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Lecture # 01 

Fluid: 

A fluid is a substance that deform continuously under the application of sheer 
stress (tangential stress). No matter how small or large the sheer stress. 

Examples: Water, milk, oil, jam, lipstick etc. 

Stress: 

Forcer per unit area (F/A) is called stress. It is denoted by . It has two types  

(i) Sheer stress / Tangential stress 
(ii) Normal Stress 

Sheer stress: 

Tangent component of force per unit area is called sheer stress. 

Normal stress: 

Normal component of force per unit area is called Normal stress. 

Types of forces: 

There are two types of forces 

(i) Surface force 
(ii) Body force 

Surface force: 

All the force acting on the boundaries of medium through direct contact. OR Force 
per unit area is called surface force. 

The surface force is due to the surrounding fluid on the element under 
consideration. 

Examples: pressure, stress etc. 

Body force:  All the force develops without physical contact. OR Force per unit 

volume (element of the body) is called body force. The body forces are distributed 
throughout the volume of the body. Example: gravitational force, magnetic field 
etc.  
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Element: 

Element is a part of substance that has all the specification of that substance. 

Types of fluid: 

Newtonian and Non-Newtonian fluid: 

If fluid satisfy the Newton’s law of viscosity is called Newtonian fluid otherwise 
called Non-Newtonian fluid. 

          ∝ 
du

dy
 

du

dy
   

Flow: 

The quantity of fluid passing through a point per unit time is called flow. 

Density: 

Mass per unit volume is called density. 

Viscosity: 

It is the measure of resistance against the motion of fluid. It is denoted by . It is 
also called absolute viscosity and dynamic viscosity. 

Kinematic viscosity: 

It is the ratio of absolute viscosity to density. It is denoted as  Eta  





  

Compressibility: 

Compressibility is the measure of change in fluid w.r.t volume and density under 
the action of external forces. 
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Compressible fluid: 

A type of fluid in which change occur due to volume and density changes by the 
action of pressure (temperature) is called compressible fluid. 

Examples: gases. 

Incompressible fluid: 

A type of fluid in which no change occur due to volume and density changes by 
the action of pressure (temperature) is called incompressible fluid. 

Ideal fluid:  

A fluid that have zero viscosity and incompressible is called ideal fluid.  

*An incompressible and inviscid fluid are called ideal fluid, 

Viscous fluid: 

Fluid that have non-zero viscosity or finite viscosity and can exert sheer stress on 
the surface is called viscous fluid or real fluid. 

Inviscid fluid: 

Fluid having zero viscosity is called inviscid fluid. 

Steady flow: 

A type of flow in which velocity of any other fluid property does not change with 
time. 

0 , 0 , 0
P V

t t t

  
  

  
 

Unsteady flow: 

A type of flow in which velocity of any other fluid property change with time. 

0 , 0 , 0
P V

t t t

  
  

  
 

Rotational flow: 

A type of flow in which fluid particle rotate about their own axis is called 
rotational or rotating flow. 
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Irrotational flow: 

A type of flow in which fluid particle does not rotate about their own axis is called 
irrotational flow. 

 

Stream lines:  

The imaginary line drawn in the fluid where the velocity along the tangent. 

Potential line: 

If we draw the line joining the points of equipotential on the adjacent flow lines, 
we get potential lines. 

Laminar and Turbulent flow: 

A type of flow in which stream line does not cross each other is called Laminar 
flow otherwise called turbulent flow. 
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Lecture # 02 

Stream lines: 

A curve drawn in the fluid such that tangent to every point of it is in the direction 
of fluid velocity 

Steady flow: 

The flow does not change with time.  

Stream lines have same pattern at all points. 

 

 

 

 Unsteady flow: 

Flow pattern changes with time. Stream line changes from point to point. 

Differential Equations of stream lines: 

Since the tangent drawn at every point in the fluid motion is in the direction of its 
velocity. So, 

 r xi y j zk  

  

 dr dxi dy j dzk  


  

0
dr

V
dx

 




 

 

 0 0 0

i j k

u v w i j k

dx dy dz

  



  

         0 0 0vdz wdy i udz wdx j udy vdx k i j k          

By comparing on both sides 

X 

Z 

Y 

�� 
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dx dy dz

u v w
   is the equation of stream line. 

Vortex motion: 

The most general displacement of a fluid involves rotation such that the rotational 
vector (vortex vector or vorticity)  0 0q or Curlq     

 where Xi . 

Vorticity vector: 

Let  q ui v j wk  

 be the fluid velocity such that 0Curlq 


 then 

q vorticity vector  


 

Let  
x y zi j k        i.e. , ,x y z    are the cartesian components of  


 

Then  

 

x y z

i j k

i j k Curlq
x y z

u v w

  
  

   
  




  

x y z

w v u w v u
i j k i j k

y z z x x y
  

         
                    

 

On comparing 

, ,x y z

w v u w v u

y z z x x y
  

         
         

         
 

In two dimensions cartesian coordinates vorticity is given as 

 

 

0

x y z

i j k

i j k
x y z

u v

  
  

  
  



      z

v u
k

x y


  
    


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In polar coordinates   
1 1 r

z

V
V V
r r r

 


 
  

 
 

Vortex line: 

Vortex line is a curve in the fluid such that tangent to it at every point is in the 
direction of vorticity vector. 

 
x y zi j k       &  r xi y j zk  


  be the position vector of the point P on the 

vortex line. 

Then / / . 0dr i e d r   
   

 

`   

 

 0 0 0x y z

i j k

i j k

dx dy dx

     



  

  0y zdz dy    ,   0x zdz dx    ,   0x ydy dx    

x y z

dx dy dz

  
   gives the equation of vortex line. 

Vortex tube or Vortex filament: 

Vortex tube is a bundle of vortex lines. If we draw vortex lines from each point of 
a closed curve in the fluid, we obtain a tube called a vortex tube. 

A vortex tube of infinitesimal cross section is called a vortex filament. 

 

 

 

 

  

 

 Figure: 1 
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Figure 1 shows the evolution of a vortex tube. 

*Note: A vortex line or tube cannot terminate or originate at internal points in a 

fluid. Only for closed curves. They can terminate on boundaries. 

Question: If the velocity components are given as u = kx , v = 0 , w = 0  

Then show that the motion is not rotational. 

Solution: q = [ u , v , w]   q ui v j wk  

 

 Here u = kx , v = 0 , w = 0 

 

0 0

i j k

Curlq
x y z

kx

  


  




   0kx k

y

 
   

 

The motion is irrotational. 

Question: If 2 2 2, , cztq ax yt by zt   


. Find the vorticity vector where a,b,c are 

constants. 

Solution: We know that , ,x y z    are the cartesian components of vorticity vector. 

2 2 2 2 2 2

, ,x y z

czt by zt ax yt czt by zt ax yt

y z z x x y
  

          
          

          
 

2 2, 0 ,x y zby t ax t        

The vorticity vector is 2 2,0,by t ax t     

Circulation: 

If C is a closed curve, then circulation about C is given by 

 . . .
C

S S S

q dr n curlqdS n dS d S        
    

  

*The quantity  .n dS


 is called the strength of the vortex tube.  
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A vortex tube with a unit strength is called a unit vortex tube. 

Different types of Vortices: 

(i) Forced vortex:   
In this type the fluid rotates as a rigid body with constant angular velocity. 

(ii) Free cylindrical vortex: 
In this type the fluid moves along streamlines which are concentric circles in 
horizontal planes and there is no variation of total energy with radius. 

(iii) Free spiral vortex: 

In this type there is a combination the free cylindrical vortex and a source (radial 
flow). 

(iv) Compound vortex: 

In this type the fluid rotates as a forced vortex at the centre and as a free vortex. 

Vortex pair: 

A pair of vortices of equal and opposite strengths is called a vortex pair. 

 

        

 

Let K and −K be the strengths of the two vortices at A (z = z1) and B (z = z2) 
respectively. Then the complex potential is 

W = iK log (zz1)  iK log (zz2) 

The velocity at A is due to the presence of the vortex at B and vice-versa. 

Vortex Rows: 

When a body moves slowly through a liquid, rows of vortices are sometimes 
formed. There vortices can, when stable, be photographed.  

Here we consider infinite system of parallel line vortices and two-dimensional flow 
will be presumed throughout. 
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Lecture # 03 

Flow along a curve: 

Let A and B be any two points in the fluid and ABP curve or path joining them 
lying entirely within the fluid divide the curve ABP into number of small elements. 

Let 'Pand P  be an element of the curve of length s . 

 Let V


be the velocity vector and T  is the flow along  

the element 'PP  is defined as the product of tangential  

component of velocity vector V


with the length s  of  

the element 'PP . 

 ' .TFlow along PP V


 

 
0

.T
s

Flow along ABP Lim V s
 

 


 

   .T ___
B

A

Flow along ABP V ds i 


 

If  is angle between V


 and T  then equation (i) becomes 

T cos
B

A

Flow along ABP V d  


 

 cos ___
B

A

Flow along ABP V d ii    

 dr
Since T by differential geometry

ds
   

  _____dr Tds iii  

Put (iii) in (i)   

In general, we can write as 

s  

B  

A  
P  

'P  

T  

V


 

  
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 . ___
B

A

Flow along ABP V dr iv 


 

 Since V ui v j wk  

  

 r xi y j zk  

  

 dr dxi dy j dzk    

.V dr udx vdy wdz  


 

B

A

Flow along ABP udx vdy wdz    

Question: The velocity components are 2 2 2,u x y v x y   . Find the flow along 

y = 3x2 and y = 3x where 0  x  1 , 0  y  3. 

Solution:  Given that 2 2 2,u x y v x y    

(a)    y = 3x2   dy = 6xdx 

.
B

A

Flow along AB V dr 


 

B

A

Flow along AB udx vdy   

  2 2 2
B

A

Flow along AB x ydx x y dy    

    2 2 2 43 9 6
B

A

Flow along AB x x dx x x xdx    

 
1

4 3 5

0

3 6 54Flow along AB x dx x x dx    

 
1

4 3 5

0

3 6 54Flow along AB x x x dx    

15 4 6

0

3 6 54
5 4 6

x x x
Flow along AB

 
   
 
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3 6 54 3 3
0 9

5 4 6 5 2
Flow along AB

 
       
 

 

6 15 90 69

10 10
Flow along AB

 
   

(b)      y = 3x   dy = 3dx 

.
B

A

Flow along AB V dr 


 

B

A

Flow along AB udx vdy   

  
1

2 2 2

0

Flow along AB x ydx x y dy    

    
1

2 2 2

0

3 9 3Flow along AB x x dx x x dx    

 
1

3 2

0

3 24Flow along AB x x dx   

14 3

0

3 24
4 3

x x
Flow along AB

 
  
 

 

3 24 3 3 32
0 8

4 3 4 4
Flow along AB

 
      
 

 

29

4
Flow along AB


  

Circulation: 

The circulation of the fluid along the simple closed curve lying entirely within the 
fluid is denoted by and is defined as the line integral of tangential component of 
velocity taken along close curve C. 

*Circulation is the measure of rotation of the fluid. 
. . cos

C

V dr V Tds V ds     
  

    

Circulation of circuit is equal to the sum of circulation of its sub circuit. 
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1 2C C C      

From here we can define the relationship between vorticity and circulation as 

   . '
C S

V dr V ds By Stoke s Theorem    
 

  

where vorticity V 


 

Question: The velocity component for a certain flow field are given by 

u = x+y ,  v = x2 −y  

Calculate the circulation around the squares enclosed by the lines x = ±1 , y = ±1 

Solution: The square enclosed by the lines x = ±1 , y = ±1 as shown in figure. 

 

The circulation around this square is given by 

.
ABCDA ABCDA

V dr udx vdy    

   

   2x y dx x y dy      

   2Since x y dx x y dy      

 _____
AB BC CD DA

i            

Circulation around straight-line AB. So, x varies from −1 to 1. 

   2

AB AB

x y dx x y dy        

1 0y dy     

 
11 2

1 1

1 0
2

x
x dx x

 

      

1 1 1 3
1 1 2

2 2 2 2

    
          
   

 

D C 

A B 

x = +1 x = −1 

y = −1 

y = +1 
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Circulation along straight-line BC. So, y varies from −1 to 1. 

   2

BC BC

x y dx x y dy        

1 0x dx    

 
11 2

1 1

0 1
2

y
y dy y

 

      

1 1 1 3
1 1 2

2 2 2 2

   
          
   

 

Circulation around straight-line CD. So, x varies from 1 to −1. 

   2

CD CD

x y dx x y dy        

1 0y dy    

 
11 2

1 1

1 0
2

x
x dx x



      

1 1 1 3
1 1 2

2 2 2 2

    
          
   

 

Circulation along straight-line DA. So, y varies from 1 to −1. 

   2

DA DA

x y dx x y dy        

1 0x dx     

 
11 2

1 1

0 1
2

y
y dy y



      

1 1 3 1
1 1 2

2 2 2 2

   
            
   

 

Put in (i)      . 2 2 2 3 4 ____
ABCDA

V dr A        

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Verification: 2 1
v u

Since x
x y

 
  

 
 By stokes theorem  

.
C S

v u
V dr dxdy

x y

  
      

 

  

 
11 1 1 2

1 1 1 1

2 1 2
2

x
x dxdy x dy

   

 
     

 
    

     
1 1

12

1
1 1

1 1 1 1x x dy dy


 

         

 
1

1

1
1

2 2 2 1 1dy y




        

 4 ____ B    

From (A) and (B) 

 .
C S

V dr V ds    
 

  

Question: The circle u = 3x+y , v = 2x−3y with parametric equation as  

x = 1+2cos , y = 6+2sin 

Calculate the circulation around the circle. 

Solution: Given that u = 3x+y , v = 2x−3y 

x = 1+2cos , y = 6+2sin 

dx = −2sind  , dy = 2cosd 

The circulation around the circle is given by  

.V dr udx vdy    

  

   3 2 3x y dx x y dy      
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      
2

0

3 6cos 6 2sin 2sin 2 4cos 18 6sin 2cosd d


                  

      
2

0

9 6cos 2sin 2sin 16 4cos 6sin 2cosd d


                 

 
2

2 2

0

18sin 12sin cos 4sin 32cos 8cos 12sin cos d


                 

 
2

2 2

0

18sin 24sin cos 4sin 32cos 8cos d


              

2

0

1 cos2 1 cos2
18sin 12sin 2 4 32cos 8

2 2
d

  
   

      
          

    
  

2

0

cos2 sin 2 sin 2
18cos 12 2 32sin 4

2 2 2


  

   
   

           
   

 

        18 6 2 2 0 32 0 4 2 0 18 6 0 0 0               

18 6 4 8 18 6         

4   

Kelvins Theorem: (For rotation or circulation) or State and prove 
Kelvins theorem for circulation: 

Statement: 

 For an inviscid (non-viscous) incompressible fluid circulation around any closed 
curve C moving fluid constants at all times provided that the central forces remain 
conserved. 

Proof:  

Let C be the closed curve in fluid such that the curve moves with the fluid so that 
at all instant circulation consist of same fluid particle. Circulation is defined as  

.V dr  

  
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To prove that circulation is constant it is sufficient to show 0
D

Dt


  

Now      . .
D D D

V dr V dr
Dt Dt Dt


  

 

   

   . . _____
D D DV

V dt dr i
Dt Dt Dt


 




  

   
D Dr

Since dr d dV Bernoulli equation
Dt Dt

 
  

 
  

     21 1
. . . ____

2 2

D
Similarly V dr V dr d V V d V ii

Dt

 
    

 

 
 

Using equation (ii) in (i) 

 21
. ____

2

D DV
d V dr iii

Dt Dt

  
  

 




 

From Euler’s equation of motion 

 
1

____
DV

F P iv
Dt 

    

As we know forces are conservative. 

              _______F v    Where   is force potential. 

Using (v) in (iv) 

 
1

____
DV

P vi
Dt 

     

By taking dot product of equation (vi) with dr 

 
1

. . . ____
DV

dr dr P dr vii
Dt 

     

    . .dr i j k dxi dy j dzk
x y z

   
          

   
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.dr dx dy dz
x y z

  
   

  
 

.dr d    

.dr dPSimilarly P   

Equation (vii) becomes 

 
1

. ____
DV P

dr d dPd d d viii
Dt  

 
       

 
 

Since fluid is incompressible i.e.  = constant 

Using equation (viii) in (iii)  

21

2

D P
d V d d

Dt 

    
       

    
  

21

2

D P
d V

Dt 

 
  

 
  

Since V, P and  are constant. Therefore, their derivative will also zero. 

 constant 0 0
D

d
Dt


      

  is constant. Hence circulation remains constant. 
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Lecture # 04 

Remark: 

  K.E for finite liquid is 
1

.
2

S

K E dS
n







  

  The velocity potential is V  


 

As  q = (u,v,w) 

   q u v w      

Acyclic: 

 Acyclic motion is defined as the irrotational motion in which velocity 
potential is single valued (as the rectilinear flow of fluid). 

Theorem: 

Show that acyclic irrotational motion is impossible in a finite volume of fluid 
bounded by rigid surfaces at rest 

 OR 

 In infinite fluid at rest at infinity and bounded internally by rigid bodies at rest. 

Proof: 

If possible, suppose that acyclic irrotational motion is possible and let  be the 
velocity potential. Then, K.E. of the fluid is 

2.
2

K E T d



     

 2 ____
2 2

S

d dS i
n

  
  


 

   

Where S is the sum of all the rigid boundaries when  is finite or the sum of 

internal rigid boundaries when  is infinite. 
Now, since the boundaries are rigid, then at every point of S, the normal velocity is 

zero i.e.  0 _____ ii
n





 at each point of S. 
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From (i) and (ii) we get 

2 0
2

d



    

2 0d


     

      
2 0q d q



       

  
2 0q   

0q   

Fluid is at rest. Hence there is no motion of fluid. Hence Acyclic irrotational 
motion is impossible. 

Corollary: 

If the solid boundaries in motion are instantaneously brought to rest, show that the 
motion of the fluid will instantaneously cease to be irrotational. 

Proof: 

If possible, assume that the motion remains irrotational, then the K.E. is given by 

 2 ____
2 2

S

T q d dS i
n

  
 


 

   

When the surface S (solid boundary) is brought to rest instantaneously, then q = 0 

at each point of S then 
0 0q then     

     = constant at each point of S and  

0
n


 


constant at each point of S 

Since q = 0 in  i.e. there is no motion. Thus, the motion is no longer irrotational. 
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Uniqueness Theorem: 
If the region occupied by the fluid is finite, then only one irrotational motion of the 
fluid exists when the boundaries have prescribed velocities.  
OR  
Show that there cannot be two different forms of acyclic irrotational motion of a 
given liquid whose boundaries have prescribed velocities. 

Proof: 
If possible, let 1 and 2 be two different velocity potentials representing two 
motions, then 

 2 2
1 20 _______ i      

Since the kinetic conditions at the boundaries are satisfied by both flows therefore 
at each point of S 

2 2

2 2 2
S

q d d dS
n 

   
   


  

    

 1 1
1 0 0 ______ ii
n n

 

 

  
 

 

 2 2
2 0 0 ______ iii

n n

 


 
  

 
 

From (ii) and (iii)  

 1 2 ______ iv
n n

  


 
 

Let  = 12 
2 2 2

1 2      

2 0     at each point of fluid. 

And 1 2 0
n n n

    
  

  
 at each point of S. 

  represents a possible irrotational motion. 
Also, the K.E given by 

2 0
2 2

S

q d dS
n

  
 


 

   

Since the boundaries are rigid then at every point of S the normal velocity is zero 
i.e. 

0
n





 

 q = 0   at each point of fluid 
 0    
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0      at each point of fluid 

1 2 0      

1 2     

which shows that the motions are the same. (Moreover  is unique apart from an 
additive constant). 

Theorem-II: 
If the region occupied by the fluid is infinite and fluid is at rest at infinity, prove 
that only one irrotational motion is possible when internal boundaries have 
prescribed velocities. 

Proof: 
If possible, let there be two irrotational motions given by two different velocity 
potentials 1 & 2. The conditions on boundaries are 

 1 2 ______ i
n n

  


 
 

And  1 2 0 ____q q ii   at infinity 

Let us write     = 1 2      _____(iii) 
2 2 2

1 2      

 motion given by  is also irrotational.  

Further from (iii) we get 

 1 2 0 from i
n n n

    
  

  
  

. 0q n   

0q   on the surface 

Also 1 2q         

 1 2q       

1 2q q q   at infinity. 

Hence, we get  = constant 

 1 2 = constant           _____(iv) 

1 2 = 0         1 =2                                           

Hence, only one irrotational motion is possible. 
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Lecture # 05 

Single Infinite Row of vortices: 

The complex potential of an infinite row of parallel rectilinear vortices (line 
vortices) of same strength ‘K’ and a distance ‘a’ apart. The vortices are placed at 

points z =  na ; n = 0, 1, 2, ……, symmetrical about y-axis. The complex potential 
due to these vortices is 

             

           

 

  

 

W = iK log z + iK log (za) + iK log (z2a) +…..+ iK log (zna)+ iK log (z+a)     

+ iK log (z +2a) + …… + iK log (z + na) 

Double Infinite Row of Vortices: 

Let us suppose that we have a system consisting of infinite number of vortices each 

of strength ‘K’ evenly placed along a line 'AA  parallel to x-axis and another 

system also consisting of infinite number of vortices each of strength ‘K’ placed 

similarly along a parallel line 'BB . Let the line midway between these two lines of 
vortices be taken as the x-axis. 

 

     

 

 

 

 

 

(0,0) 
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Let one vortex on infinite row 'AA be at 1z z and one vortex on infinite row 'BB  

be at 2z z , so that the system consists of vortices K at 1z z na   and vortices    

‘K’ at 2z z na  , n = 1, 2, …. 

The complex potential of the system is 

  
  

1 1

0 2 2

log
n

z z na z z na
W iK

z z na z z na





    
  

    
  

Velocity potential: 

If the flow is irrotational a potential function  can be formulated to represent the 
velocity field. From vector identity 

0   

The velocity of an irrotational flow can be defined by a potential function so that 

V    

, ,u v w
x y z

    
      

  
 

In polar form  , ,r zV V V
r z



  



  
     

  
 

Kinetic Energy of irrotational motion: 

Let S be the surface enclosing the volume  of the fluid then  

21
.

2
K E V d



    

2 22 .V V V V V  
   

  

   
1

. . ____
2

K E V V d i


  
 

 

Since the flow is irrotational therefore 
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V  


 

    1
. .

2
K E d



       

   
1

. . _____
2

K E d ii


       

Let   2. .            

  2. . 0           

     
1

. . _____
2

ii K E d iii


        

By using the Gauss Divergence theorem 

. .
V S

AdV AndS  
 

 

Eq (iii)                1
. .

2
S

K E n dS     

1
.

2
S

K E dS
n







  

Kelvin’s Minimum Energy Theorem: 

Statement: 

The kinetic energy (K.E) of an irrotational flow for an incompressible fluid 
occupying the connected region is less than the K.E of any other flow of the fluid 
having the same normal velocity. 

Proof:  

Let S be the simply connected region enclosing a volume  of an incompressible 

fluid, Let V be the velocity of fluid. Since the flow is irrotational. Therefore, 

V  

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From equation of continuity     . 0 _____
D

V i
Dt


  


 

Since the fluid is incompressible   0
D

Dt


  

Eq (i) becomes     . 0V  


  

 . 0 _____V ii 


 

Let T be the kinetic energy for the flow then 

21

2
T V d



    

2 22V V V 
 

  

 
2

____
2

T V d iii



 


 

Let 'T  and 'V  be the K.E and velocity of any other flow of the fluid respectively. 
So, that 

'
0V V V 

 
 

From equation of continuity 

 '. 0
D

V
Dt


    

Since the fluid is incompressible i.e. 
D

Dt


= 0 

 '. 0V    

'. 0V    

 0. 0V V   
 

 

 0 0 ____V V iv   
 
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It is also given that the flow has same normal velocity 

 '. .V n V n


 

   0. .V n V V n 
  

 

  
0. . .V n V n V n 

  
 

  0. 0 ___V n v


 

The K.E 'T of any other flow is 

' '21

2
T V d



    

 
2

'
0

2
T V V d




 

 
 

 ' 2 2
0 02 .

2
T V V V V d




  

   
 

 ' 2 2
0 0.

2 2
T V d V d V V d

  

 
       

   
 

     '
0 0. _____T T T V V d vi by iii



    
 

  

Since the flow is irrotational V  


 

 '
0 0.T T T V d



     


 

   '
0 0. ____T T T V d vii



     


 

 0 0 0. .Since V V V     
  

 

 0 0 0. .V V V     
  
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    '
0 0 0.eq vii T T T V V d



         
 

 

From Eq (ii)    0. 0 . 0V V      

   '
0 0. _____T T T V d viii



     


 

By using the Gauss Divergence theorem 

. .
V S

AdV A ndS  
 

 

'
0 0 .

S

T T T V ndS    


 

From eq (v) 
0 . 0V n


 

'
0T T T   

'T T   

'Or T T  
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Lecture # 06 

Laplace equation: 

If fluid is an incompressible and  is a velocity potential then 2 0  is called 

Laplace equation. 

Proof: 

We know that the standard form of equation of continuity is 

   . 0 ____V i
t





 


 

.
D

Since V
Dt t


  


 

   . ____
D

V ii
Dt t

 



   


 

From (i)      . V
t





 


 

Put in (ii)           .
D

V V
Dt


      

      . . .
D

V V V
Dt


          

     . . .
D

V V V
Dt


          

 .
D

V
Dt


    

   . 0 ____
D

V iii
Dt


    

Since fluid is incompressible  = constant. 

0
D

Dt


   
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Equation (iii)             . 0V    

 . 0 _____V iv    

Also, flow is irrotational   V    

Put in (iv)      . 0    

2 0   

2 0    

2 0    

2 2 2

2 2 2
0

x y z

    
   

  
 which is required Laplace equation. 

Stress: 

It is defined as stress in a medium result from forces acting on some portion of 
medium  

F
stress

A
  

Normal stress: 

0n

n
n

A
n

F
Lim

A





  

Tangential stress or sheer stress: 

0n

t
n

A
n

F
Lim

A





  

Let us consider the stress acting on planes whose  

outward normal are in X,Y,Z directions. Then  

0x

x
xx

A
x

F
Lim

A





  

Y 

Z 

X 

P 

Fz 

Fx 

Fy 
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As we have following sheer stress 

xx xy xz    

yx yy yz    

zx zy zz    

Note: (i) We have double subscript notation to label stresses like yx etc. 

x denotes the direction in which stress acts and y denotes the plane on which stress 
acts. 

(ii).  X-plane = YZ-plane 

(iii). Density = 
mass m

volume V
    

(iv). By Newton second law  

F = ma 

dV dV
F m a

dt dt
   

dV
if m then F

dt
    

Generalization equation of motion: 

Consider a fluid element whose center point is P and stress 
xx

 . P1 and P2 is its 

right side and left side corner point respectively.  

Length element along X-axis is x   

Length element along Y-axis is y   

Length element along Z-axis is z   

At point P1 .
2

xx
xx

x

x




 



 

Z 

Y 

X 

P1 P P2 

x  

y  

z  
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At point P2 .
2

xx
xx

x

x




 



 

Consider the X-component of surfaces forces 

. .
2 2

xx xx
sx xx xx

x x
dF y z y z

x x

 
 

      
          

    
 

. .
2 2

yx yx

yx yx

y y
x z x z

y y

 
 

     
          

    
 

. .
2 2

zx zx
zx zx

z z
x y x y

z z

 
 

      
          

    
 

. .
2 2

xx xx
sx xx xx

x x
dF y z

x x

 
 

    
      

  
 

                    . .
2 2

yx yx

yx yx

y y
x z

y y

 
 

   
      

  
 

                   . .
2 2

zx zx
zx zx

z z
x y

z z

 
 

    
      

  
 

2 . 2 . 2 .
2 2 2

yxxx zx
sx

x y z
dF y z x z x y

x y z

         
            

      
 

yxxx zx
sxdF x y z x y z x y z

x y z

  
           

  
 

 ____yxxx zx
sxdF x y z i

x y z

   
      

   
 

Now for body forces   Bx xdF mg  
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Net force along X-component  x sx BxdF dF dF   

yxxx zx
x xdF x y z mg

x y z

   
       

   
 

V x y z      

x x xx y z

x xdF V mg
x y z

     
     

   
 

By Newton second law of motion 

x xdF ma  

 ____yxxx zx
x xma V mg ii

x y z

   
     

   
 

m
m V

V
    


  

yxxx zx
x xVa V Vg

x y z

 
 

  
       

   
 

 , , , ,x y z

dV du dv dw
Since a a a a

dt dt dt dt

 
    

 
 

yxxx zx
x

du
V V Vg
dt x y z

 
 

  
       

   
 

0V  because if 0V  then one of our components , ,x y z   becomes zero and 

our body can never move. So, 0V  we divide V and   

 
1

_____yxxx zx
x

du
g iii

dt x y z

 



  
    

   
 

Similarly, for y-direction 
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 
1

_____xy yy zy

y

dv
g iv

dt x y z

  



   
    

   
 

Similarly, for z-direction 

 
1

_____yzxz zz
z

dw
g v

dt x y z

 



  
    

   
 

 , , , tIf u u x y z then  

. . . .
du u x u y u z u t

dt x t y t z t t t

       
   
       

 

du u u u u
u v w

dt x y z t

   
    

   
 

Equation (iii) becomes 

 
1

____yxxx zx
x

u u u u
u v w g vi

x y z t x y z

 



      
       

       
 

Similarly, the equation of motion in �̂ and  �� directions are 

 
1

____xy yy zz
y

v v v v
u v w g vii

x y z t x y z

  



      
       

       
 

 
1

____yzxz zz
z

w w w w
u v w g viii

x y z t x y z

 



      
       

       
 

Equation (vi),(vii),(viii) provide the equation of motion of fluid element at P(x,y,z) 

Euler equation of motion for in-viscus (real) fluid: 

We consider X component of general equation of motion 

 
1

____yxxx zx
x

u
g i

t x y z

 




   
    

    
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We may have some assumption 

Set-I:      

0xy yx    

0yz zy    

0xz zx    

Set-II:             

xx xxP     

yy yyP     

zz zzP     

Set-III:             

0xx yy zz      

Diff. set II w.r.t x,y and z 

  0xx
xx xx

P P

x x x x


 

   
     

   
  

  0yy

yy yy

P P

y y y y


 

   
     

   
  

  0zz
zz zz

P P

z z z z


 

   
     

   
  

Put all these values in (i) 

0 0 x

du P
g

dt x
 

 
     

 
 

 _____x

du P
g ii

dt x
 


  


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Similarly, for y and z component 

 _____y

dv P
g iii

dt y
 


  


 

 _____z

dw P
g iv

dt z
 


  


 

As we know that 

 V ui v j wk  



 

 dV du dv dw
i j k

dt dt dt dt
  




 

Multiplying by  

   ____
dV du dv dw

i j k v
dt dt dt dt

     




 

Put equations (ii),(iii) (iv) in (v) 

 
x y z

dV P P P
g i g j g k

dt x y z
   

      
                  




 

    x y z

dV P P P
i j k g i g j g k

dt x y z
 

   
          


 

 

 ___
dV

P g vi
dt

   




 

Since 
d

dt
is a material time derivative, .

d
V

dt t


  


 

Equation (vi)    .
V

V V P g
t

 
 

     
 


  

 is the Euler equation of 

motion. 
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Lecture # 07 

Bernoulli Equation: 

We know that Euler equation of motion is 

   . ____
V

V V g P i
t

 
 

    
 


  

 

From vector analysis, we know that 

       2 . 2 . 2V V V V V V V       
     

 

     . 2 2 .V V V V V V     
     

 

     1
. .

2
V V V V V V      
     

 

Let g gk g z    


 

     
1

.
2

V
V V V V g z P

t
 
 

         
 


   

 

   1
.

2

V
V V V V g z P

t
  
               


   

 

   1
.

2

V
V V g z P V V

t
  
               


   

 

Divide by        1 1
.

2

V
V V g z P V V

t 

 
         

 


   

 

  Rearranging      21 1
___

2

V
P g z V V V ii

t


        




 

 

is called the Bernoulli equation for unsteady flow. 
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Bernoulli Equation for steady flow: 

For steady flow 0
V

t








 

Put in (ii)    21 1
0

2
P g z V V V


         

 
 

 21 1

2
P g z V V V


        

 
 

Taking dot product on both side with ds 

   21 1
. . . . ____

2
P ds g z ds V ds V V ds iii


        
 

 
 

As  V V ds  
 

       . 0V V ds   
 

 
 

.Also P ds dP   

.z ds dz   

2 2.V ds dV   

Put in (iii)    
21 1

0
2

dP gdz dV


    

Now integrate above equation 
21 1

0
2

dP gdz dV


       

21 1

2
P gz V


   constant 

*This is called Bernoulli equation for in viscous, incompressible, steady and 
rotational flow along the stream line. 

*This equation is also true for both rotational  0V 


and irrotational 

 0V 


flow. 
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Navier-Stokes equation: 

As we know that the X-component of general equation of motion is 

 ____
yxxx zx

x

u
g i

t x y z

 
 

  
    

    
 

Now we will make following assumptions 

Set-I: 

 _____xy yx

v u
ii

x y
  

  
     

 

 _____yz zy

w v
iii

y z
  

  
     

 

 _____zx xz

u w
iv

z x
  

  
   

  
 

Set-I: 

 
2

. 2 ____
3

xx

u
P V v

x
 


    




 

 
2

. 2 ____
3

yy

v
P V vi

y
 


    




 

 
2

. 2 ____
3

zz

w
P V vii

z
 


    




 

 As V ui v j wk  



 

.
u v w

V
x y z

  
   

  


 

Equation (v) becomes 
2

2
3

xx

u v w u
P

x y z x
 

    
          

 



Collected by: Muhammad Saleem             Composed by: Muzammil Tanveer 
 

41 

Diff. w.r.t ‘x  

2

2

2
2

3
xx P u v w u

x x x x y z x




       
      

       
 

 
2 2 2 2

2 2

2
2 ___

3
xx P u v w u

viii
x x x y x z x x




      
      

        
 

Diff. equation (ii) w.r.t ‘y’   
2 2

2
___yx v v

ix
y y x y




   
  

    
 

Diff. equation (iv) w.r.t ‘z’   
2 2

2
___zx u w

x
y z x z



   

  
    

 

Using equation (viii), (ix), (x) in (i) 

2 2 2 2 2 2 2 2

2 2 2 2

2
2

3
x

u P u v w u v v u w
g

t x x y x z x x y x y z x z
    

              
              

                  
 

Rearranging  

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

3
x

u P u v w u u v v u w
g

t x x y x z x x x y x y z x z
     

               
               

                   
 

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

3
x

u P u v w u v v u u w
g

t x x y x z x x y x y x z x z
   

               
               

                   
 

22

3
x

u P u v w u v w
g u

t x x x y z x x y z
   

            
            

            
 

   22
. .

3
x

u P
g V u V

t x x x
   
   

       
   

 
 

For incompressible fluid . 0V 


 

   22
0 0

3
x

u P
g u

t x x x
   
   

     
   
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2
x

u P
g u

t x
  
 

    
 

 is the X-component of Navier-Stokes equation. 

Similarly, for Y and Z components. 

2
y

v P
g v

t y
  
 

   
 

 

2
z

w P
g w

t z
  
 

   
 

 

Parallel flows: 

A flow is called parallel if there is only one velocity component. If  
 V ui v j wk  


 then 0V ui when v w  




 

The practical application of this simple case if the flow between parallel flat plates 
(planes). Circular pipes and concentric rotating cylinder in such one component 
flow the Navier-Stokes equation simplify, consider by and infect permit and exact 

solution e.g.  . 0V 


 

0 0
u v w u

becomes
x y z x

   
    

   
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Lecture # 08 

Couette flow: 

The simple Couette flow or simple sheer flow is the flow between two 
parallel plates one which y = 0 is at rest and other is y = h moving with the 
uniform constant velocity ‘u’ parallel to itself. 

Consider the steady laminar flow of inviscous, 

 incompressible fluid between the two infinite  

 horizontal parallel flat plates. Let X-axis be   

the direction of the flow and Y-axis perpendicular 

 to the direction of flow. Consider the distance  

between the plates be ‘h’ and the width of the  

plates in Z-direction be finite. 

Case-I: The X-component of Navier-Stokes equation is  

 2 ___x

du P
g u i

dt x
  


   


 

*The assumptions are 

      (i) One dimensional flow i.e u = u(y) , v = w = 0 

(ii) Viscous medium i.e µ ≠ 0 

(iii) Incompressible flow i.e.  ≠ 0 
(iv) Steady flow i.e. independent of time 
(v) No pressure i.e pressure gradient is zero. 
(vi) No body force i.e. gx = 0 

From equation (i)     

21
x

du P
u g

dt x

 

  


    


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2 2 2

2 2 2

1
x

du u u u P u u u
u v w g

dt x y z x x y z



 

       
                

 

According to these above assumptions 

2

2
0 0

u

y





 
  

 
 

2

2
0

d u

dy
   

Integrating w.r.t ‘y’ 

1

du
c

dy
   

Again integrating 

 1 2 ___y c y c ii   

According to boundary condition 

u = 0 at y = 0 ____ (iii) 

u = U at y  = h ____(iv) 

Using (iii) in (ii) we have 

0 = c1(0) + c2  c2  = 0 

(ii).      u = c1y   ___(v) 
 
Using (iv) in (v) we have 

U = c1 h    1

U
c

h
  

Put in (v) 

.
U

u y
h

  

u y

U h
   is the required velocity field for Couette flow. 
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Case-I:  When both plated moves with uniform velocity i.e 

According to boundary condition 

u = u1 at y = 0 ____ (vi) 

u = u2 at y  = h ____(vii) 

From equation (ii) 

 1 2 ___y c y c viii   

Using (vi) in (viii) we have 

u1 = c1(0) + c2  c2  = u1 

Put in (viii)   u = c1y + u1  ___(ix) 

Using (vii) in (ix) we have 

u2 = c1h+u1    2 1
1

u u
c

h


  

Put in (ix) 

2 1
1

u u
u y u

h


   

 2 1 1u u y u h
u

h

 
  which is the required solution. 

Generalization of Couette flow: 

It is simple Couette flow with non-zero pressure gradient. Therefore, the boundary 
conditions are same. The X-component of Navier-Stokes equation is 

 
2 2 2

2 2 2

1
___x

du u u u P u u u
u v w g i

dt x y z x x y z



 

       
                

 

According to assumptions  

      (i) One dimensional flow i.e u = u(y) , v = w = 0 

(ii) Viscous medium i.e µ ≠ 0 

(iii) Incompressible flow i.e.  ≠ 0 

(iv) Steady flow i.e. independent of time 
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(v) No body force i.e. gx = 0 

Equation (i)     
2

2

1
0

P u

x y



 

  
    

  
 

2

2

1 P u

x y



 

  
  

  
 

2

2

1d u dP

dy dx
  

On integrating w.r.t ‘y’ 

1

1du dP
y c

dy dx
   

Again, integrating w.r.t ‘y’ 

2

1 2

1

2

dP y
u c y c

dx
    

 2
1 2

1
____

2

dP
u y c y c ii

dx
    

Using boundary condition 

u = 0 at y = 0   _____(iii) 

u = U at y = h ____ (iv) 

Using (iii) in (ii) we have  

   
2

1 2 2

1
0 0 0 0

2

dP
c c c

dx
      

Put in (ii)     2
1

1
___

2

dP
u y c y v

dx
   

Using (iv) in (v) we have 2
1

1

2

dP
U h c h

dx
   
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1
2

U h dP
c

h dx
   

Put in (v)   21

2 2

dP U h dP
u y y

dx h dx 

 
   

 
 

21

2 2

dP U h dP
u y y y

dx h dx 
    

21

2 2

U hy dP dP
u y y

h dx dx 

 
    

 
 

 1 ____
2

U hy dP y
u y vi

h dx h

   
         

 

Which is the equation for the velocity field of generalized Couette flow. 

Equation (vi) can be written as 

1
2

u y hy dP y

U h U dx h

   
         

 

 2 1
1 ____

2

u y y dP y
h vii

U h h U dx h

     
             

 

*Let 
2

2

h dP
U

dx




 
  

 
 be the dimensionless pressure gradient. Equation (vii) 

becomes     1 ____
u y y y

viii
U h h h


   

        
 

Case-I: If  > 0  0
dP

dx
    *Pressure is decreasing in the direction of flow. 

Case-II: If  < 0  0
dP

dx
    *Pressure is increasing in the direction of flow. 

Case-III: If  = 0  0
dP

dx
    equation (viii) becomes 

u y

U h
  which is the 

solution of simple Couette flow. 
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Lecture # 09 

Plane Poiseuille flow: 

If two parallel plates are stationary, the fully developed between the plates is 
generally referred to as place Poiseuille flow. 

Let plane is situated at  

2 2

h h
y and y


  .  

The X-component of Navier-Stokes 

 equation is 

 
2 2 2

2 2 2

1
x

u u u u dP u u u
u v w g

t x y z dx x y z



 

        
        

       
 

Now without body forces. (Apply assumption) 

2

2

1
0

dP u

dx y



 

 
 


 

 
2

2

1
_____

d u dP
i

dy dx
   

Integrate w.r.t ‘y’ 

1

1du dP
y c

dy dx
   

Again, integrate w.r.t ‘y’ 

2

1 2

1

2

dP y
u c y c

dx
    

 2
1 2

1
_____

2

dP
u y c y c ii

dx
    

Boundary conditions are 

 0 ____
2

h
u at y iii   
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 0 ____
2

h
u at y iv    

Using equation (iii) and (iv) in (ii) 

 
2

1 2

1
0 _____

2 4 2

dP h h
c c v

dx
    

 
2

1 2

1
0 _____

2 4 2

dP h h
c c vi

dx
    

Adding equation (v) and (vi) 

2

2

1
0 2 2

2 4

dP h
c

dx

 
  

 
 

2

22
4

h dP
c

dx
   

2

2
8

h dP
c

dx
    

On subtracting (v) and (vi) 

1 10 0 2 0 0
2

h
c c

 
     

 
 

Equation (ii) becomes 

2
21

0
2 8

dP h dP
u y

dx dx 
    

2 2

2

4
1

8

h dP y
u

dx h

 
  

 
 

Which is velocity profile of the fully developed laminar flow between two parallel 
plates is parabolic. Thus, if the pressure gradient viscosity and place spacing are 
specified then the velocity distribution can be determined. 
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Poiseuille flow or General Poiseuille flow: 

Steady viscous fluid flow drives by an effect of pressure gradient established 
between the ends of a long straight pipe of uniform circular cross-section or 
between two parallel plates both are at rest. This flow is symmetric and axis 
symmetric. If v = (u,v,w) then u ≠ 0 and v = w = 0. Also u = u(y,z). 

X-component of Navier-Stokes equation is  

21
x

u u u u dP
u v w u g where

t x y z dx


 

 

    
       

   
 

2 2 2

2 2 2

1
x

u u u u dP u u u
u v w g

t x y z dx x y z



 

        
        

       
 

Without body forces (by assumption) 

 
2 2

2 2

1
0 ,

dP u u
u u y z

dx y z




   
    

  
  

Similarly, for y-component 

 
1

0 0
dP dP

P P z
dy dz


      

 pressure is also independent of z. 

So, P = P(x). The X-component becomes  

 21
0 ,

dP
u u u y z

dx





     

21
0

dP
u

dx



 


    

2dP
u

dx
   

 
2 2

2 2

1
_______

dP u u
i

dx y z

 
 

 
 

Now we make some substitutions 
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* * *

2

, , u
y z u

y z
dPh h

h
dx


  

 
 
 

 

* 2

* *

u

, , u

dP
h

dx
y hy z z h



 
 
      

Putting these values in (i) 

   

2 2
* 2 * 2

2 2* *

1
u u

dP dP dP
h h

dx dx dxhy hz

          
       

       
 

2
2 2

2 *2 *2

1

dP
h

dP dx

dx h y z 

 
         

 

2 *1 u   

2 * 1 0u     Which is called Poiseuille equation. 

Steady laminar flow through a circular pipe (The Hagen-Poiseuille 
flow): 

Consider the steady laminar flow of a viscus incompressible fluid in an infinitely 
long straight, horizontal circular pipe of radius R as shown in figure. 

Let z-axis be along the axis of  

the pipe and r denote the radial 

direction measured outward from  

the z-axis. Let the direction of the  

flow be along the axis of pipe i.e z-axis. 

The axially symmetric flow in a circular 

Flow. Clearly the flow is one-dimensional. 

The velocity component in the radial and tangential direction are zero. Vr = V = 0. 
Under these assumptions the equation of continuity in cylindrical coordinates is  

Vz(r) 

z 

R 

y 

x 
 
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 
1 1

. 0z
r

V V
r V

r r r z




  
  

  
 

Reduce to  0 _____ 0z
r

V
i V V

z



  


  

Showing that Vz is independent of z due to axial symmetry of the flow. Vz will be 

independent of . Also, Vz is a function of r only i.e. Vz = Vz(r) _____(ii) 

The Navier-Stokes equation without body forces in cylindrical coordinates reduce 
to 

 

2

2

1
0

1
0 _______

1 1
0 z z

P

r

P
iii

r

P V V

z r r r



 




 
 

 
  

 
 

    
        

 

Equation (iii) can be written as 

0
P P

r 

 
 

 
 

P = P(z) or P is a function of z alone and  

2

2

1z zP V V

z r r r

   

     
 

2

2
z zP V V

z r r r

  
  

  
 

r
Multiplyby


 

2

2
z zr dP d V dV

r
dz dr dr

   
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zr dP d dV
r

dz dr dr
 

  
 

 

Integrate w.r.t ‘r’ 

2

2
zdV r dP

r A
dr dz

   

1

2
zdV r dP

A divide by r
dr dz r

    

Again integrating 

 
2

ln _____
4

z

r dP
V A r B iv

dz
    

Where the arbitrary constant A and B are to be determined from the boundary 
condition. The first boundary condition is found from the symmetry of the flow 
which requires that Vz must be finite on the axis of the pipe (r = 0). It follows that 
we must take A= 0 because otherwise Vz would be infinite at r = 0. Thus equation 
(iv) reduce to  

2

4
z

r dP
V B

dz
   

The second boundary condition Vz = 0 at r = R. With this boundary condition the 
constant B is obtained from (v)   

2 2

0
4 4

R dP R dP
B B

dz dz 
      

Put the value of B in (v) we get the axial velocity distribution of Hagen Poiseuille 
flow through pipe as 

2 2

4 4
z

r dP R dP
V

dz dz 
   

2 2

2
1

4
z

R dP r
V

dz R

 
   

 
       

22

1
4

z

R dP r
V

dz R

  
    

   
 which has the form of 

paraboloid of revolution. 
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Lecture # 10 

Couette-Poiseuille flow: 

As we have  , ,V u v w . For one dimension (parallel flow) we can write as 

 0,0,0V  i.e. v = 0 , w = 0 and u ≠ 0. Also, the equation of continuity in 2-D is  

0
u u

x y

 
 

 
 where u,v are component of V  and we have v = 0 

 0
u

x





 

So, u = u (y) , u ≠ u(x) , u is a function of y and independent of x i.e. there is no 
change in u w.r.t x. 

Now from the Navier-Stokes equation in 2-D x-component 

 
2 2

2 2

1
___

u u P u u
u v i

x y x x y




     
          

 

y-component    
2 2

2 2

1
___

v v P y y
u v ii

x y y x y




     
          

 

As we have  0, 0
u

v and u u y
x


  


 

Using these values in equation (i) and (ii)  

(i)      
2

2

1
0

P u

x y




 
  

 
 

2

2

1u P

y x




 


 
 

2

2

1u P

y x

 


  

 
  

 
  

 
2

2
_____

u P
iii

y x

 

 
 
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(ii)    
1

0 0
P P

y y

 
   

 
 

It means P ≠ P(y) , P = P(x) . P is a function of x. Thus, from equation (iii) 

 
2

2
_____

u P
iv

y x


 


 
 

Now we take Poiseuille and Couette at a time. For example, the equation (iv) is 
of Poiseuille but conditions are of Couette. The boundary conditions are  

y = 0 then u = 0 

y = h then u = U 

Equation (iv) can be written as 

 
2

2

1d u dP

dy dx
  

1du dP

dy dx

 
 

 
 

1
.

du dP
d dy

dy dx

 
 

 
 

On integration 

 1

1
. _____

du dP
y c v

dy dx
   

Again, on integration  

 2
1 2

1
. _____

2

dP
u y c y c vi

dx
    

By applying boundary conditions 

When y = 0 , u = 0 

(vi)  0 = 0 + 0 + c2  c2 = 0 

u = U  

u = u(y)  

u = 0  y = 0  
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  2
1

1
. _____

2

dP
u y c y vii

dx
   

When y = h , u = U 

(vii)      2
1

1
.h

2

dP
U c h

dx
    

2

1

h

2

dP
c h U

dx
   

1

h

2

U dP
c

h dx
   

Put in (vii) 

21 h
.

2 2

dP U dP
u y y

dx h dx 

 
   

 
 

21 h
.

2 2

dP U dP
u y y y

dx h dx 
    

2h 1
.

2 2

U dP dP
u y y y

h dx dx 
   

h
1

2

y dP y
u U y

h dx h

 
   

 
 

2h
1

2

y dP y y
u U

h dx h h

 
   

 
 

Which is combine Couette Poiseuille equation. 

For non-dimensional  

2h 1
. 1

2

u y dP y y

U h dx U h h

   
      

   
 

2h 1
1 .

2

u y y y dP
P where P

U h h h dx U

   
       

   
 

P  is non-dimensional pressure. 

Non-dimensional equation of Couette Poiseuille at a time. 
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Let * *,
u y

u y
U h

    * * * *1u y P y y     

This is the required Couette Poiseuille flow at a time. 

Flow between two concentric rotating cylinders: 

Consider the steady laminar flow of a viscous incompressible fluid between two 

infinitely long concentric rotating cylinder with radii R1 and R2 (R2 > R1). Let 1  

and 1  be the steady angular velocities (speed / rotating speed) of the inner and 

outer cylinder respectively as shown in figure. 

 

 

  

 

Assume the flow between the cylinders to be peripheral (circular or round about) 

so that we have only the tangential component of velocity V i.e. Vr = Vz = 0. The 
equation of continuity in cylindrical coordinates is  

 
1 1

0z
r

V V
rV

r r r z




  
  

  
 

Reduces to  0 ____ 0r z

V
i V V




  


  

So, that V does not depend on  and V = V(r,z). Also, since the cylinders are 

infinitely long. So, V cannot be a function of z. Thus, we have  

V = V(r)_____(ii) 

The Navier Stokes equation in cylindrical coordinates are  

R – component 

2
r r r r

r z r

u u u u u u P
u u g

t t r r z z
  



     
       

     
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2 2

2 2 2 2 2

1 1 2r r r ru u u u u
r

r r r r r r z


 

      
            

 

-Component 

1r
r z

u u u u u u u P
u u g

t t r r z r
     

 
 

     
       

     
 

2 2

2 2 2 2 2

1 1 2 ru u u u u
r

r r r r r r z
   

 

      
            

 

z-component 

1z z z
r z z

u u u u u P
u u g

t t r z r z
 



     
      

     
 

2 2

2 2 2

1 1z z zu u u
r

r r r r z




     
         

 

The Navier Stokes equation in cylindrical polar coordinates for present case 
reduces to  

 
2

_____
V P

iii
r r



  


 

 
2

2 2

1 1
0 _____

P V V V
iv

r r r r r
  



   
        

 

 0 _____
P

v
z


 


 

Equation (v) shows that P is independent of z. So, P = P(r,). 

Since V is a function of ‘r’ only. It follows that form equation (iii) the pressure 

must be function of ‘r’ only i.e. P = P(r). Hence the term 
P






 in (iv) is zero. The 

equation (iii) and (iv) can be written as 

 
2

_____
V dP

vi
r dr
   
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 
2

2 2

1
0 _____

d V dV V
vii

dr r dr r
      

Equation (vii) can be written as 

2

2
0

d V d V

dr dr r
  
  

 
 

On integration  

2
dV V

A
dr r

    2A is constant 

1
2

dV
r V A

r dr




 
  

 
 

  2
d

rV Ar
dr

   

Again, on integration  

2

2 .
2

r
rV A B    

2rV Ar B    

 _____
B

V Ar viii
r

    

Where A and B are constant of integration. The boundary conditions of this 
rotating cylinder are 

1 1 1V R at r R v r      

2 2 2V R at r R v r      

Using these conditions equations (viii) becomes 

 1 1 1

1

____
B

R R A ix
R

    

 2 2 2

2

____
B

R R A x
R

    
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Solving these equation (ix) and (x) 

2 2
2 2 1 1

2 2
2 1

R R
A

R R

 



 

 2 2
1 2 2 1

2 2
2 1

R R
B

R R

  



 

Put these values of A and B in (viii) 

 2 22 2
1 2 2 12 2 1 1

2 2 2 2
2 1 2 1

1 R RR R
V r

R R r R R


      
    

    
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Lecture # 11 

We know that  

 2 22 2
1 2 2 12 2 1 1

2 2 2 2
2 1 2 1

1 R RR R
V r

R R r R R


      
    

    
 

   
 

2 2
2 2 1 2 2 1
2 2 1 12 2

2 1

1
____

R R
V R R r A

R R r


 
 

  
    

    
 

Angular Velocity: 

Let   be the angular velocity of the fluid then V r    
V

r
   from equation 

(A) we get  

   2 2
2 2 1 2 2 1
2 2 1 12 2

2 1

1 1 R R
R R r

r R R r

 
  

    
     

      
 

   2 2
2 2 1 2 2 1
2 2 1 12 2 2

2 1

1 R R
R R

R R r

 
  

   
    

    
 

   2 2 2 2 2
2 2 1 1 1 2 2 1

2 2 2
2 1

1 R R r R R

R R r

   


   
  

   

 

2 2 2 2 2 2 2 2
2 2 1 1 1 2 2 1 2 1

2 2 2
2 1

1 R r R r R R R R

R R r

   


   
    

 

Re-arranging  

   
 

 
2 2 2 2 2 2

1 2 1 2 1 2

2 2 2
2 1

_____
R R r R R r

B
R R r

 


  



  

Pressure distribution: 

The radial pressure distribution resulting from the peripheral motion can be 
determined form the equation  
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2V dP

r dr
   

2dP
V

dr r



  

 
   

2
2 2

2 2 1 2 2 1
2 2 1 122 2

2 1

1
.

R RdP
R R r

dr r rR R

 
 

  
    

    
 

 
       

24 4 2 2
22 2 2 2 21 2 2 1 1 2 2 1

2 2 1 1 2 2 1 12 22 2
2 1

1
. 2 .

R R R RdP
R R r R R r

dr r r rR R

   
   

     
              

 

 
       2 2 2 2 24 4

2 2 2 1 1 1 2 2 12 2 1 2 2 1
2 2 1 12 32 2

2 1

2 .R R R RR RdP
R R r

dr r rR R

    
 

    
     

     

 

On integration 

 

Since P = P1 at r = R1 we get 

 
       

24 42
2 2 2 2 2 21 2 2 11

1 2 2 1 1 2 2 1 1 1 2 2 1 1 12 22 2
12 1

2 . lnR
2 2

R RR
P R R R R R R c

RR R

 
     

 
       

   
 

 
       

24 42
2 2 2 2 2 21 2 2 11

1 1 2 2 1 1 2 2 1 1 1 2 2 1 12 22 2
12 1

2 . lnR
2 2

R RR
c P R R R R R R

RR R

 
     

 
       

   
 

Put the value of c1 in equation (C) 

 
       

24 42
2 2 2 2 2 21 2 2 1
2 2 1 1 2 2 1 1 1 2 2 12 22 2

2 1

2 . ln
2 2

R Rr
P R R R R R R r

rR R

 
     

 
      

   
 

 
       

24 42
2 2 2 2 2 21 2 2 11

1 2 2 1 1 2 2 1 1 1 2 2 1 12 22 2
12 1

2 . lnR
2 2

R RR
P R R R R R R

RR R

 
     

 
       

   
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 
        

24 42 2
2 2 2 2 2 21 2 2 11

1 2 2 1 1 2 2 1 1 1 2 2 1 12 2 22 2
12 1

1 1
2 . ln ln

2 2 2

RRr R
P P R R R R RR r R

r RR R

 
     

    
            

     
 

 
       

24 42 2
2 2 2 2 2 21 2 2 11

1 2 2 1 1 2 2 1 1 1 2 2 12 2 22 2
1 12 1

1 1 ln
2 .

2 2 ln

RRr R r
P P R R R R RR

r R RR R

 
     

      
            

       
 

              _____(D) 

This equation is the required pressure distribution and can be used to find the 
pressure of rotating cylinder. 

Maximum Velocity: 

The maximum velocity will occur at the position r where 0
dV

dr
    

Now from equation (A)     2 2
2 2 1 2 2 1
2 2 1 12 2

2 1

1 R R
V R R r

R R r


 
 

  
    

    
 

   2 2
2 2 1 2 2 1
2 2 1 12 2 2

2 1

1 R RdV
R R

dr R R r


 
 

  
    

    
 

Put 0
dV

dr
   

   2 2
2 2 1 2 2 1
2 2 1 12 2 2

2 1

1
0

R R
R R

R R r

 
 

  
    

    
 

   2 2 2 2 2
2 2 1 1 1 2 2 1

2 2 2
2 1

1
0

R R r R R

R R r

      
 

   

 

   2 2 2 2 2
2 2 1 1 1 2 2 1 0R R r R R        

   2 2 2 2 2
2 2 1 1 1 2 2 1R R r R R        

   2 2 2 2 2
2 2 1 1 1 2 1 2R R r R R       
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 
 

2 2
2 1 2 1 2

2 2
2 2 1 1

R R
r

R R

 

 





 

 1 2
1 2 2 2

2 2 1 1

r R R
R R

 

 





 

 1 2
1 2 2

2 1 1
2 2 2

2

r R R
R

R
R

 







 
 

 

 

 
 1 2

1 2
1 1

2 2
2

____r R E
R

R

 









 

For objectives 

 Several possible situations can arises depending on the value of angular 
velocities 1 2and  . 

 If 1 2   the numerator is negative. Then since R2>R1 we have 
2

1
2 1

2

0
R

R
 

 
  
 

 and there is no real value of r. This implies that fluid 

velocity increases continuously from 1 1V R   at the inner surface to 

2 2V R   at the outer surface. 

 If 2 1   , the numerator is positive. However, there are three possibilities 

depending on the denominator 

2

1
2 1

2

R

R
 
  
   
   

 being positive, negative or 

zero. 

(i) If 

2

1
2 1

2

R

R
 

 
  
 

 the denominator is positive and there is a real value 

occurs at a definite radius r. 

(ii) If 

2

1
2 1

2

R

R
 

 
  
 

 the denominator is negative and there is no real value of 

radius r. 
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(iii) If 

2

1
2 1

2

R

R
 

 
  
 

 the value of radius r is indeterminate. 

To summarize the tangential velocity attains a Maximum value at some radius 

attains a maximum value at some radius R1 < r < R2 only if 

2

1
1 2 1

2

R

R
  

 
   

 
 

Shearing Stress: 

The shearing stress in this case can be determined from  

1 r
r

d V V
r
dr r r


 



   
     

 

Since Vr = 0 

r

d V
r
dr r


 

  
    

  
 

   2 2
2 2 1 2 2 1
2 2 1 12 2

2 1

1 1
.r

R Rd
r R R r
dr r R R r



 
   

     
       

       

 

   2 2
2 2 1 2 2 1
2 2 1 12 2 2

2 1

.r

R Rr d
R R

R R dr r


 
  

   
     

    
 

 2 2
1 2 2 1

2 2 3
2 1

2
. 0r

R Rr

R R r


 


 
   

  
 

 2 2
1 2 2 1

2 2 3
2 1

2
.r

R Rr

R R r


 


 
   

  
 

 
 

 
2 2
1 2 2 1

2 2 2
2 1

2
____r

R R
F

R R r


  



 


 

The shearing stress at the walls of inner cylinder is  
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 
 

 
 

 
 

1

2 2 2
1 2 2 1 2 2 1

2 2 2 2 2
2 1 1 2 1

2 2
_____r r R

R R R
G

R R R R R


     




 
 

 
 

The shearing stress at the walls of outer cylinder is 

 
 

 
 

 
 

2

2 2 2
1 2 2 1 1 2 1

2 2 2 2 2
2 1 2 2 1

2 2
_____r r R

R R R
H

R R R R R


     




 
 

 
 

Torque on the cylinder: 

Let us determined the torque or moment of shearing forces acting on the cylinders. 
The shearing stress at the walls of inner cylinder is given as 

 
 

 1

2
2 2 1

2 2
2 1

2
r r R

R

R R


  








 

And the shearing force per unit length of the inner cylinder is  

 
1

12r r R
F R 


   

 
 

2
2 2 1

12 2
2 1

2
2

R
F R

R R

  



 


 

 
 

2
1 2 2 1

2 2
2 1

4 R R
F

R R

  



 

The torque experience by a unit length of the inner cylinder is given by 

1T F r   

 
 

2
1 2 2 1

1 1 12 2
2 1

4 R R
T R r R

R R

  
  


  

 
 

2 2
1 2 2 1

1 2 2
2 1

4 R R
T

R R

  



 

The torque of the shearing forces acting on the outer cylinder is 

T2 = −T1 
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Note that torque is independent of r. The moment or torque exerted by the 
cylinders upon each other is of interest in viscometery by knowing the geometry 
and measuring T(T1,T2) at either cylinder. One can calculate the viscosity of the 
fluid, as first suggested by Couette (1890). This is still a popular method in 
viscometery. 
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Lecture # 12 

Flow through a cylinder of uniform cross-section: 

Consider the steady laminar flow of viscous incompressible fluid through a 
cylinder of orbitrary but uniform cross-section as shown in figure below. Let z-axis 
be taken as the axes of the pipe. Since the flow is parallel to z-axis. The velocity 
components u = v = 0 everywhere. Moreover, the flow being steady so  

0
t





 

The equation of continuity thus reduces to  

0
w

z





 

So, that w = w (x,y). Thus, for the present problem 

u = v = 0 , w = w (x,y) , 0
t





 

 

 

 

 

 

 

The Navier-Stokes equation without body forces becomes 

 
1

0 _____
P

i
x


 


 ,  

1
0 _____

P
ii

y


 


 

 
2 2

2 2

1
0 _____

P w w
iii

z x y




   
    

   
 

From (i) and (ii)                   
1 1

0
P P

x y 

 
   

 
 

Z 
O 

X 

Y 
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 0
P P

P P z
x y

 
  

 
  

From equation (iii) 

2 2

2 2

1
0

P w w

z x y

 


  

   
     

   
  

2 2

2 2

1 P w w

z x y



 

   
  

   
 

2 2

2 2

w w P

x y z

   

  
   

 

Moreover,                               
2 2

2 2

w w P P dP

x y z z dz

    

   
    

   

The L.H.S of this equation is a function of x and y only while R.H.S is a function 
of z only and since these are equal. Each side must be constant (say) −P. The 
minus being taken as we except P to decreases as z increases. Thus, 

 
2 2

2 2
___

w w P dP
iv Where P

x y dz

  
   

 
 

Along with w = 0 on the walls of the cylinder. Hence the problem of finding the 
velocity distribution reduces to that of finding the solution of equation (iv) subject 
to boundary condition w = 0 on the cross-section of the pipe (cylinder) cuts the 
XY-Plane. 

The problem can be further simplifying if we write 

   2 2
1 _____

4

P
w w x y v


    

Then  
2 2

1
2 2

___
2

w w P
vi

x x 

 
 

 
 

And  
2 2

1
2 2

___
2

w w P
vii

y y 

 
 

 
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Substituting these partial derivatives in equation (iv) we find that w1 has to satisfy 
the two-dimensional Laplace equation. 

2 2
1 1

2 22 2

w P w P P

x y  

  
   

 
 

2 2
1 1

2 2

w w P P

x y  

 
   

 
 

2 2
1 1

2 2
0

w w

x y

 
 

 
 

With boundary condition w = 0 equation (v) becomes  

 2 2
10

4

P
w x y


    

 2 2
1

4

P
w x y


    

In cylindrical polar coordinates (r,,z) equation (iv) can be written as 

2 2

2 2 2

1 1z z zV V V P

z r z r  

  
   

  
 

Where  ,z zV V r   and 
dP

P
dz


  is pressure gradient. 

Reynold Transport Theorem: 

.
V V s

D G
G dV dV G q n ds

Dt t


 

       


 

Where G is any fluid property per unit volume. 

Transport of mass: 

Assume the fluid property G with density  and there is no sink or source of mass 

inside the system, then  

V

dV    is the mass of fluid with volume V. 
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 0 ____
V

D
dV i

Dt
     

By using Reynold Transport theorem 

.
V V s

D
dV dV q n ds G

Dt t


  


  

       


  

. 0 ( )
V s

dV q n ds by i
t





 

    


  

Now by using Gauss Divergence theorem 

 . 0
V V

dV q dV
t





  

       

 . 0
V

q dV
t




 
   

 
    

 . 0q
t





  


 

. 0 0q q
t


  


       


 By Kelvins theorem 

. 0q
t





  


 

For incompressible  

0
t





 

0 . 0 . 0q q         

. 0q    
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Transport of any dynamical: 

Let G = F be any fluid property per unit mass then prove that  

V V

D DF
F dV dV

Dt Dt
        

Proof: We know that the Reynold theorem 

  . ____
V V s

D G
G dV dV G q n ds i

D t t


 

       


 

Put G = F 

    .
V V s

D
F dV F dV F q n ds

Dt t
  


 

       


 

By using Gauss divergence theorem 

   .
V V V

D
F dV F dV Fq dV

Dt t
  


  

          

  . .
V V V

D F
F dV F dV F q q F dV

Dt t t


   

  
      

  
          

 . .
V V V V V

D F
F dV F dV dV F q dV q F dV

Dt t t


   

 
     

                 

 . .
V V V V V

D F
F dV F dV dV F qdV q F F dV

Dt t t


    

 
       

                 

Rearranging 

. . .
V V V

D F
F dV F q q dV q F dV

Dt t t


   

    
          

    
          

. 0 . 0
V V V

D F
F dV F q dV q F dV

Dt t t


   

    
           

    
           
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. . &
V V V

D D DF DF F D
F dV F q dV dV q F

Dt Dt Dt Dt t t Dt

  
  

  
        

  
     

By Equation of continuity 

. 0
D

q
Dt


    

0
V V

D DF
F dV dV

Dt Dt
     

V V

D DF
F dV dV

Dt Dt
   Hence Proved. 

 

 

 

 

 

 


