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Lecture # 01
Fluid:

A fluid is a substance that deform continuously under the application of sheer
stress (tangential stress). No matter how small or large the sheer stress.

Examples: Water, milk, oil, jam, lipstick etc.
Stress:
Forcer per unit area (F/A) is called stress. It is denoted by 7. It has two types

(1)  Sheer stress / Tangential stress
(i1)  Normal Stress

Sheer stress:

Tangent component of force per unit area is called sheer stress.
Normal stress:

Normal component of force per unit area is called Normal stress.
Types of forces:

There are two types of forces

(1)  Surface force
(1)  Body force

Surface force:

All the force acting on the boundaries of medium through direct contact. OR Force
per unit area is called surface force.

The surface force is due to the surrounding fluid on the element under
consideration.

Examples: pressure, stress etc.

Body force: All the force develops without physical contact. OR Force per unit
volume (element of the body) is called body force. The body forces are distributed
throughout the volume of the body. Example: gravitational force, magnetic field
etc.
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Element:

Element is a part of substance that has all the specification of that substance.
Types of fluid:

Newtonian and Non-Newtonian fluid:

If fluid satisfy the Newton’s law of viscosity is called Newtonian fluid otherwise
called Non-Newtonian fluid.

Flow:

The quantity of fluid passing through a point per unit time is called flow.
Density:

Mass per unit volume is called density.

Viscosity:

It is the measure of resistance against the motion of fluid. It is denoted by p. It is
also called absolute viscosity and dynamic viscosity.

Kinematic viscosity:
It is the ratio of absolute viscosity to density. It is denoted as 7( Eta)
n=-—
P
Compressibility:

Compressibility is the measure of change in fluid w.r.t volume and density under
the action of external forces.
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Compressible fluid:

A type of fluid in which change occur due to volume and density changes by the
action of pressure (temperature) is called compressible fluid.

Examples: gases.
Incompressible fluid:

A type of fluid in which no change occur due to volume and density changes by
the action of pressure (temperature) is called incompressible fluid.

Ideal fluid:

A fluid that have zero viscosity and incompressible is called ideal fluid.

* An incompressible and inviscid fluid are called ideal fluid,
Viscous fluid:

Fluid that have non-zero viscosity or finite viscosity and can exert sheer stress on
the surface 1s called viscous fluid or real fluid.

Inviscid fluid:
Fluid having zero viscosity is called inviscid fluid.
Steady flow:

A type of flow in which velocity of any other fluid property does not change with
time.

% o 2

s~ OaaV:
ot

—=0
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or
Unsteady flow:

A type of flow in which velocity of any other fluid property change with time.

a—'0;«tO , a—P;«tO , o

—=#0
ot ot ot

Rotational flow:

A type of flow in which fluid particle rotate about their own axis is called
rotational or rotating flow.
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Irrotational flow:

A type of flow in which fluid particle does not rotate about their own axis is called
irrotational flow.

. /%

The imaginary line drawn in the fluid where the velocity along the tangent.

Stream lines:

Potential line:

If we draw the line joining the points of equipotential on the adjacent flow lines,
we get potential lines.

Laminar and Turbulent flow:

A type of flow in which stream line does not cross each other is called Laminar
flow otherwise called turbulent flow.
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Lecture # 02

Stream lines:

A curve drawn in the fluid such that tangent to every point of it is in the direction
of fluid velocity 7 A

T
Steady flow: //

The flow does not change with time.

v

Stream lines have same pattern at all points.

Unsteady flow:
Flow pattern changes with time. Stream line changes from point to point.
Differential Equations of stream lines:

Since the tangent drawn at every point in the fluid motion is in the direction of its
velocity. So,

r=xi+yj+zk

dr=dxi+dyj+dzk

Vxﬂ:o
dx
i j ok
u v w=0§+0}'+OlAc
dx dy dz

(vdz — Wdy); — (udz — wdx)}' + (udy — vdx)lAc =0i+ O}' + 0k

By comparing on both sides

6

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




dx dy dz . : :
DG _ % i the equation of stream line.
u vow

Vortex motion:

The most general displacement of a fluid involves rotation such that the rotational
vector (vortex vector or vorticity) E=Vxqg#0 or {=Curlg+0

where cf(Xl )

Vorticity vector:

Let Z] —ui+ v}' +wk be the fluid velocity such that Curl & # 0 then
E=Vx & vorticity vector

Let £= éxf + éy}' + ézl; ie. &,,6,,&. are the cartesian components of 5

Then &,i+&,j+& k= Curlg=

< @|® <>
3 §)|Q) =

i
0
ox
u

Si+& j+E k= udaal i+(a—u—a—wjj+ 1Y k
g oy Oz 0z Ox ox Oy

On comparing

ow Ov ou Oow ov ou
(B o (o) (o
oy Oz 0z Ox ox Oy

In two dimensions cartesian coordinates vorticity is given as

A ~ A ov Ou |z
i+& j+E k= = =| ——— 1|k
Si+&,J+6. S, [(%c 8yj

NG §)|Q) ~.)>
< xg)|Q) ~.>
o §)|Q) =
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1. 0. 1oV

In polar coordinates =V 4V ——
P <= Yot 5 a0

Vortex line:
Vortex line is a curve in the fluid such that tangent to it at every point is in the

direction of vorticity vector.
&= cfx; + cfy}' + leAc & r=xi+ y}' +zk be the position vector of the point P on the

vortex line.

Then &//dr ie Exdr=0

A ~

ik
£ & E|=0i+0j+0k
dx dy dx

(&,dz—¢&.dy)=0 (Edz—Edx)=0 (&.dy-¢&dx)=0

dc dy dz . . .
=2 = gives the equation of vortex line.

& & &

Vortex tube or Vortex filament:
Vortex tube is a bundle of vortex lines. If we draw vortex lines from each point of

a closed curve in the fluid, we obtain a tube called a vortex tube.

A vortex tube of infinitesimal cross section is called a vortex filament.
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Vortex Tube
L]
-

purhclrpnfhs .
t=t, t=t2 Figure: 1
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Figure 1 shows the evolution of a vortex tube.

*Note: A vortex line or tube cannot terminate or originate at internal points in a
fluid. Only for closed curves. They can terminate on boundaries.

*Question: If the velocity components are givenasu=kx ,v=0,w=0
Then show that the motion is not rotational.
Solution: q=[u, v, w] =  g=uitvj+wk

Hereu=kx,v=0,w=0

ik

Curlc}zi 9 g: i(loc) k=0
ox Oy 0z| \oy
kx 0 0

The motion is irrotational.

Question: If ¢ = [ax2 yt, by’zt, czt’ ] .Find the vorticity vector where a,b,c are

constants.

Solution: We know that & ,& ,&. are the cartesian components of vorticity vector.

- 8czt2_8byzzt o= 8ax2yt_8czt2 = 8by22t_8ax2yt
* oy oz ) 77 0z o ) 7° Ox oy

The vorticity vector is [—byzt ,0, — axzt]
Circulation:
If C is a closed curve, then circulation about C is given by

r= gSCZ,E = j%.curzqu =j2.§ds =[&ds
S S

N

*The quantity ‘;Aa 2 ‘dS is called the strength of the vortex tube.
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A vortex tube with a unit strength is called a unit vortex tube.
Different types of Vortices:

(i) Forced vortex:
In this type the fluid rotates as a rigid body with constant angular velocity.
(ii)) Free cylindrical vortex:
In this type the fluid moves along streamlines which are concentric circles in
horizontal planes and there is no variation of total energy with radius.

(iii) Free spiral vortex:

In this type there is a combination the free cylindrical vortex and a source (radial
flow).

(iv) Compound vortex:
In this type the fluid rotates as a forced vortex at the centre and as a free vortex.
Vortex pair:

A pair of vortices of equal and opposite strengths is called a vortex pair.
=K

N N

A‘ (z=2,) B ‘{Z=Ez}

Let K and —K be the strengths of the two vortices at A (z=z;) and B (z = z,)
respectively. Then the complex potential is

W =iK log (z—z;) — iK log (z—2z2)
The velocity at A is due to the presence of the vortex at B and vice-versa.
Vortex Rows:

When a body moves slowly through a liquid, rows of vortices are sometimes
formed. There vortices can, when stable, be photographed.

Here we consider infinite system of parallel line vortices and two-dimensional flow

will be presumed throughout.
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Lecture # 03

Flow along a curve:

Let A and B be any two points in the fluid and ABP curve or path joining them
lying entirely within the fluid divide the curve ABP into number of small elements.

Let Pand P be an element of the curve of length As. A B T
Let V be the velocity vector and T is the flow along P

the element PP is defined as the product of tangential AjD 0
component of velocity vector ¥ with the length As of A

the element PP .

Flow along PP = (V"I“)

Flow along ABP = Lsz(VT)AS

As—0

Flow along ABszi(V.f)ds _(l)
A

If O is angle between ¥V and T then equation (i) becomes

Flow along ABP = iﬂﬂm cos@do
A

B
Flow along ABP:J.V cos@dd ___ (ii)
A
: A dr : :
Since T :d_ "+ by differential geometry
s
dr =Tds (iii)

Put (iii) in (i)

In general, we can write as

11
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B
Flow along ABP=II7.dr _(iv)
A

—

Since V=ui+ v}' +wk
r=xi+yj+zk
dr =dxi+dy j +dzk

V dr=udx + vdy + wdz

B
Flow along ABP = judx +vdy + wdz
A

Question: The velocity components are u = xy, v=x" — y°. Find the flow along
y=3x>and y=3x where 0 <x<1,0<y<3.

Solution: Given that u=x’y,v=x" -y’
(a) y=3x*>=dy=6xdx

Flow along AB = TV.dr
A
Flow along AB = Tudx + vdy
A
Flow along AB = ]B-{xzydx + (x2 — yz)dy}
A
Flow along AB = sz (3x2 )dx + (x2 — 9x4)(6xdx)
A
Flow along AB = j3x4dx + (6)63 — 54x5)dx
0
Flow along AB = j(3x4 +6x° —54x° )dx
0

5 4 6 \!
Flow along AB = 3L 46X 54t
5 4 6

0
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Flow along AB = E+§—ﬁ _0:§+§_
5 4 6 5 2

Flow along AB _6+15-90_69

10 10

(b) y=3x =>dy=3dx

Flow along AB = Tﬁ.dr
A
Flow along AB = Tua’x + vdy
A
Flow along AB = j{xzydx + (x2 — yz)dy}
0
Flow along AB = sz (3x)dx + (x2 — 9x2)(3dx)
0
Flow along AB = j(3x3 — 24x2)a’x
0

4 3\!
Flow along AB = 3X g4t
4 3 ),

Flow along AB = PL 4 —Ozg_gzﬂ
4 3 4 4

Flow along AB = T9

Circulation:

The circulation of the fluid along the simple closed curve lying entirely within the
fluid is denoted by I"and is defined as the line integral of tangential component of
velocity taken along close curve C.

*Circulation 1s the measure of rotation of the fluid.
r= gST/’.dr =gS V.Tds :chVcos Ods
C

Circulation of circuit is equal to the sum of circulation of its sub circuit.

13
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I'c=rIcC +IC,
From here we can define the relationship between vorticity and circulation as

I'= (ﬁ?.dr :H(V X I7)ds (By Stoke's Theorem)
C N

where vorticity =V x Vv

Question: The velocity component for a certain flow field are given by
u=xty, v=x*-y
Calculate the circulation around the squares enclosed by the lines x =+1,y =+1

Solution: The square enclosed by the lines x = +1 , y = +1 as shown in figure.

The circulation around this square is given by D y=+l C
I'= Cj) V.dr= (j) udx +vdy
ABCDA ABCDA
F=j(x+y)dx+(x2—y)dy x=-1 X
Since (x+y)dx+ (x2 —y)dy —a
F:Ia+ja+ja+ja 7(1) A y=-1 B
AB BC CD DA

Circulation around straight-line AB. So, x varies from —1 to 1.
= I a= I(x+y)dx+(x2 —y)dy
AB AB
vy=—1=dy=0

1 1

=_[(x—1)dx+0=

2
X

——x
2

-1

S O (R e
2 2 2 2

14
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Circulation along straight-line BC. So, y varies from —1 to 1.
I'= I a= I (x+y)a’x+(x2 —y)dy
BC BC

x=1=dx=0
1

2
:IO+(1—y)dy= _y7
-1

P TR L S
2 2) 2 2

Circulation around straight-line CD. So, x varies from 1 to —1.

= Ia: I(x+y)dx+(x2—y)dy

wy=1=dy=0
4 -1

_[(x 1)dx+0

1

2
I _x
2

1

= l_l — l+1 ___1___3 -2
2 2 2 2

Circulation along straight-line DA. So, y varies from 1 to —1.

= Ia: I(x+y)dx+(x2—y)dy

DA DA

=—1=dx=0
=I0 (1-y)dy=

(g

Put in (i) r= [ Vdr=—2+2-2-3=—4 (4)

ABCDA
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Verification: Since ov_u_ 2x —1 By stokes theorem

ox oy

r= <j>Vd _H(@——jd dy

11 1 2 1
r=([(2x=1)dxdy=[|22=-x| 4
[farnan={[25] o

-1-1

r- .1'(x2 —x)l_ldyz_j(1—1)—(1+1)dy

-1

r= 2jdy_—2\y| -2(1+1)
r=-4 __ (B)
From (A) and (B)

= Cjﬂ?dr :H(V X I7)ds
c s

Question: The circle u = 3x+y , v = 2x—3y with parametric equation as

x = 1+2co0s0 , y = 6+2sin0
Calculate the circulation around the circle.
Solution: Given that u = 3x+y , v =2x-3y

x = 1+2cos6 , y = 6+2sinO

dx =—2sin0d0O , dy = 2cos06d6

The circulation around the circle is given by

r zgﬁﬁ.dr =Iudx+vdy

r :I(3x+y)dx+(2x—3y)dy
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2z

= I(3 +6c0s0+6+2s5in6) (—2sin0d0)+ (2 + 4cos@ —18 — 6sin &) (2 cos OdH)

0

2z

= I(9+ 6cos 0 +2sin ) (—2sin0d6)+(—16 +4cos@ — 6sin6)(2cos 0d6)

0

2r

= j (—185in0—12sir1<9cos€—4sin2 6 —32cosd + 8cos> 0—12sin00050)d0

0

2z

= j (—18sin¢9—24sir1<9cos<9—4sin2 6 —32cos O + 8cos> 0)d9

0

(—18sin9—125in29—4(% —320059+8(% jde

2r

=

O'—.

2

sin 26

r= ‘—18cos9—12“’52‘9 —2(0— SR

—325in«9+4(9+

0
I={18+6-2(27—-0)-32(0)+4(27+0)} - {18+6—-0—-0+0}
[=18+6-4r+87-18-6
I'=4r

Kelvins Theorem: (For rotation or circulation) or State and prove
Kelvins theorem for circulation:

Statement:

For an inviscid (non-viscous) incompressible fluid circulation around any closed
curve C moving fluid constants at all times provided that the central forces remain
conserved.

Proof:

Let C be the closed curve in fluid such that the curve moves with the fluid so that
at all instant circulation consist of same fluid particle. Circulation is defined as

Fz(jﬂ?dr

17
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: . .. : Dr
To prove that circulation is constant it is sufficient to show r =0
¢

DI' D = D =
Now E —EC"SVdF—qSE(VdV)
PU_ 672 (ar)+ar 2 (i)
Dt Dt Dt

Since B(dr) = d(zj =dV - (Bernoulli equation)
Dt Dt

—

Similarly V.%(dr)zV.drz%d(l_/ .V):d(%[/zj (if)

Using equation (ii) in (i)

24 jd(lej rar (iii)
Dt 2 Dt T

From Euler’s equation of motion

DV _p-Llvp (i)
Dt Yo,

As we know forces are conservative.

F=-VQ (v) Where Q2 is force potential.
Using (v) in (iv)

DV va-lvp (vi)
Dt Yo,

By taking dot product of equation (vi) with dr

K.dr =-VQ.dr —lVP-dV _(Vii)

Dt Yo,

= vadr=| S B3 B (i sy + dok)
ox Oy 0z

18
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VQ.dr :a—de+a—Qdy +5—de
ox oy oz

VQ.dr =dQ)
Similarly VP.dr=dP
Equation (vii) becomes

dr.%:—dQ—lde Z—dQ—d(

Dt Yo,

Ej _ (viii)

Since fluid is incompressible i.e. p = constant

Using equation (viii) in (ii1)

Since V, P and p are constant. Therefore, their derivative will also zero.

%:cﬁd(constant) :§50= 0

= ["1s constant. Hence circulation remains constant.
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Lecture # 04

Remark:
K.E for finite liquid is K.E = %J;J p¢%d§'
The velocity potential is ¥ = -V ¢
As  q=(uyv,w)
= g=—-Vo=u=v=w
Acyclic:

Acyclic motion is defined as the irrotational motion in which velocity
potential is single valued (as the rectilinear flow of fluid).

Theorem:

Show that acyclic irrotational motion is impossible in a finite volume of fluid
bounded by rigid surfaces at rest

OR
In infinite fluid at rest at infinity and bounded internally by rigid bodies at rest.

Proof:

If possible, suppose that acyclic irrotational motion is possible and let ¢ be the
velocity potential. Then, K.E. of the fluid is

K.E=T= gJ!JV2¢dT @@
gj‘ﬂv%df:gggﬁ%ﬁ () <

Where S is the sum of all the rigid boundaries when 7 is finite or the sum of
internal rigid boundaries when 7 is infinite.
Now, since the boundaries are rigid, then at every point of S, the normal velocity is

zero i.e. g—¢ =0 (if) at each point of S.
n

20
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From (i) and (i1) we get

gmvwr:o
= [[[Vigdr=0
= J.J.J.qzdrzo v qg=-V¢

= q2=0
= g=0

Fluid is at rest. Hence there is no motion of fluid. Hence Acyclic irrotational
motion is impossible.

Corollary:

If the solid boundaries in motion are instantaneously brought to rest, show that the
motion of the fluid will instantaneously cease to be irrotational.

Proof:

If possible, assume that the motion remains irrotational, then the K.E. is given by
_P 25 _ P o¢ .

When the surface S (solid boundary) is brought to rest instantaneously, then q =0
at each point of S then
wqg=0 then —-V¢=0

= ¢ = constant at each point of S and

o¢

20 = (0 =constant at each point of S
n

Since q =0 in 7 1.e. there is no motion. Thus, the motion is no longer irrotational.

21
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* Uniqueness Theorem:

If the region occupied by the fluid is finite, then only one irrotational motion of the
fluid exists when the boundaries have prescribed velocities.
OR
Show that there cannot be two different forms of acyclic irrotational motion of a
given liquid whose boundaries have prescribed velocities.
Proof:
If possible, let ¢; and ¢, be two different velocity potentials representing two
motions, then

Vg =0=V’4, N ()
Since the kinetic conditions at the boundaries are satisfied by both flows therefore

at each point of S
0
g_”;jqzdr =§I!JV2¢dT =§J;J.¢a—de

o4 ¢ g
¢1£=0 = ﬁzo (11)
a 2 a 2
¢Za—i=O :a—izo (iii)
From (ii) and (iii)
90 _%, (i)
on On

Let (1) = (1)1—(|)2
V2¢ = V2¢1 - V2¢2
V*¢=0 at each point of fluid.
And 980400,
on oOn On
= ¢ represents a possible irrotational motion.

Also, the K.E given by
0
Ellfwa=2]jp b as=o

Since the boundaries are rigid then at every point of S the normal velocity is zero
1.e.

=0 at each point of S.

9% _,
on

= q=0 at each point of fluid
=-V¢=0

22
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= V@ =0 ateach point of fluid
= Vg -Vgp =0
= V¢4 =Vg,
which shows that the motions are the same. (Moreover ¢ is unique apart from an
additive constant).
Theorem-II:
If the region occupied by the fluid is infinite and fluid is at rest at infinity, prove
that only one irrotational motion is possible when internal boundaries have
prescribed velocities.
Proof:
If possible, let there be two irrotational motions given by two different velocity
potentials ¢; & ¢». The conditions on boundaries are

W2
on On
And ¢,=¢,=0 (ii ) at infinity
Let us write O=0¢1 — (111)

V2¢ = V2¢1 - V2¢2

= motion given by ¢ is also irrotational.

Further from (ii1) we get

ogp O¢ O ;
a—iza—i‘—%: 0 - from (l)

= q.;l =0
= ¢=0 on the surface
Also g=-V¢=-Vg@ +Vg,
4=-V4-(-V4,)
q =g, — q, at infinity.
Hence, we get ¢ = constant

¢1 — ¢ = constant (1v)

o1 — =0 = o=

*Remark: The above two uniqueness theorems are

0 subject to

useful in finding solutions of V’¢

prescribed boundary condition.

Hence, only one irrotational motion is possible.
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Lecture # 05

Single Infinite Row of vortices:

The complex potential of an infinite row of parallel rectilinear vortices (line
vortices) of same strength ‘K’ and a distance ‘a’ apart. The vortices are placed at
pointsz=xna;n=0,1,2,...... , symmetrical about y-axis. The complex potential
due to these vortices is

W =iK log z + iK log (z—a) + iK log (z—2a) +.....+ iK log (z—na)+ iK log (z+a)
+iK log (z +2a) + ...... + iK log (z + na)

Double Infinite Row of Vortices:

Let us suppose that we have a system consisting of infinite number of vortices each
of strength ‘K’ evenly placed along a line 44 parallel to x-axis and another
system also consisting of infinite number of vortices each of strength ‘—K’ placed

similarly along a parallel line BB . Let the line midway between these two lines of
vortices be taken as the x-axis.

M
k
A /é:\ Kéi\ /4_;\ /ﬂéi\l /éi\1 A’
Z=2a Z=a Z Z+a Z+2a
> X
of (0,0)
B ﬁ. (T (‘ ( /i;\ B’
Zx—2a Zo—a 72 Zo+a Za+2a

24
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Let one vortex on infinite row 44 be at z = z,and one vortex on infinite row BB
be at z = z,, so that the system consists of vortices K at z = z, £ na and vortices
‘“Katz=z,tna,n=1,2, ...

The complex potential of the system is

(z—z,—na)(z—z +na)

W =iK 3 1
K ) log (z—z,—na)(z—z, +na)

Velocity potential:

If the flow is irrotational a potential function ¢ can be formulated to represent the
velocity field. From vector identity

VxVg=0

The velocity of an irrotational flow can be defined by a potential function so that

V=-V¢
:)u:—%’vz_% ,W:_%
ox oy oz

IV L 24 e

In polar form — ., V,=-
P T T e T &

*Kinetic Energy of irrotational motion:

Let S be the surface enclosing the volume 1 of the fluid then
1
K.E=|||=pV dr

2 —

D% :‘17 V=V

KE= ([ G T a—

Since the flow is irrotational therefore
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V=-V¢

K.Ez%jﬂp{(—V@.(—V(é)}dr

K.E:%jﬂp(VQS.Vqﬁ)df (if)
Let V.(4Vg) =gV p+ VgV ¢
V(4Ve)=Ve V¢ v V=0
(if) = K.Ezé [ j [ ov.(6V@)dr (iii)

By using the Gauss Divergence theorem
[[[v.Aay = [[4nds
14 S
Eq (iii) - K.E:%Ljp(¢v¢ﬁ)dS

K.E:%Lquﬁ%ds

Kelvin’s Minimum Energy Theorem:

Statement:

The kinetic energy (K.E) of an irrotational flow for an incompressible fluid
occupying the connected region is less than the K.E of any other flow of the fluid
having the same normal velocity.

Proof:

Let S be the simply connected region enclosing a volume t of an incompressible
fluid, Let V be the velocity of fluid. Since the flow is irrotational. Therefore,

V=-V¢

26
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From equation of continuity %’? + p(V.V) =0 ()

Since the fluid is incompressible = D 0

Eq (1) becomes p(V.V) =0
V.V =0 (ii)
Let T be the kinetic energy for the flow then

r—- [l[pvas

v =] =7

T :gﬂﬁzdr (i)

Let 7 and V' be the K.E and velocity of any other flow of the fluid respectively.
So, that

Vi=V+ f
From equation of continuity
% +p(V.7)=0
Since the fluid is incompressible i1.e. %’?: 0
= p(V.7')=0
= V.V =0

= V.(V+7,)=0
= VV+VV,=0 (iv)
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It is also given that the flow has same normal velocity

V.n=V .n

The K.E T of any other flow is
T2 [l[ vz
r-2ff(7+7) a
T =§j!j(?2'+7§+217.70)dr
T':gmﬁdr+§j!jr7§dr+pm(r7.ﬁ’)dr
T'=T+T,+p[[[(V.Vs)dr ____(vi) - by (i)

Since the flow is irrotational V' = -V¢
T'=T+T,+p[[[(-Vo.¥,)dz
T'=T+T,-p[[[(Vo.Vs)dr — ___(vii)

—_— —_—

Since V(pV,)=gV.V, + V4,
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eq (vii)= T =T+T, —pm(v(WO') —¢v.70)dr

From Eq (ii) VV=0= VJV,=0
T'=T+T,-p|[[V. (Wo')dr (i)

By using the Gauss Divergence theorem
[[[v-Adv =[[4nas
V N
T'=T+T,-p[[¢V,.nds
S

From eq (v) Kﬁz 0
T =T+T,
= T>T

Oor T<T

29
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Lecture # 06
Laplace equation:

If fluid is an incompressible and ¢ is a velocity potential then V¢ = 0is called
Laplace equation.

Proof:

We know that the standard form of equation of continuity is

op :
L v (pr)=0
2ovip)=0 ()
SinceB:g+V.V
Dt ot
DS G .
B 6t+V(Vp) (zz)
From (i) aa—'? =-V.(pV)
Put in (ii) %’to =—V(pV)+V.(Vp)
D
F’fz—{p(V.V)-l—V.(Vp)}—I—V.(Vp)
D
F/;=—,o(V.V)—V.(Vp)+V.(vp)
Dp
L _p(V¥
o = P(VY)
%f +p(VI)=0 (i)

Since fluid is incompressible p = constant.

:@:0

Dt
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Equation (iii) = pVV =0
= VV=0 ___ (i)
Also, flow is irrotational V=-V¢
Put in (iv) V.(—V¢) =0
~V¢=0
= V¢=0
= V¢=0

o’y 09 09

= = 0 which is required Laplace equation.
ox> oy o0z 1 P .

Stress:

It is defined as stress in a medium result from forces acting on some portion of
medium

F
stress = —
A
Normal stress:
o, = Lim oF,
54,5085 A,
Tangential stress or sheer stress: v SF,
T = Lim oF
34,20 & An
. . OF«
Let us consider the stress acting on planes whose S
outward normal are in X,Y,Z directions. Then - ;
. OF
o = Lim—=
T 4054 7

31

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




As we have following sheer stress

T T T

xx “xy Txz

?W TW’TW

T T T

zx Yzy Yzz
Note: (i) We have double subscript notation to label stresses like 7, etc.

x denotes the direction in which stress acts and y denotes the plane on which stress
acts.

(ii). X-plane = YZ-plane

) mass —m
(iii). Density = =—
volume V

(iv). By Newton second law

F=ma
F:md—V '.'a:d—V
dt dt
dV
i =m then F = p—
if p L

Generalization equation of motion:

Consider a fluid element whose center point is P and stress z_ . P; and P is its

right side and left side corner point respectively.

AZ
Length element along X-axis is Ax p) P [P Az
Length element along Y-axis is Ay Z
y
Length element along Z-axis is Az ax >
X

or,. Ax

ox 2 Y

Atpoint P, 7, +
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. or,. Ax
AtpointP, T, ——~ -——
P ? ox 2

Consider the X-component of surfaces forces

dst{xx T, jAyAz( arxx.ﬂjAyAz
8x 2 ox 2

0
+ T+ D AV AvAz i m A Az
ooy 2 > 2

ay
7+ 2 | AvAy - (r +arzx.%ijAy

0z

df,_ = rxx+6rxx.£—rxx+ar"x,& AyAz
ox 2 ox 2

or or
J{ryx + —= .g—r o+ —= .%ijAz

o 2 7 0y
+(er + 0., .E—rzx + 0T,y E ijAy
oz 2 oz 2

or,
dﬁ;f( af“%jAyAz{z Azy]AxAz ( T, = ijAy

ox oy oz
or
dr, = i 9% Ay ApAz
ox oy 0z
ot
dF. = OTe | O 4 O \\vpyi (1)
ox oy 0z
Now for body forces dF, =mg.
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Net force along X-component dF. =dF,_ +dF,

0
dF._ = 0T, Py o7 AxAyAz +mg,
ox oy 0z

2 AV = Ax AyAz

or, Or, Ot
dF. = C+—2 4 —2 AV +mg,
ox oy 0z

By Newton second law of motion

dFl. =ma,_

0
ma. = O + i +872x AV +mg. (if)
ox oy 0z

m
cp=— = m=pAV
b= P

ot
pAVa, :(afxx + 800 0% Ay 4 pAvg,

ox oy oz

Since a =(ax,ay,az) =

v _(du dv dw
dt dt’ dt’ dt

Ay 34 _
PR

0
du _[ 07, P T, AV + pAVg.
ox oy 0z

AV # Qbecause if AV =0then one of our components Ax, Ay, Azbecomes zero and

our body can never move. So, AV #0we divide AV and p

du 1(o0r, 0Or, or
= XX + + zX +gx (lll)
dt pl\ Ox oy 0z

Similarly, for y-direction
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0 0 0
av_1(oz, + 8 9 +g (iv)
dt ox Oy Oz g

Similarly, for z-direction

dw 1(0r_, Or,. or
= 2=y +—= |+ g, (v)
dt ox oy 0z

If u =u(x,y,z,t)then

du _ ou Gx ou 8y ou Oz 814 ot

dr ox ot ﬁy ot 82 5‘t ot Ot

du Ou ou au au
= u+—v+

dt  ox oy 82 81

Equation (ii1) becomes

ou ou_ ou_ ou 1(or, Or, 0Or ,
—U+—V+—Ww+— Xy +—= |+ g (vi)
ox oy 0z

ox 0y 0Oz or
Similarly, the equation of motion in f and k directions are

v v v v 1[8rxy ot arj
— + +g,

U+—v+—w+— 2oy =
ox oy Oz o pl\ Ox oy 0z

(i)

—U+—V+—W+ o=z
ox oy 0z o p\ Ox Oy 0z

_ (vii)

Equation (vi),(vii),(viii) provide the equation of motion of fluid element at P(x,y,z)

ow ow  Ow_  dw l(ﬁrxz ot arj
+ +g.

Euler equation of motion for in-viscus (real) fluid:

We consider X component of general equation of motion

ou 1ot or, Ot ,
— = gy +—=l+g. ____(i)
ox 0y oz

p ot p
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We may have some assumption

Set-1:
7,=17,=0
r,.=17,=0
T)CZ = sz = 0
Set-I1:
. =—P+o
T, = —1’+—a¢y
z-zz 1 _P + O-zz
Set-111:
c,=0,=0_= 0

Diff. set Il w.r.t x,y and z

az—xx :_8P xx)__— B O-xx:O
ox ox Ox

oT 8P 0 oP

TR W(%):W A
aZ'ZZ :__ _(Gzz)__— GZZ:O

Put all these values in (i)

dt
du__OP, (if)
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Similarly, for y and z component

dv_ 9P, (iii)
Par™ o tPE
dw__ %, (iv)
i
As we know that

—

V=ui+vj+wk

Multiplying by p

dw ~
+p—j+p—k
a Pal TPl TP (v)

Put equations (i1),(iii) (iv) in (V)
WL g Y[ -Lot g, i+(-Lr o i
'Odt o P&, &y PE, |J Py PE.
D (O O L e p(giva, ek )
P ox ay] Py pP\&LTE,JTE.

—

péi{—lt/z -VP+ p§ _(vi)

. : L L d 0
Since — is a material time derivative, —=—+ V.V
dt dt ot

—_—

oV —\= -
Equation (vi) = p{g + (V.V)V} =—VP + pg is the Euler equation of

motion.
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Lecture # 07
Bernoulli Equation:

We know that Euler equation of motion is

p{%—?—i— (v.?)?} —pg-vP (i)

From vector analysis, we know that
v(r?)= v(?.?) - 2(V.V )17 + 2Vx(v x V)
V(?V) — 2V x (V X 17) = Z(V.I_/ )I_/
= (V7 )7 =SV (PF)-Fx(V=F)

Let § = —gl; =—-gVz

p|:;+—V(I7.I7>—I7x<VxI7)} = p(-gVz)-VP
p{i—l—lV(V.V)}—p[Vx(VxV)] = pgVz—VP

p{;+—V(I7.I7)} + pgVz+VP= p[ﬁ x(V % 17)}

Divide by p B—f + %V(VV)} +gVz+ %VP =V x(VxV)

—

1 aV 1 2 - -
R I —VP+oVz+—4+—-VV "=V x|{VxV il
earranging - g PYRD ( ) ( )

is called the Bernoulli equation for unsteady flow.

38

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




Bernoulli Equation for steady flow:

ov
For steady flow i =0

Put in (ii) :>iVP+gVZ+O+%VV2:T7X(VxT7)
o,

=N lV1D+gvz+lv1/2=V><(V><V)
Yo, 2

Taking dot product on both side with ds

iVP.a’S + gVz.ds + %V V2.ds = [V X (V X V)J.ds (iii)
0
As I7><(V><I7)J_ds = [Vx(VxV)]ds=0
Also VP.ds =dP
Vzds=dz
VVids=dV?*
o 1 QRS
Put in (iii) —dP+gdz+5dV =0
yo,

1 1
Now integrate above equation I—dP + I gdz + —Id V?= IO
o, 2

1 1
— P+ gz +—V? =constant
Jo, 2

*This 1is called Bernoulli equation for in viscous, incompressible, steady and
rotational flow along the stream line.

*This equation is also true for both rotational (V xV # O) and irrotational
(V xV = 0) flow.
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Navier-Stokes equation:

As we know that the X-component of general equation of motion is

ou
ot

ot
Ox

+82'yx
oy

Yo,

arzx)
+

+
oz

|

Now we will make following assumptions

Set-1:
.o 8v 8u
N - 1 6w 8v
== Ta T H B T o
s et (éz_ Q&J
zZX Xz /Ll 82 8x
Set-1:
2 AT LD 0%
3 Ox
AR YAl
Yy 3 ay
2 ow

P v i sau
3 Py

—_—

pg, ____ (i)

1Vad
L (vi)
__(vii)

As V:u;+v}'+wlAc

V- ou 8\/ ow

ox 8y oz
- - . ——P—g 8u+8v+8w 9 ou
quation (v) becomes xx 3\ ox "oy | oz y2i o
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ot oP 2 o0 (ou oOv oOw 0’u
+ + +2u—
ox Oy Oz X

ot oP 2(0’u o’v  O'w 0’u
-+ + +2u— (vzzz)
ox ox 3\ Ox 0yox  0zOx ox

o7, o’v 0%y ,
Diff. equation (i1) w.r.t ‘y’ dy = U Oy ox + 5y2 L (lx)

DI eauation i ., Ot _ (% o'w (x)
iff. equation (iv) w.r.t ‘z oy H 022 | ooz |———

Using equation (viii), (ix), (X) in (1)

8_u_ _8_P_g 82u+82v+82w L9 82u+ 82v+82v N @_i_@zw
Por P85 ox 3\ ae oyox ozox) Mo Yoo o) Yo oxez

Rearranging

ou oP 2(ou o*v o*w o0*u o0*u otv o' o'u  O*w
P =P&& =< —5 tU—_—StU S+ U +—— |t U

>t + 2 2 2 P
ot ox 3\ox” oyox Ozox ox ox oyox Oy 0z~ Ox0z
ou _ _oP 2 o’u N o*v N O*w N ou N 0%y N 0%y N ou N ou N O*w
Por P53\ ae  ayax ozax ) “\a avax o ) C\ae | o owoz
ou oP 20 (0u oOv ow 5 O(ou oOv ow
p—=pg ————— —+—+— |+ VUt pg—| —+—+—
ot ox 30x\ox oy oz ox\ Ox Oy 0z
ou oP 20 ( — ) 0 —
= pg,— =2V )+ uVu+ p——(V.V)
o P8 a3 AT o

For incompressible fluid V.V =0

ou oP 20 .8
U _ e O 20 (0V4 4y 9 (0
Py = P& o T3 o O Vi un(0)

Collected by: Muhammad Saleem “ Composed by: Muzammil Tanveer




ou oP

= P 5 =P8, — 8_ + ,UVZU is the X-component of Navier-Stokes equation.
X
Similarly, for Y and Z components.
ov oP )
—= ——+ uVy
P of PEg, oy H
ow oP 5
—= ——+4+ uV'w
P o1 P&, oz H

Parallel flows:

A flow is called parallel if there is only one velocity component. If

I7=u;+v}'+wicthen V=ui when v=w=0
The practical application of this simple case if the flow between parallel flat plates

(planes). Circular pipes and concentric rotating cylinder in such one component
flow the Navier-Stokes equation simplify, consider by and infect permit and exact

solutione.g. V V=0
ou ov ow ou

= —+—+—=0 becomes — =0
ox 0oy Oz ox
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Lecture # 08

Couette flow:

The simple Couette flow or simple sheer flow is the flow between two
parallel plates one which y = 0 is at rest and other is y = h moving with the

uniform constant velocity ‘u’ parallel to itself.

Consider the steady laminar flow of inviscous,

incompressible fluid between the two infinite
horizontal parallel flat plates. Let X-axis be

the direction of the flow and Y-axis perpendicular

h

0

u=0

gy

to the direction of flow. Consider the distance
VA

between the plates be ‘h’ and the width of the
plates in Z-direction be finite.

Case-I: The X-component of Navier-Stokes equation is

du oP ) )
-
p dt P& Ox V(1)

*The assumptions are
(1) One dimensional flow i.,eu=u(y),v=w=0
(11) Viscous medium i.e p #0

(i11) Incompressible flow i.e. p # 0

(iv) Steady flow i.e. independent of time

(v)  No pressure i.e pressure gradient is zero.
(vi) No body forcei.e. gx=0

From equation (i)
du  _10P n
dt p ox p yo,

L
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du ou ou ou 1 0P wu|o’u 0°u 0’u
tU—+V—+W—=———+ | —+ —+ — |+ g,
dt ox oy 0z p Ox p| Ox oy oz

According to these above assumptions

2

0= T4 14 1o
)P
dzu_

:>—2—0
dy

Integrating w.r.t ‘y’

du
= —=q
dy
Again integrating
y=c¢y+c, _(ii)

According to boundary condition
u=0aty=0__ (i)
u=Uaty =h _ (iv)

Using (ii1) in (i1) we have
0=ci(0)+c=>c, =0

(i1). = u=cy _ (V)

Using (iv) in (v) we have
U= Ci h = o I%

Put in (v)

u=—.
hy

% =% is the required velocity field for Couette flow.

44

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




Case-I: When both plated moves with uniform velocity i.e
According to boundary condition
u=uaty=0__  (vi)
u=waty =h_ (vii)
From equation (i)
y=cy+e, __ (viii)
Using (vi) in (viii) we have

u=ci(0)+co=>c=u

Putin (vii)) D> u=ciy+u __ (ix)

Using (vii) in (ix) we have

u, —u
Uy = c1h+u1 = (= —a W
Put in (ix)
u, —u
u=——=Ly+u,
w, —u ) y+uh al. : .
u= (1, 12)} L~ which is the required solution.

*Generalization of Couette flow:

It is simple Couette flow with non-zero pressure gradient. Therefore, the boundary
conditions are same. The X-component of Navier-Stokes equation is

du ou ou ou 1 OP u
+u +v—+ =—-——+

i ox oy ez pox p

Tl e
ox oy oz T
According to assumptions

(1) One dimensional flow i.,eu=u(y),v=w=0

(11) Viscous mediumi.e p #0

(i11)) Incompressible flow i.e. p #0
(iv) Steady flow i.e. independent of time
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(v)  No body forcei.e. gx=0

2
Equation (i) = Oz—La—P+i 8L21
p ox pl oy

L10P _p[ou

pox ploy’

d’u _ladp

dy® u dx

On integrating w.r.t ‘y’

du _1dP
dy u dx

Yyt

Again, integrating w.r.t ‘y’

1 dP y°
u=——=——+cy+c,
i odx 2

u—Ld—P ‘Yo y+ec (ii)
2u dxy 1y N

Using boundary condition
u=0aty=0 (i1
u=Uaty=h_  (iv)
Using (ii1) in (i1) we have

1 dP

0=—""(00) +¢,(0)+c, = ¢, =
A0y a0 e = e
o 1 dP
Put in (11 u=——H—y +c v
(if) ) ey )
Using (iv) in (v) we have U =Ld—Ph2 +c,h
2u dx
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c,=—-—-———
h 2y dx
Put in (v) u:ii’—i 2 (%—%fl—ij
-1 4p . Uk aP
2udx” h° 2udx’
U hy[ dPJ 1 dP
u=-—y - y
h 2u dx 2u dx
h 2u dx h

Which is the equation for the velocity field of generalized Couette flow.

Equation (vi) can be written as

s
U h 2uU dx h
sop 2]

U h h)2uU dx h

h* (-dP L . N
*Let o = > U ( 7 j be the dimensionless pressure gradient. Equation (vii)
U x

becomes L_Yia (lj[l — Z} _ (viii)
U h h h

dP : .. L
Case-I: Ifo.> 0= e < 0 *Pressure is decreasing in the direction of flow.
X

dP .. L L
Case-Il: Ifa <0 = T > 0 *Pressure is increasing in the direction of flow.
X

Case-III: Ifa=0= f{—P = 0 equation (viii) becomes % = % which is the
X

solution of simple Couette flow.
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Lecture # 09
Plane Poiseuille flow:

If two parallel plates are stationary, the fully developed between the plates is
generally referred to as place Poiseuille flow.

Let plane is situated at 1 g
—h h
)’27“”61)’:5- | '?hfz
h 0 v X

The X-component of Navier-Stokes

equation is

ou ou ou ou —1dP u(o’u 0°u 0u
tU—F+V—+ W—= + | —+—+— |+ g,
ot 0x oy 0z p dx p\ Ox oy 0z

Now without body forces. (Apply assumption)

_ 2
g- yinsar
p dx p Oy
d’u 1 dP
= SS== (1)
dy U dx

Integrate w.r.t ‘y’

du 1 dP
—=——Yy+c
dy u dx

Again, integrate w.r.t 'y’

1 dP y?
Uu=——=—+cy+ec,
uodx 2

u—id—P ‘Yo v+ec (ii)
21 dxy 1y  J

Boundary conditions are

u=20 atyz% ____(iii)
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u=20 atyz—% ____(iv)

Using equation (ii1) and (iv) in (i1)

1 dP h’ h
=————+c¢,—+c, (v)
2u dx 4 2
1 dpP h? h
=———-¢,—+c¢, (vz)
2u dx 4 2
Adding equation (v) and (vi)
2
0=2 1 daPh + 2c,
2u dx 4
2
ye,_ 1> ap
4u dx
h* dpP
= Cc,=——
8u dx

On subtracting (v) and (vi)
h
O=O+2(—clj+0 = ¢ =0
2

Equation (i1) becomes

2
L dP . o _ ' dP

_Egy 8u dx

2 2
= h™ dP - 4 y2
8u dx h
Which is velocity profile of the fully developed laminar flow between two parallel

plates is parabolic. Thus, if the pressure gradient viscosity and place spacing are
specified then the velocity distribution can be determined.
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Poiseuille flow or General Poiseuille flow:

Steady viscous fluid flow drives by an effect of pressure gradient established
between the ends of a long straight pipe of uniform circular cross-section or
between two parallel plates both are at rest. This flow is symmetric and axis
symmetric. If v=(u,v,w) thenu # 0 and v=w = 0. Also u = u(y,z).

X-component of Navier-Stokes equation is

ou ou ou ou -1dP 5
+u +V—+w—= +vVu+g.  wherev =—

ot 0x oy oz p dx yo,

ou ou ou ou —-1dP ,u[
tU—+V—+ W—= + =

ot 0x oy oz p dx p

0°u N 0°u N 0°u N
ox? | oyr ozt ) &+

Without body forces (by assumption)

—-1dP o’u  0’u
Oz—d—+v 82+82 '.'uzu(y,z)
p dx y z

Similarly, for y-component

O:_—ld—P :>d—P:O = P = P(z)
p dy dz

= pressure is also independent of z.

So, P = P(x). The X-component becomes

—-1dP

0=——"—+v Viu cu=ul(y,z
e (v.2)
p dx p
dP 5
—=uV-u
dx #
1 dP 0*u 0’u
———= (1)

+
U odx 8y2 o —

Now we make some substitutions
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_J _Z r__ HU
Yy s Tyt hz(—dp}
dx

u*hz(—dpj
x dx

7,

Putting these values in (i)
2 _ 2 _
1.dP _ a*z{u*hz( dpﬂ+ a*z{u*hz( dPﬂ
U dx 6(hy ) dx G(hz ) dx

2 —dP
1 dP dx {az az}

*+ *
oy’ 0z°

1=-Vu’
= V?u" +1 =0 Which is called Poiseuille equation.

Steady laminar flow through a circular pipe (The Hagen-Poiseuille
flow):

Consider the steady laminar flow of a viscus incompressible fluid in an infinitely
long straight, horizontal circular pipe of radius R as shown in figure.

Let z-axis be along the axis of

the pipe and r denote the radial <« 0

direction measured outward from / ..

the z-axis. Let the direction of the N

A
flow be along the axis of pipe i.e z-axis. / R

The axially symmetric flow in a circular
Flow. Clearly the flow is one-dimensional. Y
The velocity component in the radial and tangential direction are zero. V.= Vg = 0.

Under these assumptions the equation of continuity in cylindrical coordinates is
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10 Gy ys L OV
r or r 06 0z
Reduce to 661/2 =0 (i) V. =V,=0
z

Showing that V, is independent of z due to axial symmetry of the flow. V, will be
independent of 0. Also, V; is a function of r only i.e. V, = V(1) (11)

The Navier-Stokes equation without body forces in cylindrical coordinates reduce
to

0= _LoF
p Oor
0= __15_1) _______ (iii)
pr 060
—1 0P oV, 10V,
0=——+v =+ —
p 0z or r or ||
Equation (ii1) can be written as
op_op_,
or 00

P =P(z) or P is a function of z alone and

opP {GZVZ 1 81/2}
iy L1

g_ or*  r or

oP OV, uoV.
>——=—t+
0z Or r or

Multiply byL
7

rdP  dV. dV.
——=r—+
U dz dr dr
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s o,
ndz dr\ dr

Integrate w.r.t ‘r’

av. r’ dp
r—== +

= A
dr  2udz

dv. r dP
= +

= lA " divide by r
dr 2udz r

Again integrating

2
vy =" e+ B (iv)
4u dz
Where the arbitrary constant A and B are to be determined from the boundary
condition. The first boundary condition is found from the symmetry of the flow
which requires that V, must be finite on the axis of the pipe (r = 0). It follows that
we must take A= 0 because otherwise V, would be infinite at r = 0. Thus equation

(iv) reduce to
2
I/Z — r_£ + B
4u dz

The second boundary condition V, = 0 at r = R. With this boundary condition the
constant B is obtained from (v)

2 2
oK p  p. R AP
4u dz 4u dz

Put the value of B in (v) we get the axial velocity distribution of Hagen Poiseuille
flow through pipe as

_r’dP R'dP
T dudz 4Audz

2 2 2 2
% :_R_d_PP r } - V=—R—d—P[1—(%j }Whichhasthe form of

© 4u dz R T 4udz

paraboloid of revolution.

53

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




Lecture # 10
Couette-Poiseuille flow:

As we have V = (u,v, w) .For one dimension (parallel flow) we can write as

V= (O, 0,0) 1.e. v=0,w=0and u# 0. Also, the equation of continuity in 2-D is

Z—u + a_u =0 where u,v are component of V and we have v =0
X
= a—u =0
Ox

So,u=u(y),u#u(x), uis afunction of y and independent of x 1.e. there is no
change in u w.r.t x.

Now from the Navier-Stokes equation in 2-D x-component

ou ou _ 10P o%u  d’u | _
PN S R L B
0x oy p Ox 0x oy~ |
2 2]
y-component u@_v+ vé—vz—ié—P+v 0 J2}+ 0 J; (i)
ox oy p 0y ox oy~ |
ou
As we have —=0,v=0andu=u(y)
ox
Using these values in equation (i) and (i1)
2
0 = 0=-L28,, 0
p Ox oy
ou_10P
oy> p Ox
uOw _10P
p Oy’ p Ox p
o’u OP
o i)
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i) = Oz—La—P: a—P:O
p Oy oy
It means P # P(y) , P =P(x) . P is a function of x. Thus, from equation (iii)
o’u OP :
e ()

Now we take Poiseuille and Couette at a time. For example, the equation (iv) is
of Poiseuille but conditions are of Couette. The boundary conditions are

7

y=0thenu=20

‘\Q

L LA P E ISP ADS PP PO AP IS PP AP ES PO PII P IPIIII OIS
4 M >
Cu_1dp i
dy® u dx h » u=u(y)
du 1 dP >
22 = s W
dy u d X TR R R R P R R AR R R R R R AT R R PR PR AR AR R R AR PR AT
y=0 u=0
1 dP
gau ) _d_.dy
dy Lodx
On integration
d 1 dP
e R T (v)
dy u dx
Again, on integration
1 dP 2 .
Uu=—Hm—y +cy+c Vi
24 dx Yy 1y 2 ( )

By applying boundary conditions

Wheny=0,u=0
vij =20=0+0+c,=>¢c,=0
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Wheny=h,u=U

(vii) = U :Ld—P.h2+ c,h
2u dx
2
ch=U _ b dp
2u dx

2u dx h 2u dx
1 dP , U h dpP
2u dx h 2u dx
U h dP 1 dP ,
Uu=—y-= y
h 2u dx ~ 2u dx
uz? _LdPy(l_zj
h 2u dx h
1l2 _ﬁd_f’z(l_xj
h 2u dx h h

Which is combine Couette Poiseuille equation.

For non-dimensional

u_y ﬁ(_d_f’j Ll( _Lj

U h 2u\ dx)Uh h

_ _ 2
i:Z+Pl( —lj wherech—(—d—PjL
U h h 2u dx ) U

P 1s non-dimensional pressure.

Non-dimensional equation of Couette Poiseuille at a time.
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Letu*zﬁ,y*:% — u*:y*+Fy*(l—y*)

This is the required Couette Poiseuille flow at a time.
Flow between two concentric rotating cylinders:

Consider the steady laminar flow of a viscous incompressible fluid between two
infinitely long concentric rotating cylinder with radii R; and R, (R, > R)). Let o,

and w, be the steady angular velocities (speed / rotating speed) of the inner and

outer cylinder respectively as shown in figure.

Assume the flow between the cylinders to be peripheral (circular or round about)
so that we have only the tangential component of velocity Ve i.e. V.=V, =0. The
equation of continuity in cylindrical coordinates is

YO Gy )y Lo O _
r or r 060 0z
Reduces to %:O (i) V. =V.=0

So, that Vy does not depend on 6 and Ve = Ve(1,z). Also, since the cylinders are
infinitely long. So, Ve cannot be a function of z. Thus, we have

Vo = V(1) (i1)
The Navier Stokes equation in cylindrical coordinates are

R — component

__o%P
—+re,

+u, —+ u -
ot " Ot r 00 r © 0z

(81,1, ou ”_9%_£+ 8u]
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1 a( au,j u, 1 0°u, 2 0u, O0u,
— |7 -t 2 2 + 2
r or or r r- o060 r- o6 oz

0-Component

(8%_'_ 8u9+u_98u9_uu9+u 6149} 1 oP

r - 4
or e a0 Mo - o0 P80

{16( 8ua)_u_9+L82u6 2 Ou, 82u9}

r - = +
or r: r*r 00* r* 00 0z

z-component

(Ouz ou, u, ou ou J 1 oP
tu, —=+—+L—+u,
ot ot r 00 0z

N li(rﬁuzj_'_L@zuZ +82uz

ool ar )T 007 T e
The Navier Stokes equation in cylindrical polar coordinates for present case
reduces to

r
0 _LoP VVML%_V_e}

r oo or?’ r or P’
oP
0=

oz ~— (V)

Equation (v) shows that P is independent of z. So, P = P(r,0).

Since Vy is a function of ‘r’ only. It follows that form equation (iii) the pressure
must be function of ‘r’ only i.e. P = P(r). Hence the term 2—1; in (iv) 1s zero. The
equation (iii) and (iv) can be written as

2
L
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d?*V 1dV V ..
drze +7 drg _r_gz O (V”)

Equation (vii) can be written as

v, +i(QJ:0
dr? dr\ r

On integration

% + Vo =24 *.» 2A is constant
dr r
l(r%+V9j=2A
r dr
d
—(rV,)=2A4r
dr( 9)

Again, on integration

2

", =24—+B
2
rV, = Ar’ +B
B
= V,=Ar+— (viii)
r

Where A and B are constant of integration. The boundary conditions of this
rotating cylinder are

V,=Rw, atr=R “v=ro
V,=R,0, atr=R, “v=rw

Using these conditions equations (viii) becomes

Rw =R A+ 5 (ix)
Rl
Rw, =R, A+ 4 (x)
2
Collected by: Muhammad Saleem >9
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Vo

Collected by: Muhammad Saleem

Solving these equation (ix) and (X)

2 2
A_Rza)z_Rl 2
- RZ_RZ

2 1

22
B__R1R2 (a)z_a)l)
- R-R

2 1

Put these values of A and B in (viii)

:{

r

M} 1(—R12R§(wz —wl)]

R22 - R12 Rz2 - R12
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Lecture # 11

We know that
Vo= Rzza)z _R12w1 +l _Rlszz(wz _w1)
/ R? — R} r R! - R’
RIR; (w, -
0 _RZ 1 2{(]?22(02 R12w1)’”_£ : Z(COZ wl)J} —(A)
2 T 1Y r
Angular Velocity:

: : v, :
Let @ be the angular velocity of the fluid then V, =rw = @ =-% from equation
r

1 1 RR} (@, — w
w:;{Rzz—Rf{(R;wz_Rlzwl)r_( 1 2(r2 J]H

(A) we get

=
R -R’ r’
e | Riwr’ — Rlor’ —RIRw, + RIR, 0,
R -R’ r’
Re-arranging
RIR - o -R (R -7 )w
w= 1 ( 2 ) 1 2( 1 ) 2 (B)

(R; - RY)r
Pressure distribution:

The radial pressure distribution resulting from the peripheral motion can be
determined form the equation
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o dr
d_P — ﬁygl
dr r

dp P 2 \? Rf‘R;(a)z _wl)z 2(R2w2 Rlza)l) 2R2(a)2 _a)l)
0| (g2 o) 7| RE(@A) |
On integration

Since P =P; atr =R, we get

R = 7 l:(szz Rlcq)R‘ &RZ(;;; a) (waz—Rfa%)-&zRf(wz—a%)hﬂRl}cl

_ R R'B(o-a) 2
cl—Pl—(Rz “RT [(szz )= " ~2(Rao,- &@)&Rz(aa—aa)lan]
Put the value of ¢, in equation (C)
(Rj RZ) {(Riwz chq) - @4@(2@2 ) ~2(Ra,~Ra)RE(o,-a)nr
+P_ P 20 — R0 R_12_R14R;(a)2_a)1)2_ 2 — R0 )RR (@ — o )n
P (Rij){(Rz , - Rlo,) . T 2(Ryw, - Rl ).R'R; (0, — o) RI}
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P=1?+( @fﬁ)z{(@@—ﬁ@)g @ m@(?_@)z(% ;J—i@@—f\f@)ﬁlﬁ(@—@)(mr—m)]
P=f?+( R;/—quz)z (REQ—RZQ)[’Z;RZJ E@(?_@)ZG %)—4@@—E@)K1§(@—q)[ﬁﬂ

D

This equation is the required pressure distribution and can be used to find the
pressure of rotating cylinder.

Maximum Velocity:

: : : .. dv,
The maximum velocity will occur at the position r where d—9 =0
r

2 p2 _
[

Now from equation (A) = V,=—; 5

2 ! r

)

dv, 1 R'R; (0, - )
drg “FE {(Rja)z—Rlza)l)J{ e r22 1
Put %:0
dr
.l R'R; (0, — o)) |
Fs (Rzza)z—Rfa)l)J{ ke r; =0
1 _(Rzza)z—Rlza)l)r2+R12R22(a)2—a)l)_ 0
R:—R? r? -

Collected by: Muhammad Saleem

(R, -Rlo)r’ +R'R; (0, - ) =0
(Rzza)2 - Rlo, )r2 =—R/R; (0, — @)

(Rzza)2 - Rlw, )r2 =R’R; (0, - o,)
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For objectives

e Several possible situations can arises depending on the value of angular
velocities o, and o, .

e If w > w, the numerator is negative. Then since R,>R; we have

2
@, — (%) @, > 0 and there is no real value of r. This implies that fluid
2

velocity increases continuously from ¥V, = R @, at the inner surface to
V, = R,w, at the outer surface.

e If w, <, , the numerator 1s positive. However, there are three possibilities

2
: : R : . :
depending on the denominator | @, — (E‘) @, | being positive, negative or

2

Z€10.

2

: R : : .. :

1n o> (—IJ @, the denominator is positive and there 1s a real value
2

occurs at a definite radius r.

2
. R : : : .
1) Ifwe< (R—lj @, the denominator is negative and there is no real value of
2
radius r.
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2
() If o, = (R—lj o, the value of radius r is indeterminate.
2

To summarize the tangential velocity attains a Maximum value at some radius

2
attains a maximum value at some radius R; <r <R only if &, > @, > (—0 o,
2

Shearing Stress:

The shearing stress in this case can be determined from

o= H dr\ r r 00

Since V. =0

d(V,
= Do =M

o lalr o R'R (0, — )
= Tre—ﬂ[”;[;'ﬂ{(]ezwzﬂ a)l)r[ ,

2R’R* (@, —
o om0+ 2R )

R —R* r
2R’R* (@, — @
= Ty = RZ{FRZ ( — 53 ’ 1) ]
2 1
2p2 _
= 7, = 2URTR, (0)2 0)1) (F)

(R -R)r

The shearing stress at the walls of inner cylinder is
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_2uRIR} (0, - @) 2uR}(0,-o)
(TrH )r:R] o 2 p2\p2 2 p2
(Rz R; )Rl (Rz R; )

—_(6)
The shearing stress at the walls of outer cylinder is

(7.0)

_ 2URIR} (0, - @) _ 2uR} (@, — ;)
= (R22 _Rlz)Rz2 (R22 _Rlz)

___(#H)

Torque on the cylinder:

Let us determined the torque or moment of shearing forces acting on the cylinders.
The shearing stress at the walls of inner cylinder is given as

_ Z,URzz(a)z - 0)1)
(Tré’ )r:R1 (RZZ . Rlz)

And the shearing force per unit length of the inner cylinder is

F=(z,,) _, x27R,

_ 2ILlR22 (0)2 - a)l)
(R; - R?)

F x27R,

47muRR; (0, — @)
F = 2 2
(R - )

The torque experience by a unit length of the inner cylinder is given by

I, =Fxr

x R

o 47URR; (0, — o))

R ek

1

47wR12 R22 (a)2 —a)l)
T{ = 2 2
(R - )

The torque of the shearing forces acting on the outer cylinder is

Tz = _T1
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Note that torque i1s independent of r. The moment or torque exerted by the
cylinders upon each other is of interest in viscometery by knowing the geometry
and measuring T(T;,T,) at either cylinder. One can calculate the viscosity of the

fluid, as first suggested by Couette (1890). This is still a popular method in
viscometery.
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Lecture # 12

Flow through a cylinder of uniform cross-section:

Consider the steady laminar flow of viscous incompressible fluid through a
cylinder of orbitrary but uniform cross-section as shown in figure below. Let z-axis
be taken as the axes of the pipe. Since the flow is parallel to z-axis. The velocity
components u = v = 0 everywhere. Moreover, the flow being steady so

9y
ot

The equation of continuity thus reduces to
M_o
0z

So, that w = w (X,y). Thus, for the present problem

0
u=v=0,w=w(xy), —=0
(xy), =

X
—_ 5 Y
— —>
- —
Z
- G

The Navier-Stokes equation without body forces becomes

Oz_la_P (l'),():_la_P (ii)
p Ox p Oy
2 2
0=-L L, W, Tw (ii)
p Oz ox~ 0Oy
From (i) and (ii) _Lop 1P,
pox  poy
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6P oP

—=—-=0 -+ P=P
ox Oy (Z)

From equation (iii)

H
Yo,

O=———+
ox* oy’

1 oP ,u(82w 82w]
Lt + Y=
p oz p

l@_P_ﬁ 82w+82w
p oz plox* o

62w+82w _oP
Hlae o7 ) oz

(62w 82w} oP oP dP
Moreover, y7i 3 N ~

2 T (T A A T
ox~ oy oz oz dz

The L.H.S of this equation is a function of x and y only while R.H.S is a function
of z only and since these are equal. Each side must be constant (say) —P. The
minus being taken as we except P to decreases as z increases. Thus,
2 2 _

82‘}4—8?— P _(iv) WherePz—d—P

ox~ Oy Y7 dz
Along with w = 0 on the walls of the cylinder. Hence the problem of finding the
velocity distribution reduces to that of finding the solution of equation (iv) subject
to boundary condition w = 0 on the cross-section of the pipe (cylinder) cuts the

XY-Plane.
The problem can be further simplifying if we write

P

w:wl—a(xﬂyz) (v)
o’'w o'w, P .

Then P 8x21_2,u _(vi)

Ang TW_ 0w _ P (vii)
o' o 2u T
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Substituting these partial derivatives in equation (iv) we find that w; has to satisfy
the two-dimensional Laplace equation.

Ow,_ P dw P _-P
ox* 2u o0 2u u

o’w, N o'w, P P

o'y o ow
o*w, 0w,

0
x> oy

With boundary condition w = 0 equation (v) becomes
0=w —i()c2 +y2)
4u

= w :ﬁ(ﬁ +y2)

In cylindrical polar coordinates (1,0,z) equation (iv) can be written as

aZVZ+laVZ+ 10V, P

0z>  r 0z  r’ o0 u

Where V, =V_(r,0) and P = is pressure gradient.

dz

Reynold Transport Theorem:

D oG - A
EU[G dV:J-JV-J.ng+[J.G g.nds
Where G is any fluid property per unit volume.

Transport of mass:

Assume the fluid property G with density p and there is no sink or source of mass
inside the system, then

JJ J o dV is the mass of fluid with volume V.
Vv

70

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




jgzwpw:o ()

By using Reynold Transport theorem
D 0 - A
A[[par =[[[%Lav+[[p dias 6=

op — A~
—dV + nds =0 by (i
f l f Py f f P q y ()
Now by using Gauss Divergence theorem

W% v+ [[[V-(pa)ar =o

;lj@_fw.(pq)jdyz 0

9 L9 (pg)=0

ot
%+q—Vp+pV.q=0 . Vp =0 By Kelvins theorem
op
—+ pV.g=0
o7 PVv.q

For incompressible

9P _y
ot

= 0+pVg=0 = pV.g=0
= V.g=0
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Transport of any dynamical:

Let G = pF be any fluid property per unit mass then prove that

ol llprar=[[[p=av

Proof: We know that the Reynold theorem
D oG ~ A :
EUIG dV:UjEdV+“G gnds ____(i)
Put G = pF
D%WPF av :Uj%(pF)dV “JIGer)dnas
By using Gauss divergence theorem

%”ijdV=”j%(pF)dV+va.(qu)dV
Zi[for av- m( o, _jdmm PE Vg +qV (pF))dV
EuijdejljFﬁ—‘;dVJrjljpEdVﬁiijv.qu+j£jq.v(pF)dV

D 0 oF
EUI[)F dV:Uj F@—’;’dmjlj pEdV+-U;J.pF V.qu+jqu.(pVF+FVp)dV
Rearranging

D%UIPF dV:jijF(‘Z—’;erv.q+q.ijdV+Ujp(%—ljJrq.VFjdV
%jlij dV:UjF(%—f+pv.q+ojdV+Ujp(%—f+q.VFjdV " Vp=0
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By Equation of continuity

2£+,0Vq 0

j“deV 0+“jp—dV

—”ij dV = J.” p—dV Hence Proved.
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