
 

 
    

As required 

 

Question:  

If w is the area of cross-section of a stream filament. Prove that equation of 
Continuity is 
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         0w wq
t s
r r

 
 

 
 

Solution: 

 Given that w is the area of cross-section where  

S is the element of the arc of the filament 'PP  and 'QQ   

in the direction of flow and q is the velocity of fluid.  

Let ' 'PP QQ  be a stream filament. Let PQ = S. The 

rate of excess of flow out along  PQ S wq
s

 r


 


 

Again, total mass of fluid within the filament = wS 

The rate of increase of the mass of filament =  w S
s
r 




 

By the equation of Continuity increase in the mass of the fluid must be equal to 
excess of mass that flows out 

   S wq w S
s s

 r r 
 

 
 

 

    0w S S wq
s s
r   r

 
 

 
 

    0S w S wq
s s

 r  r
 

 
 

 

    0w wq
s s
r r

 
 

 
 

As required. 

 

 

 

 

 

 

Q 

P w 

w 

S 

'Q  

'P  
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Lecture # 06               

Equation of Continuity by LaGrange method: 

Let 0R  be the region occupied by a portion of fluid at time t = 0 and R be the 

region occupied by the same fluid at time t. 

Let (a,b,c) be the initial coordinates of the fluid particle  0P  and 0r  is the density 

at t = 0. Mass of the fluid at t = 0 is 0 a b cr     

Let P be the subsequent position of the fluid (position at 0P  after some time t) at 

time ‘t’ and  is the density of the fluid. Then mass of the fluid at time t is 
x y zr   . By the law of conservation of mass, the mass contained inside the 

given volume of the fluid remain same throughout the motion (fluid motion). 

Therefore, mass inside 0R  must be equal to mass inside R 

0

0

R R

a b c x y zr    r         ______(i)     

By the advance Calculus  

J a b c x y z             ____(ii) 

By equation (i) 

0

0

R R

a b c J a b cr    r      

0 0( )Thetotal mass R Mass inside R R R   

   
0 0

0

R R

a b c J a b cr    r      

 
0

0 0
R

J a b cr r      

This is called the equation of continuity in Langrangian form. 

Note: From equation (ii)  

x y z
J

a b c

  

  
  

( , , )

( , , )

x y z
J

a b c
  

0R  

0r  

0 ( , , )P a b c

R  

P  

( , , )P a b c  

t = 0 t = t 
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x x x

a b c

y y y
J

a b c

z z z

a b c

  

  

  

  

  

  

 

Equation of continuity in cylindrical coordinate (r,,z) 

     
1 1

0qr q qz
t r r r z

r
r r  r



   
   

   
 

Where qr, q, qz are the velocity component along r,,z direction respectively. 

     In cylindrical symmetry 

* 0, 0
r z

 
 

 
 

Equation of continuity in spherical coordinate (r,,) 

     2

2

1 1 1
sin 0

sin sin
r qr q q

t r r r r

r
r r   r f

  f

  
   

  
 

Where qr, q, qz are the velocity component along r,,z direction respectively. 

     In cylindrical symmetry 

* 0, 0
 f

 
 

 
 

Equation of continuity for liquids for the motion through 
channels or pipes: 

Let an incompressible fluid (liquid) flows through a channel or pipes whose 
cross-sectional area may or may not be fixed. Then the quantity of fluid passing 
for a unit (per second) is same at all sections. 

Let some fluid (liquid) is flowing through a tempering (ا�ا�) pipe as shown in 

fig. 

Let 1 2 3, ,A A A  be the area of pipe at section 

11,22,33 respectively.  

1A  
3A  

2A  

3v  2v  1v  

1 

1 2 

2 

3 

3 
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Further let 1 2 3, v , vv  be the velocity of the fluid in the section 11,22,33 

respectively. And 1 2 3,Q ,QQ  be the total quantity of liquid through the section 

11,22,33 is as 

   1 1 1 2 2 2 3 3 3A v ,Q A v ,Q A vQ     

By the law of conservation of mass, the total quantity of fluid through section 

11,22,33 is same 

1 2 3Q QQ    

1 1 2 2 3 3A v A v A v   

Which is the equation of continuity for liquids for the motion through channels 
or pipes. 

Stream function and potential function: 

Stream function: 

In steady incompressible plane in two-dimensional flow of practical importance 
velocity has two component such as u and v when flow is in xy-plane which 
relates to velocity component. 

,u v
y x

  
  
 

 

Then equation of continuity is identically satisfied. 

This conclusion can be verified as 

     0
u v

x y

 
 

 
 

L.H.S    
x y y x

      
    

     
 

2 2

0
x y x y

  
 

   
 

Therefore, velocity components are defined in term of stream function. 

We know that the conservation of mass 0
u v

x y

 
 

 
  will be satisfied. 

 



Collected by: Muhammad Saleem         Composed by: Muzammil Tanveer 
 

29 

*Advantages of stream function: 

(i)   Stream function is taken only for a flow in plane. 

(ii)   We have the simplified analysis by having to determined only unknown 

function (x,y) rather than two function. 

(iii).  Another advantages of using the stream function to use these function 

(x,y) to the fact, the lines along which  = constant. 

     = (x,y) are stream line 

Here      = (x,y)  

    0dx dy
x y

  
 

 
 

    0 ,vdx vdy u v
y x

  
     

 
  

vdx vdy  

dx dy

u v
  

Which are the equation of stream line. 

*So, using stream function we can find stream lines. 

Potential function: 

For potential function we use (x,y) or (x,y,z) 

   , ,u v w
x y z

f f f  
  
  

 

Theorem: Prove that stream function and potential function are orthogonal. 

Proof: 

Consider a stream function  = (x,y) 

dx dy d
x y

 


 
 

 
 

For stream function  is constant , d = 0 
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0dx dy
x y

  
 

 
 

0 ,vdx udy u v
y x

  
     

 
  

vdx udy  

1( )
dy v

m say
dx u

   

For potential function  = (x,y) 

dx dy d
x y

f f
f

 
 

 
 

For potential function  is constant, d = 0 

0dx dy
x y

f f 
 

 
 

0 ,udx vdy u v
x y

  
   

 
  

udx vdy   

2 (say)
dy u

m
dx v

    

Now     1 2. . 1
v u

m m
u v

 
   

 
 

Which show that stream function and potential function is orthogonal.  

Comparison between stream function and potential function: 

Stream function  

(i) Stream function is a 

consequence of 

conservation of mass. 

(ii) Stream function can be 

defined for two-

dimensional. 

(iii) 2 0   

    Potential function  

(i). Potential function is a 
consequence of irrotationality of the 
flow. 

(ii) Potential function can be defined 
for two or three-dimensional. 

(iii). 2 0f   
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2 2

2 2
0

x y

  
 

 
 

(iv) (x,y) 

,u v
y x

  
  

 
 

 

 

 

(iv) (x,y,z) 

2 2 2

2 2 2
0

x y z

f f f  
  

  
 

, ,u v w
x y z

f f f  
  
  

 

  

    

Irrotational flow: 

Condition of irrotational flow is  

0Q CurlQ    

i j k

x y z

u v w

  

  
 

0
w v u w v u

i j k
y z z x x y

         
         

         
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Lecture # 07                

Polar form of stream function: 

1
r rV q

r






 


 

V q
r

 


 


 

Polar form of potential function: 

r rV q
r

f
 


 

1
V q

r
 

f




 


 

Question: 

In two-dimensional flow 

4x xu v q x y     

4x yv u q y x     

(i) Show that it satisfies law of conservation of mass. 

(ii) Obtain the expression for stream function. 

(iii) Show that the flow is potential. 

(iv) Find the potential function or obtain the expression for potential 

function. 

Solution: (i)  

Given that    4u x y     , 4v y x   

    1
u

x





  , 1

v

y


 


 

 We know the law of conservation of mass 

     0
u v

x y

 
 

 
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(ii).  Now the expression for stream function  

    4 ______( )u x y i u
y y

  
   
 

  

4v y x
x


    


 

4 _____( )v y x ii
x


  


 

From (i)   4x y
y


 


 

 4d x y dy    

Integrating both sides 

 4d x y dy     

 22 ___(iii)xy y f x     

Diff. w.r.t x we have 

 ' (ii)y f x compare with
x


 


 

 '4y x y f x    

 ' 4f x x   

Integrating both sides 

 ' 4f x x dx    

  22 ( )f x x put in iii   

2 22 2xy y x          required result 

It will satisfy the Laplace equation 

4 , 4y x x y
x y

  
   

 
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2 2

2 2
4 , 4

x y

  
  

 
 

 
2 2

2 2
4 4 0

x y

  
    

 
 

Laplace equation satisfied. 

(iii) For potential function  

Given that       4 4
u

u y x
y


    


 

4 4
v

v y x
x


     


 

For potential flow 

u v

y x

 


 
 

4 4    satisfied 

(iv) Now the expression for potential function  

4 ______( )u x y i u
y y

f f 
   
 

  

4 _____( )v y x ii v
x y

f f 
    
 

  

From (i)   4x y
y

f
 


 

 4d x y dxf    

Integrating both sides 

 4d x y dxf     

 
2

4 ___(iii)
2

x
xy f yf     

Diff. w.r.t y we have 
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 '4 (ii)x f y compare with
y

f
 


 

 '4 4y x x f y     

 'f y y    

Integrating both sides 

 'f y ydy     

 
2

( )
2

y
f y put in iii


   

2 2

4
2 2

x y
xyf          required result 

It will satisfy the Laplace equation 

4 , 4x y x y
x y

f f 
    

 
 

2 2

2 2
1 , 1

x y

  
  

 
 

 
2 2

2 2
1 1 0

x y

  
    

 
 

Laplace equation satisfied. 

Velocity component in cylindrical coordinate in stream function: 

1
rq

r









 

q
r







 

Equation of continuity in cylindrical coordinate (2-D) 

   
1 1

0rrq q
r r r




 
 

 
 

1 1 1
.H.SL r

r r r r r

 

 

      
      

      
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 
2 21 1

0 . .R H S
r r r r

 

 

 
 

   
 

Question: 

In a two-dimensional flow the velocity component u = 2y , v = 4x. Find the 
stream function and also tell about the shape of stream function. 

Solution: 

  For stream function we know 

2 ______( )u y i u
y y

  
  
 

  

4v x
x


  


 

4 _____( )v x ii
x


  


 

From (i)   2y
y





 

2d y dy   

Integrating both sides 

2d ydy    

 2 ___(iii)y f x    

Diff. w.r.t x we have 

 ' (ii)f x compare with
x





 

 '4x f x   

 ' 4f x x    

Integrating both sides 

 ' 4f x x dx     

  22 ( )f x x put in iii    
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2 22y x          

2
2

2 2

y
x


   

2

2
21

2 2

y
x

 
   

2 2

1

2

y x


   

Which is Hyperbola 

Question: 

If 22 sin 2r   find ,rV V . Also find 2V .Write the expression for stream 

function. 

Solution:  We know that 

    
1

rV
r









 

 22 sin 21
r

r
V

r









 

21
2 cos 2 .2rV r

r
  

4 cos 2rV r   

V
r







 

 22 sin 2r
V

r






 

2.2 sin 2V r   

4 sin 2V r   

         
222

rAlso V V V   
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   
2 22 4 cos 2 4 sin 2Also V r r     

2 2 2 2 216 cos 2 16 sin 2V r r    

 2 2 2 216 cos 2 sin 2V r     

2 216V r  

 Also  2 22 sin 2 2 2sin cosr r      

  4 r cos sinr   

 = 4xy 

is the expression for stream function. 

Vorticity Vector: 

*For vorticity vector curl q  0 

Let q = (u,v,w) = ui+vj+wk be the fluid velocity such that curl q  0 

   x y zi j k    

i.e. , ,x y z    are the cartesian component of   

x y zi j k curl q     

x y z

i j k

i j k
x y z

u v w

  
    

  
 

x y z

w v u w v u
i j k i j k

y z z x x y

         
              

         
 

On comparing 

, ,x y z

w v u w v u

y z z x x y

         
            

         
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In (2D)  0

0

x y z

i j k

i j k
x y

u v

 
     

 
 

0 0x y z

v u
i j k i j k

x y

  
         

  
 

On comparing 

0 , 0 ,x y z

v u

x y

  
       

  
 

curl q  is called the Vorticity velocity. 
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Lecture # 08                  

Vortex line: 

Vortex line is a curve in the fluid such that tangent to it at every point is in the 
direction of vorticity vector. 

  Let          x y zi j k      

      r xi yj zk    

 

be the position vector of the point P on a vortex line the  / /dr           

     i.e.   0dr   

0x y z

i j k

dx dy dz

     

      0y z z x x ydz dy i dx dz j dy dx k          

0y z y z

z y

dz dy
dz dy dz dy        

 
 

0z x z x

x z

dx dz
dx dz dx dz         

 
 

0x y x y

y x

dy dx
dy dx dy dx         

 
 

From above     *
x y z

dx dy dz
 

  
 is the equation of vortex line 

Vortex tube or Vortex filament: 

If we draw vortex line from each point of a close curve in the fluid we obtained 
a tube called a vortex tube. A vortex tube of infinitesimal cross-section is called 
a vortex filament. 

Note: A vortex line or tube cannot terminate or originate at internal points in a 

fluid.  

Only for close curve they can terminate boundaries. 



Collected by: Muhammad Saleem         Composed by: Muzammil Tanveer 
 

41 

*Motion is not rotational or irrotational when curl q = 0 

* Motion is rotational when curl q  0 

Question: If the velocity component are given as u = kx , v = 0 , w = 0 then 

show that the motion is not rotational. 

Solution:  Since q = [u,v,w] 

          = ui + vj + wk 

  Here u = kx , v = 0 , w = 0 

  q = kx i + 0 j + 0 k 

 Now curl q  

0 0 0 0

0 0

i j k

curl q i j k proved
x y z

kx

  
    
  

 

Question: If 2 2 2, , cztq ax yt by zt     Find the vorticity vector where a,b,c 

are constants. 

Solution: We know that , ,x y z    are the component of vorticity vector 

x

w v

y z

  
   

  
 

   2 2czt by zt

y z

 
 

 
 

2 20 by t by t     

y

u w

z x

  
   

  
 

   2 2ax yt czt

z x

 
 

 
 

 0 0 0    
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z

v u

x y

  
   

  
 

   2 2

2
z

by zt ax yt
ax t

x y

 
    

 
 

Hence the vorticity vectors are 2 2, , ,0,x y z by t ax t            

Question: If 
 2

2 2

k xj yi
q

x y





 where k is constant. Show that the motion is 

incompressible. Also find the equation of stream line and test whether the 
motion is of potential kind and if so determine the velocity potential. 

Solution: 

  First, we prove the motion is incompressible  

. 0q   

Given that  
 2

2 2

k xj yi
q

x y





 

2 2

2 2 2 2

k xj k yi
q

x y x y
 

 
 

2 2

2 2 2 2

k y k x
q i j

x y x y
  

 
 

2 2

2 2 2 2
, v

k y k x
u j

x y x y
  

 
 

2 2

2 2 2 2
.

k y k x
q

x x y y x y

    
      

      
 

         
2 22 2 2 2 2 2. 1 2 1 2q k y x y x k x x y y

           
      

 

   

2 2

2 22 2 2 2

2 2
. 0

k xy k xy
q

x y x y


   

 
 

   That the motion is incompressible. 

(i) For equation of stream line, we know that  



Collected by: Muhammad Saleem         Composed by: Muzammil Tanveer 
 

43 

dx dy

u v
  

   

2 2

2 2 2 2

dx dy

k y k x

x y x y




 

 

 2 2 2 2

2 2

x y dx x y dy

k y k x

  
  

dx dy

y x
   

(ii) For potential we show 
u v

y x

 


 
 

       

2

2 2

u k y

y y x y

   
  

   
 

   
 

2 2 2 2

22 2

. .2x y k k y y

x y

   



 

   

2 2 2 2 2 2 2 2 2 2

2 22 2 2 2

2k x k y k y k x k y

x y x y

    
 

 
 

         

2

2 2

v k x

x x x y

  
  

   
 

   
 

2 2 2 2

22 2

. .2x y k k x x

x y

 



 

   

2 2 2 2 2 2 2 2 2 2

2 22 2 2 2

2k x k y k x k x k y

x y x y

   
 

 
 

u v

y x

 
 

 
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Question: Derivation of Euler’s equation OR the equation of motion of Euler 

for an ideal fluid or Euler’s equation of motion. 

 

 

 

 

 

    

Proof: 

Consider a parallelepiped with side ox,oy,oz. 

P is the pressure  is the density of fluid 

P(x,y,z) is the point as shown in fig.         

And u ,v ,w be the velocity component 

of fluid (q = ui + vj + wk) and 

X,Y,Z be the component of  

External force on unit mass P = f(x,y,z) 

We have force on the face PQRS in X-direction = P yz 

             = f(x,y,z) yz 

And the force on the face ' ' ' 'P Q R S  in X-direction = f(x+x , y , z) 

as x + x per unit time by Taylor theorem 

   =    , , , ,f x y z x f x y z
x







 

The total force in X-direction  

  = face PQRS  face ' ' ' 'P Q R S  

  =      , , , , , ,f x y z f x y z x f x y z
x


 

   
 

     , , , , , ,f x y z f x y z x f x y z
x




  


 

Q 

x 

y 

�� 

�� 
P(x,y,z) 

x  u  v  y 

R �� 
z 

 

w 

S �� 
z 

OR Prove that 
Du P

X
Dt x

r r


 


 

OR   
1Du P

X
Dt xr


 


 

OR  
1

.
q

q q F P
t q


    


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 , ,x f x y z
x




 


 

P
x y z

x
  


 


 

Total force in X-direction 
P

x y z
x

  


 


 

The mass of fluid is x y zr   . Hence the external force in X-direction is           

= X x y zr    

As we know that 
Dq

Dt
 is the total acceleration in X-direction. 

 By Newton second law of motion 

   Equation of motion = F = ma 

Sum of component of external force in X-direction 

Dq P
x y z X x y z x y z

Dt x
r   r     

 
   

 
 

Dq P
X by x y z

Dt x
r r   


  


 

1Dq P
X by

Dt x
r

r


  


 

1
____( )

Du P
X i

Dt xr


  


 

1
____( )

Dv P
Y ii

Dt yr


  


 

1
____( )

Dw P
Z iii

Dt zr


  


 

   Where  q = ui + vj + wk 

   Since  
P P P

P i j k
x y z

  
   

  
 

From (i), (ii) and (iii) we can write a combine relation  
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1Du Dv Dw P P P
i j k Xi Yj Zk i j k

Dt Dt Dt x y zr

   
        

   
 

1
_____( )

Dq
F P iv F Xi Yj Zk external force

Dt r
       

We know  .
Dq q

q q
Dt t


  


 

Eq (iv) becomes 

 
1

.
q

q q F P
t q


    


 

is the required Euler equation in fluid. 
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Lecture # 09                  

Different form of Euler equation of motion: 

We know that Euler equation of motion  

1dq
F P

dt r
    

Velocity of fluid   external force 

*(1)  Cartesian tensor form: 

    
1i i

j i

j i

u u P
u F

t x xr

  
  

  
  

Where iu  is the velocity in X-direction. 

(2) Cartesian form: 

Let u , v ,w are the velocity component in x , y ,z direction respectively. 

 .
D

q
Dt t


  


 

u v w
t x y z

   
   
   

 

1
1st

x

u u u u P
u v w F

t x y z xr

    
    

    
 

1
2nd

y

v v v v P
u v w F

t x y z yr

    
    

    
 

1
3rd

z

w w w w P
u v w F

t x y z zr

    
    

    
 

(3) Cylindrical Form: 

Let , ,r zv v v  are velocity component in r, , z direction respectively. 

In the direction of ‘r’ 

2

1r r r r
r z r

vv v v v P
v v v F

t r z r r


  r

    
     

    
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In the direction of ‘’ 

1r
r z r

v v v v vv P
v v v F

t r r z r
    

 r 

   
     

    
 

In the direction of ‘z’ 

1z z z z
r z z

vv v v v P
v v F

t r r z z


 r

    
    

    
 

(4) Spherical form: 

Let , ,rv v v f  are velocity component in r, ,  direction respectively. 

In the direction of ‘r’ 

2 2
1

sin
r r r r

r r

v v vvv v v v P
v F

t r r r r r

f  f

   r

    
     

    
 

 

In the direction of ‘’ 

2cot 1

sin
r

r

vv v v v v v v P
v v F

t r r r r r

f     
f 



   r 

    
      

    
 

In the direction of ‘’ 

1
cot

sin sin
r

r

v v v v vv v v P
v v v F

t r r r r r

f f f f f 
 f f

  f r f f

    
      

    
 

Conservative field: 

A field in which total word done is zero is called conservative field. 

A work done by a force field F is moving a particle from  

1P  to 2P   then the force field is said to be conservative.  

In such case following statements are equivalent. 

*(i) 
2

1

.
P

P
f dr  is the independent of path joining any two point 1P  and 2P  

*(ii) . 0f dr   around a closed path c passing through points 1P  and 2P  

* (iii) F V f    

1P  2P  F  

    
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*(iv) 0F   

*(v) 1 2 3.F dr F dx F dy F dz     

is an exact differential equation. 

If any of these equations is hold then the field is conservative. 

Newton’s law of viscosity or �	 ∝ 	
��

��
 

1st Statement: The viscosity of fluid is a measure of its resistance to a 

deformation ڑ� i.e. resistance to a shearing or tangential force when the fluid is 

in motion. 

2nd Statement: Newton law of viscosity state that shearing force   is directly 

proportional to 
du

dy
 , where 

du

dy
 is the velocity gradient. 

Proof: Consider the motion of fluid between two very large parallel plates. 

One of which is at rest and the other is moving with constant velocity ‘U’ 
parallel to itself under the action of a constant force F causes the fluid element 

occupying the space ABCD to form ' 'AB C D  

 

 

 

 

 

 

 

 

Let the distance between two plates be h. *The pressure being constant through 
out the fluid. This show that velocity at lower plate is zero and at upper plate is 
‘U’. We know that the velocity field is one dimensional. Again, the velocity ‘u’ 
is a function of y only i.e. u = u (y)  _____(1) 

Further the velocity distribution in the field between these two plates is linear. 

    u = ay + b   ____(ii) 

X 
A D 

Y 
F 

y h 

B C U = U 

U = 0 

'B  'C  

Velocity gradient is the 
rate of shearing strain. 
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    u(y) = ay + b   ____(iii) ( )by i  

By applying the boundary conditions eq (iii) when y = 0 , u(y) = 0 

    0 = 0 + b    b = 0 

Put he value of b in (iii) 

    u(y) = ay + 0 

    u(y) = ay   ____(iv) 

When  y = h , u(y) = U(y) 

    U(y) = ah   ____(v) 

    U = ah  ( ) ( )U y U by i  

    
U

a
h

   put in (iv) 

    u( )
U

y y
h

  

The rate of change of U in the direction  to U is 

    
du U

dy h
    ____(vi) 

The ratio 
U

h
is the rate of angular deformation of the fluid. 

Force F is directly proportional to area (A)  

     F ∝ AU   U  is velocity 

    And   F ∝ 
1

h
 

    By combining 

     F ∝ 
AU

h
  

F

A
 ∝ 

U

h
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The force F exerts sheering stress on the fluid between the plates. Here we take 

     
F

A
  

                ∝  
U

h
 

From (vi)             ∝  
du

dy
 

   Or   
du

dy
   

Where  is called the dynamic viscosity is the proportionality constant between 

shearing stress and velocity gradient. 

This law can be written as 
citygradient

Shearing stress
du Velo
dy


    

This relation can be regarded as the definition of viscosity. Viscosity   is a 

scalar quantity. Viscosity depend upon the nature of the fluid. Its value is small 
for thin fluid (such as water, milk etc) and is very large for viscous fluid (such 
as grease, honey etc) 

Note: 

The viscosity of fluid is very important property in analysis of liquid behavior 
and fluid motion near the solid boundary. The fluid which obeys the Newton 
law of viscosity is known as Newtonian fluid. The role of temperature in fluid 
(viscosity) was neglected by Newton law of viscosity. 
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Lecture # 10                  

Bernoulli’s Equation for unsteady irrotational flow under 
conservative forces: 

Proof: We know that Euler equation of motion is 

 
1

. _____( )
V

V V F P i
t r


    


 

For vector analysis 

         . . .A B A B B A A B B A            

For A = B = V 

         V. . V.V V V V V V V V            

   2 2 . 2V V V V V       

   2 2 2 .V V V V V       

   21
.

2
V V V V V       

Eq (i) becomes 

 21 1
_____( )

2

V
V V V F P ii

t r


       


 

For irrotational flow 

     0 ,V V r     

Also, from external forces 

F V   

Put in (ii)       21 1
0

2
V V V P

t
r

r


        


 

      21 1

2
V V P

t

r

r


      


 

     21 1
0

2
V V P

t

r

r


      


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Taking dot product with dr 

21 1
. . . . 0 ______( )

2
dr V dr V dr P dr iii

t

r

r


      


 

 As     . .
V V V V V V

V dr i j k dxi dyj dzk dx dy dz
x y z x y z

      
         

      
 

.V dr dV   

Similarly,    .dr d
t t

r r 
 
 

  

2 21 1
.

2 2
V dr d V   

.dr dPP   

Put in (iii)     21 1
0

2
d d V dV dP

t

r

r


    


 

On integration   21 1
0

2
d d V dV dP

t

r

r


    

      

 21 1

2
V V P F t

t

r

r


    


 

Where F(t) is an arbitrary function of t. F(t) has same value through the entire 
flow. F(t) is Bernoulli or pressure equation irrotational and in viscous flow. This 
equation holds for both incompressible and compressible flow. 

Case-I: If the fluid is incompressible then the above equation is 

 21 1

2
V V P F t

t

r

r


    


 

The equation holds for unsteady irrotational in viscous and 
incompressible/compressible flow. 

Case-II: If the motion is steady the 0
t

r



 

      21 1

2
V V P F t

r
    This equation holds for 

unsteady, irrotational, in viscous and incompressible/compressible flow. 
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Sources and Sinks:  

If the motion of the fluid consists of symmetrical redial motion in all directions 
proceeding from a point is called a simple source. 

However, a flow is such that the flow is directed inward to a point from all 
directions in a symmetrical manner. The point is called simple sink. 

    

            
            
            
     

  Sources     Sinks 

Sources and sinks in 2-D: 

In two dimensions a source of strength ‘m’ is such that the flow across any 
small surrounding is 2 m . 

Sink is regarded as source of strength ‘m’. Consider a circle of radius ‘r’ with 

source at its center the radial velocity 'V 'r  is given as 

 
1

V ____r i
r r

 f



  
 

 
  

      
1

r r

 f



 


 
 

The flow across a circle is 2 rrV  

2 2rrV m   

rrV m  

r

m
V

r
   

1 m

r r





 
 


 

m





 


 

On integration    m ii    
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Again from (i)    rV
r

f
 


 

m

r r

f
 


 

m

r r

f
 


 

On integration         logm rf    

Complex Potential due to a source:  

Let there be a source of strength m at the origin then 

w if    

logw m r im    

 logw m r i    

 log log iw m r e     

log iw m re    

log z where z reiw m     

If the source is at point 'z  then   'logw m z z    

In general, the source of strength 1 2 3, ,m ,...... nm m m  stated at the point 

1 2 3,z ,z ,......znz  

     1 1 2 2log log ...... logn nw m z z m z z m z z       

Doublet: 

A combination of source of strength ‘m’ and sink of strength ‘m’ at a distance 
s  apart 

 

     

            
            

  m          s     

rV  

r 

 - constant f - constant 
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Such that m approaches to infinity and 0s   

The product m s  remain finite and is equal to  m s     is called 

Doublet of strength  . The line s  is called the axis of doublet. 
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Lecture # 11         

Complex Potential due to doublet in 2-D: 

Let A and B denote the position of a sink and source of strength ‘m’ , ‘m’ and 
P be any point. 

Let AP = r 

BP = r + r 

PAB =  

Let  be the velocity potential due to doublet. 

Then   = m logr  m log(r + r) 

     = m[log(r + r)log r] 

     log
r r

m
r

   
    

  
  

  log 1
r

m
r

  
    

  
 

 ____
r

m i by first approximation
r


f     

Let BM be the perpendicular drawn from B to AP, then we get 

AM = AP  PM 

,AP r PM PB r r     

 AM r r r    

AM r   

From figure 

cos
AM r

AB s







     cosr s      

Eq (1) becomes 

coss
m

r

 
f

 
   

 
     

cos
______

m s
ii

r

 
f    

We know that 

r + r 

B A 
sink sink 
(m) (m) 

P 

s 



Collected by: Muhammad Saleem         Composed by: Muzammil Tanveer 
 

58 

m s   

 
cos

_____ iii
r

 
f   

2

cos

r r

f   
 


 

1
Since

r r

f 



 


 
 

2

1 cos

r r

  



 
 


 

cos
r

 





  


 

 sin _____ intc iv on egration
r


      

Let if we put c = 0 

sin
r


    

Therefore, complex potential due to doublet is given as  

w if    

cos
sinw i

r r

  


 
   

 
 

 cos sinw i
r


    

iw e
r

   

i

i
w z re

re z




 
    

Note: 

(i) Equipotential curve: 

 = constant 
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cos
tancons t c

r

 
   

2

cosr
c

r

 
  

2

cos
r

r c


  

' 2 'cos
c

r c r c


   

 ' 2 2 2 2 2cos ,x c x y x r r x y      

Which is circle touching Y-axis at (0,0). 

(ii) Stream lines: 

 = constant 

sin
tancons t c

r

 
    

2

sinr
c

r

 
   

2

sin
r

r c


   

' 2 'sin
c

r c r c


    

 ' 2 2 2 2 2sin ,y c x y y r r x y      

Which is circle touching X-axis at (0,0). 

(iii) If the doublet makes an angle  with X-axis then we have  for 

. So, that 

 i r
w

z re


 


   

.

ir ir

i ir i

e e
w

re e re z 

  


    
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If doublet is at  ' ' ' ' ' ',A x y where z x iy we have   

'

ie
w

z z





 

(iv) If doublets are of strength 1 2 3, , ,..... n     and are situated at 

1 2 3,z ,z ,.....znz  then complex potential is  
1 2

1 2

1 2

....
nii i

n

n

e e e
w

z z z z z z

   
   

  
 

Where 1 2 3, , ,..... n     are angles with X-axis. 

Example: What arranges of sources and sinks will give arise to the function 

2

log
a

w z
z

 
  

 
 

Draw rough sketch of stream line where  = constant. Prove that the stream 
lines are subdivided into circle of radius a (r = a) and the axis of y. 

Solution: Given that the function 
2

log
a

w z
z

 
  

 
 

   
  2 2

log log
z a z az a

w
z z

   
    

   
 

     log log log ____w z a z a z i      

This implies that there are two sources of strength ‘1’ and two sinks of 

strength ‘1’ at z = a , z = a and a source of unit strength at z = 0. 

Now   w = +i ____(ii)  , log logz x iy z z i Arg z     

Compare (i) and (ii) 

   log log logzi z a z af        

     log log logi x iy a x iy a x iyf           

     log log logi x a iy x a iy x iyf                 
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   
2 22 1 2 1 2 2 1log tan log tan log tan

y y y
i x a y i x a y i x y i

x a x a x
f         
                

      
 

For stream lines 

1 1 1tan tan tan
y y y

x a x a x
        
       

      
 

1 1 1 1 1tan tan tan tan tan
11 .

y y
y A Bx a x a A B

y y x AB
x a x a

     

 
          

  
  

  

   
2 2

1 1

2 2 2

2 2

tan tan

y x a y x a
yx a

x y a x

x a

  

   
            

 

 

1 1

2 2 2
tan tan

xy ay xy ay y

x y a x
       
    

    
 

1 1

2 2 2

2
tan tan

xy y

x y a x
     
    

    
 

2 2 2
1 1 1 1

2 2 2

2

tan tan tan tan
2 11 .

xy y

A Bx y a x
A B

xy y AB
x y a x

    

 
   

   
    

  

 
 

 
 

2 2 2

2 2 2

1

2 2 2 2

2 2 2

2

tan
2

xy y x y a

x y a x

x y a x xy

x y a x

 

   
 

  
  

   
   

 

 
 

2 2 2

1

2 2 2 2

2
tan

2

xy y x y a

x y a x xy
 

   
 
    
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2 2 2 3
1

3 2 2 2

2
tan

2

x y x y a y y

x a x xy xy
     
  

   
 

2 2 3
1

3 2 2
tan

x y a y y

x a x xy
    
  

  
 

For stream lines  = constant 

2 2 3
1

3 2 2
tan cos tan

x y a y y
n t c

x a x xy
   

  
  

 

2 2 3

3 2 2
tan

x y a y y
c c

x a x xy

 
 

 
 

 
 

2 2 2

2 2 2

y x y a
c

x x y a

 


 
 

Here arises two cases c = 0 , c = ∞ 

(i) For c = 0 

 
 

2 2 2

2 2 2
0

y x a y

x x y a

 


 
 

 2 2 2 0y x a y    

2 2 20 , 0y x a y     

2 2 2x y a    

2 2r a   

The X-axis is a stream line. 

(ii) For c = ∞ 

 
 

2 2 2

2 2 2

1

0

y x a y

x x y a

 
 

 
 

 2 2 2 0x x y a    

2 2 20 , 0x x y a     

2 2 2x y a   
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2 2r a  

r a   

Y-axis is a stream line. 
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Lecture # 12 

Some definition 

(i) Stokes stream function: 

In fluid dynamics, the stokes stream function is used to describe the streamlines 
and flow velocity in a three-dimensional incompressible flow with axis 
symmetry. A surface with a constant value of the stokes stream function 
encloses a stream tube, everywhere tangential to the flow velocity vectors. 

 1
sin

sin
rw r

r


f


 

  f

  
    

  

  1 1

sin
rw r

r r
 f


 

 f

  
    

 

  
1

w r
r r

f  f
 

  
 

 

(ii) Line sources and Line sinks: 

Two dimensional sources and sinks is generated by a line source. 

Coincident with the axis stream lines of the flow generated by  

dipole line. Source coincident with the axis and aligned along the axis. 

(iii) Axisymmetric flow: 

Using cylindrical coordinates (r,,z) where r = 0 is the axis of axisymmetric 

flow and  , ,r z    are the velocities in those (r,,z) directions the continuity 

equation is    
 1

0r z
r

r r z

  
 

 
 

And this allows the definition of another stream function,  known as Stokes 
stream function (different from the stream function used in plan flow) defined 
as 

1

*
1

z

r

u
r r

u
r z






 


  

 
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And whose definition automatically assures that the continuity equation is 
satisfied. 

(iv) Line doublets: 

We know that   
0

ie
w

z z





 

If  = 0 then the line sources are on X-axis and thus 

     
0

w
z z





 

If there are number of line doublets of strengths 1 2 3, , ,..... n     per unit length 

with line sinks at points 1 2 3,z ,z ,.....znz  and their axis being inclined at angles 

1 2 3, , ,..... n      with the positive direction of X-axis, then the complex 

potential is given by 

1 2

1 2

1 2

...
nii i

n

n

e e e
w

z z z z z z

 

     
  

 

Images in rigid infinite plane and solid spheres: 

(i) Images in rigid infinite plane: 

Consider a simple source of strength ‘m’ and sink of ‘m’ situated at A(0,0) and 

B(a,0,0) at a distance ‘a’ from an infinite plane 'yy . 

We shall know that appropriate image system for this is as shown in the figure. 

 

 

 

 

  

 

 

  

 

m m 

A(a,0,0) B(a,0,0) 

Y 

Y’ 
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(ii) Image of a source in a sphere: 

Suppose a source of strength ‘m’ is situated at point. A at a distance f(>a) from 
the center of the sphere of radius ‘a’. 

            
            
            
            
           

 

 

 

Example What arranges of sources and sinks will give arise to the function 

1
logw m z

z

 
  

 
 

Draw rough sketch of stream line where  = constant. Prove that the stream 

lines are subdivided into circle of radius a (r = a) and the axis of y. 

Solution: Given that the function 
1

logw m z
z

 
  

 
 

   
  2 1 11

log log
z zz

w m m
z z

   
    

   
 

 As       log 1 log 1 log 0w m z m z m z       

Put z x iy and w if      

     log 1 log 1 logi m x iy m x iy m x iyf           

     log 1 log 1 logi m x iy m x iy m x iyf           

     log 1 log 1 logi m x iy m x iy m x iyf                 

   
2 22 1 2 1 2 2 1log 1 tan log 1 tan log tan

1 1

y y y
i m x y i m x y i m x y i

x x x
f              
                                

 

For stream lines  comparing imaginary parts 

 

a 

O 
A(f,0,0) 
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1 1 1tan tan tan
1 1

y y y
m m m

x x x
        
       

      
 

1 1 1tan tan tan
1 1

y y y
m m

x x x
         
               

 

1 1 1 1 11 1tan tan tan tan tan
11 .

1 1

y y
y A Bx xm m A B

y y x AB
x x

     

 
          

  
  

  

 

   
  

  
  

1 1

2

1 1

1 1
tan tan

1 1

1 1

y x y x

x x y
m

x x y x

x x

  

   
 

            
 

  

 

1 1

2 2
tan tan

1

xy y xy y y
m

x y x
       
    

    
 

1 1

2 2

2
tan tan

1

xy y
m

x y x
     
    

    
 

2 2
1 1 1 1

2 2

2

1
tan tan tan tan

2 11 .
1

xy y

A Bx y x
m A B

xy y AB
x y x

    

 
   

   
    

  

 
 

 
 

2 2

2 2

1

2 2 2

2 2

2 1

1
tan

1 2

1

xy y x y

x y x
m

x y x xy

x y x

 

   
 

  
  

   
   

 

 
 

2 2

1

2 2 2

2 1
tan

1 2

xy y x y
m

x y x xy
 

   
 
    

 

2 2 3
1

3 2 2

2
tan

2

x y x y y y
m

x x xy xy
     
  

   
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 
 

2 2

1

2 2

1
tan

1

y x y
m

x x y
 

  
 
   

 

For stream lines  = constant 

 
 

2 2

1

2 2

1
tan cos tan

1

y x y
m n t c

x x y


  
  
   

 

 
 

2 2

2 2

1

1

y x y
c

x x y

 


 
 

Here arises two cases c = 0 , c = ∞ 

(i) For c = 0 

 
 

2 2

2 2

1
0

1

y x y

x x y

 


 
 

 2 2 1 0y x y    

2 20 , 1 0y x y     

Stream line on X-axis 

(ii) For c = ∞ 

 
 

2 2

2 2

1 1

01

y x y

x x y

 
 

 
 

 2 2 1 0x x y    

2 20 , 1 0x x y     

2 2 1x y   

2 1r   

1r   

The stream line is on Y-axis 
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Example: Two sources each of strength ‘m’ are placed at the points (a,0), 

(a,0) and a sink of strength ‘2m’ is placed at (0,0). Show that stream line are 

curves where  is parameter. Show that the fluid speed at any point is 

2

1 2 3

1 2 3

2
; , ,

ma
q where r z a r z a r z

r r r
       

Solution: Complex velocity potential w is at point p(z) 

 

 

            
            
            
            
            
     

   log log 2 logw m z a m z a m z      

    2log log logw m z a z a m z        

 2 2 2log logw m z a m z    

,z x iy and w if      

   2 2 2 2 2log 2 log 2i m x y ixy a m x y ixyf          

(1,0) (1,0) 

r2 r3 
r1 

(a,0) 

P(z) Y 

X 
m 2m m 
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       2 2 2 2 2log 2 log 2i m x y a i xy m x y i xyf                 

       
2 22 22 2 2 1 2 2 1

2 2 2 2 2

2 2
log 2 tan log 2 tan

xy xy
i m x y a xy i m x y xy i

x y a x y
f         
               

        
 

For    1 1

2 2 2 2 2

2 2
tan tan

xy xy
m m

x y a x y
     
    

     
 

1 1

2 2 2 2 2

2 2
tan tan

xy xy
m

x y a x y
      
           

 

2 2 2 2 2
1

2 2 2 2 2

2 2

tan
2 2

1 .

xy xy

x y a x y
m

xy xy

x y a x y

 

 
   

  
 
    

 

   
  

  
  

2 2 2 2 2

2 2 2 2 2

1

2 2 2 2 2 2 2

2 2 2 2 2

2 2

tan
4

xy x y xy x y a

x y a x y
m

x y a x y x y

x y a x y

 

    
 

   
  

    
    

 

 2 2 2 2 2

1

4 2 2 2 2 4 2 2 2 2 2 2

2
tan

4

xy x y x y a
m

x x y x y y a x a y x y
 

    
  

       

 

 
 

2

1

4 4 2 2 2 2 2

2
tan

2

xy a
m

x y x y a x y
 

 
  

     

 

 
   

2

1

22 2 2 2 2

2
tan

xy a
m

x y a x y
 

 
 
    

 

   

2
1

2 2 2 2 2

2 1
tan

xya
m where

x y a x y


 
  

  
   

 

   2 2 2 2 2 2a xy x y a x y      

   2 2 2 2 2 2a xy a x y x y      
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 2 2 2 2 2x y a x y xy       

Now      log log 2 logw m z a m z a m z      

2dw m m m

dz z a z a z
  

 
 

      
   

2z z a z z a z a z adw
m

dz z z a z a

      
  

  
 

   

2 2 2 22 2dw z az z az z a
m

dz z z a z a

     
  

  
 

   

22dw ma

dz z z a z a


 
 

   

2 22 2dw ma ma
q or q

dz z z a z a z a z a z
  

   
 

2

1 2 3

1 2 3

2
; , ,

ma
q where r z a r z a r z

r r r
       

Theorem: State and prove theorem of Blasius. 

Proof: In a steady irrotational two dimensional flow given by the complex 

potential w = f(z) if the pressure force on the fixed cylindrical surface C and is 
represented by a force (X,Y) and a couple of Moment M about the origin of co-
ordinates then neglecting the external forces 

2

2
C

i dW
X iY dz

dz

r  
   

 
  

M = real part of 
2

2
C

dW
z dz

dz

r  
  

   
  

Where  is the density of the fluid. 

Proof: Let ds be an element of arc at point P(x,y) and the tangent at P makes 

an angle  with x-axis. The pressure at P(x,y) is Pds, P is the pressure unit 
length. Pds acts along the inward normal to the cylindrical surface and its 
components along the co-ordinates along the co-ordinates axes are  
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   Pds cos(90+) , Pds cos 

   i.e  Pds sin   ,   Pds cos 

The pressure at the element ds is 

   dF = dX + i dY 

         = Pds sin +iPds cos 

        = I P (cos + i sin) ds 

Pds sin along negative x-axis       Pds sin along positive x-axis 

cos , sin
dx dy dx dy

dF iP i ds
ds ds ds ds

 
 

    
 



   ____dF iP dx idy ds iPdz i    

The pressure equation in the absence of external forces is 

     
21

tan
2

P
q cons t k

r
    

Or    21
_____

2
P q k iir    

cos sin
dW

Further u iv q iq
dz

        

   cos sin ____idW
q i qe iii

dz
       

And      cos sin ___idx dy
dx idy dz i ds i ds e ds iv

ds ds
 

 
       

 
 

The pressure on the cylinder is obtained by integrating (i) Therefore 

21

2
C C

F iPdz i k q dzr
 

   
 

   

2 0
2

C C

i
F q dz ik

r
    

2 ( )
2

i

C

i
X iY q e ds by ivr
    
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From here  2

2
i

C

i
X iY q e dsr      2 2

2
i i

C

i
X iY q e e ds r     

   
2

sin &
2

C

i dW
X iY dz u g iii iv

dz

r  
   

 
  

The moment M is given by  

C

M r F 
 

 

     0 0 0 0 0 cos sin

sin cos 0

i j k

r F x y i j xPds yPds k

Pds Pds

 

 

       



 
 

 cos sinr F k xPds yPds   
 

       r F k xP dx yP dy    
 

 

   r F xP dx yP dy  
 

 

   
C C

M r F Pdy y Pdx x      
 

 

 21

2
C

M k q xdx ydyr
  

    
  

  

   2 2 21

2 2
C C

M d x y q xdx ydy
r         

   

 2 1 int
2

C

M q xdx ydy st egral vanishes
r

       

 2 cos sin cos , sin
2

C

M q x y ds dx ds dy ds
r

            

  2Re cos sin
2

C

M al part of q x iy y ds
r

 
 

      
 

  
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2Re
2

i

C

M al part of q ze dsr  
    

 


 2 2Re
2

i i

C

M al part of z q e e ds r  
    

 


2

Re
2

i

C

dW
M al part of z e ds

dz
r   

    
     

  Hence theorem is proved. 

Theorem: State and prove Milne-Thomson Circle theorem. 

Proof: Let f(z) be the complex potential function for a flow having no rigid 

boundaries and such that there are no singularities with in the circle  z a .   

 Then on on introducing a solid circular cylinder with impermeable into the 
flow the new complex potential for the fluid outside the cylinder is given by 

   2 / ,w f z f a z z a    

Solution: Let C be the cross section of the cylinder with equation 

1z  . Therefore, on the circle C 

2 2, , /z a zz a z a z    where z  is the image of z w.r.t the circle. If z is 

outside of the circle then 2 /z a z  is inside the circle. Further all the 

singularities of f(z) lie out the circle and the singularities of   2 /f a z  and 

therefore those of  2 /f a z lie inside C. Therefore  2 /f a z  introduce no 

singularities outside the cylinder. Thus, the function f(z) and    2 /f z f a z  

both have the same singularities outside C. Therefore, the condition satisfied by 

f(z) in the absence of cylinder are satisfied by    2 /f z f a z  in the presence 

of cylinder. Further the complex potential after the intersection of the cylinder 

z a  is     w f z f z           w f z f z   

w = a purely real quantity 

But we know that    w =  + i      It follows that  

This proves that the circular cylinder z a  is a stream line i.e C is a stream 

line. Therefore, the new complex potential justifies the fluid motion and hence 
the circle theorem.

z  

z  



 

 


