


Here are few short comings of Riemann Integration.

. The class of Riemann Integration function is relatively small.

I, Riemann Integral does not satisfy limit properties {f,,};° of Riemann
Integration functions on [a,b] such that lim,,_, ., f,, = f, then it is not
necessarily true that lim,,_,, f,, = f, then it is not necessarily true that

limy o f7 FGOdx = [} fC0dx = [7 (lim fG)) dx

ii.  #P space except £ fail to be complete under the integral norm.

The main aim of this course is to develop a more satisfactory theory of integration
to overcome above mentioned drawbacks.

Muhammad Usman Hamid

University of Sargodha

The Riemann integral, dealt with in calculus courses, is well suited for
computations but less suited for dealing with limit processes. In this course we will
introduce the so called Lebesgue integral, which keeps the advantages of the
Riemann integral and eliminates its drawbacks.

Saima Akram

University of Gujraat
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Algebras

Let X be an arbitrary non — empty set. A collection A of subsets of X is an algebra
on X if

@XeA

(b) For each set E that belongs to A ,the set E® belongs to A

(c) For each finite sequence E;, E; ,..., E, of sets that belong to A ,the set
Ui~, E;belongs to A

(d) For each finite sequence E;, E; ,..., E, of sets that belong to A ,the set
Ni—, E; belongs to A .

Of course, in conditions (b), (c), and (d),we have required that A be closed under
complementation, under the formation of finite unions, and under the formation of
finite intersections. It is easy to check that closure under complementation and
closure under the formation of finite unions together imply closure under the
formation of finite intersections (use that fact that N}, E; = (Uj=; E{)¢). Thus we
could have defined an algebra using only conditions (a), (b), and (c). A similar
argument shows that we could have used only conditions (a), (b), and (d).

Property: If A is algebrathen ¢, X € A

Solution: Since A # ¢ therefore E € A implies E€ € A
Now if E,E€ € A thisimpliessEUE¢ =X € A. Thus X € A
Alsoas X € A implies X¢ =@ € A. Thusp € A

Hence ¢, X € A

Property: If a finite sequence E;, E; ,..., E, of sets that belong to A ,the set L, E;
belongs to A .

Solution: IfEy, E; ..., E, € A implies Ef,ES, ..., E; € A
Then by definition U}, Ef € A

Implies by using de — Morgan’s law N~ E; = (Ui, Ef)° € A

Property: IfA,B € Athen A/B € A
Solution: B € A = B¢ € Athen A, B¢ € AimpliessANB*=A/BE€E A
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Sigma-Algebras (a-Algebras)

Let X be an arbitrary non — empty set. A collection A of subsets of P(X) is a o-
algebra on X if

@XeA

(b) For each set E that belongs to A ,the set E® belongs to A

(c) For each infinite sequence Ey, E, ,..., Ep, E; +1,... Of sets that belong to A ,the
set U;2, E;belongs to A

(d) For each infinite sequence Ey, E, ,..., Ep, En+1,... Of sets that belong to A,
the set N;2, E; belongsto A .

Thus a c-algebra on X is a family of subsets of X that contains X and is closed
under complementation, under the formation of countable unions, and under the
formation of countable intersections. Note that, as in the case of algebras, we could
have used only conditions (a), (b), and (c), or only conditions (a), (b), and (d), in
our definition.

Each c-algebra on X is an algebra on X since, for example, the union of the finite
sequence Ey, E; ,..., E, is the same as the union of the infinite sequence Ey, E; ,...,
En, En+1

If X is a set and A is a family of subsets of X that is closed under
complementation, then X belongs to A if and only if ¢ belongs to A. Thus in the
definitions of algebras and c-algebras given above, we can replace condition (a)
with the requirement that ¢ be a member of A .Furthermore, if A is a family of
subsets of X that is nonempty, closed under complementation, and closed under the
formation of finite or countable unions, then <A must contain X: if the set A
belongs to ,then X, since it is the union of E and E®, must also belong to A . Thus
in our definitions of algebras and c-algebras, we can replace condition (a) with the
requirement that .4 be nonempty.

If A is a o-algebra on the set X, it is sometimes convenient to call a subset
of X, A -measurable if it belongs to A. Also if algebra A is a finite collection of
subsets of a set X, then it is c-algebra. Actually this follows from the fact that
countable union of members of A is actually finite union of members of A.

Remember that the smallest c-algebra on X is { ¢,X} and called trivial
o —algebra. Also P(X) is the largest ¢ —algebra on X
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Examples: (Some Families of Sets That Are Algebras or ¢-algebras, and Some
That Are Not).

Let X be a set, and let A be the collection of all subsets of X. Then A is a o-
algebra on X.

Let X be a set, and let A = { ¢,X}.Then A is a c-algebra on X.

Let X be an infinite set, and let A be the collection of all finite subsets of X.
Then A does not contain X and is not closed under complementation; hence
it is not an algebra (or a c-algebra) on X.

Let X be an infinite set, and let <A be the collection of all subsets E of X
such that either E or Eis finite. Then <A is an algebra on X (check this) but
Is not closed under the formation of countable unions; hence it is not a c-
algebra.

Let X be an uncountable set, and let A be the collection of all countable
(i.e., finite or countably infinite) subsets of X. Then A does not contain X
and is not closed under complementation; hence it is not an algebra.

Let X be a set, and let A be the collection of all subsets E of X such that
either E or E®is countable. Then A is a c-algebra.

Let A be the collection of all subsets of R that are unions of finitely many
intervals of the form (a,b], (a,+o),0or (—oo,b]. It is easy to check that each set
that belongs to A is the union of a finite disjoint collection of intervals of the
types listed above, and then to check that A is an algebra on R (the empty
set belongs to A , since it is the union of the empty, and hence finite,
collection of intervals). The algebra A is not a c-algebra; for example, the
bounded open subintervals of R are unions of sequences of sets in A but do
not themselves belong to A.

The collection of intervals in [0,1] forms a semi algebra.

Proposition: If A is sigma algebra then for {E;}{° in A we have N{2; E; € A

Solution:

Since {E;}7° is a sequence in sigma algebra A therefore {E{}7° is also in A.

Then by definition U2, Ef € A

Implies by using de — Morgan’s law N;2; E; = (U2, Ef )€ € A
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Question: Let X be a non — empty set. Then the collection
A ={E € X:E orE°€ is countable} is a c-algebra on X

Solution: Let {E;}7{° be a sequence in A then two cases arise;

Case — I: If each E; is countable then U;2, E; is countable. Because countable
union of countable set is countable.

Case — I1: Suppose A = {Ej: keN and Ef, is countable}
Now E, CU;2, E; implies (U2, E;)¢ € Ef v AC B = B¢ C A
This means (U2, E;)€ is countable. ~+ Ef is countable

Implies U;2, E; € A. This prove that A is a o-algebra on X

Proposition: Let X be a set. Then the intersection of an arbitrary nonempty
collection of c-algebras on X is a 6-algebra on X.

Proof: Let {cA;}7° be a nonempty collection of c-algebras on X, we have to prove
N2, A; is c-algebra.

For thislet E; e N2, A; then E; € A; ; VieN
Then Ef € A; ; VieN sothat Ef € N2, A,;

Let {E;}7° be the sequence in N72; A; then {E;}7° will be the sequence in
A;; VieN . Then U2, E; € A; ; VieN.Sothat U2, E; ENZ, A; ; VieN

Hence N2, A; is a c-algebra.

Remark: The reader should note that the union of a family of c-algebras can fail
to be a c-algebra. For example; let X = {a, b, c,d} and A, = {¢, X, {a}, {b, ¢, d}}
and A, = {(p,X, {b},{a,c, d}} then A, U A, = {go,X, {a},{b},{a,c,d},{b,c, d}}

Now as {a},{b} €A, U A, but{a,b} & A, UA,
Hence A, U A, is not c-algebra.

Another similar example is for the sets X = {1,2,3,4} and A; = {p, X, {1},{2,3,4}}
and A, = {p, X,{2},{1,3,4}}
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Property: Every Algebra is a c-algebra.

Proof: Consider U2, E; =Ul, E; +U2, 1 Ei oo (1)
Take E; = ¢ Vi=n+1n+2,..

=>Uj2, E; =UL, E; € A=V, E; € A= Alisaoc-algebra.
Interesting to Remember:

. Every algebra is a topology.
. Topology needs not to be algebra.
. Sigma algebra is not a topology.

Sequence
A function whose domain is set of natural numbers is called sequence.
Sequence of Sets

Let {A,,}7° be a sequence of subsets of a set X. We say that {4,,}7 is increasing if
A, € Ap VneNie Ay S A, S A5 C -

Similarly

We say that {A4,,}7° is decreasing if A, 2 A,,; VneNie. A, 24, 2A4; 2 -
Monotone Sequence:

A sequence is called a monotone sequence if it is either increasing or decreasing.
Limit of Sequence of Sets

If {A,,}7° is increasing then lim,,_,,, A, =Un=1 4,

If {A,,}7° is decreasing then lim,,_, ., 4, =N;=1 4,

Remark:

= For a monotone sequence lim,,_,, 4,, always exists although it may be ¢
= |If {4,,}7° isincreasing then lim,,,, 4, = ¢ © A,, = ¢ VneN
= If {4} is decreasing then we may have lim,,_,., A,, = @ even A,, # ¢ for

all neN. For example if 4,, = (0, %) ;n=1,23,... Then {4,}7° is
decreasing and lim,,_,, 4, = @ also if 4,, = [0, %) then lim,,_,, 4,, = {0}
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How do we find limit of an arbitrary sequence {4,}7 of subset of a set X?
Let {A4,}7° bean arbit_rary sequence of set X, then define two new sequences

Ay =Npzp Ap and Ay =Upsp Ay

e, A; =Npaq Ap Ay =0psy Ay, .. (A, S A, S A;C )

also A; =Upsq Ap, Ay =Upsy Ay, ... (A, 24, 24;2 )

obviously Ay is increasing and Ay, is decreasing then

limit inferior of the sequence {A;}7° defined as lim_, o, infAy =Ugs1 (Npsk A7)
e, limg,einfAr = (Nps1 A7) U (Npsy Ap) U L = A U4 U ..

limit Superior of sequence {4, }7° defined as limy,_,o, SupA; =Ngs1 (U,sx 45)
e, limgoe SupAr = (Upsi Ap) N (Upsp A) N o= A; NA, N L
Remember:

If the limit superior and the limit inferior become equal then we say that limit
exists. Then we can use as needed following;

limy_ o infA, = limy_ o SupAy = limy_, Ay

Theorem:

Let A be a c-algebra of subsets of X, then Imt inf A, and Imt SupA,, are in A.
Proof: Since {A4;}7° is in A therefore;

Nysk A € A ~» A is closed under countable intersection.

Then Ups; (Nysk 4,) € A A Is c-algebra

Implies limy,_,, infA, € A

Similarly  Ngsq (Upsk 4,) € A Implies limy_,,, SupA, € A

If limk_,oo Ak exists then limk_m lank = limk_m SupAk € A
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Smallest Sigma Algebra

Let € be an arbitrary collection of subsets of X that are sigma algebras, then
smallest sigma algebra is defined as

o(e) = o0 — algebra generated by € =N;2; A;; A; contains &

By the phrase ‘smallest c-algebra on X that contains €’, we mean a c-algebra on X
that includes € and every c-algebra on X that includes ¢ also includes it.

Remark:

= £Co(e)
Solution: Sincee C A; Vi e EN2, A; = € S a(e)

» |f & and &, are collections of subsets of X, and ¢; € ¢, then a(&;) € a(&,)
Solution: Since e, C a(e,) alsoe; S &, Ca(e;) = & So(ey)
But o(&,) is smallest for collection &,
= & Co(g) So(ey) = a(egq) S o(ey)

= |If A be a o-algebra of subsets of X, then g(A) = A
Solution: Since A is smallest subcollection of subsets of X, therefore by
definition of smallest sigma algebra (A) = A

= o(a(e)) =a(e)
Solution: Since g (&) is smallest o-algebra on X, then by using o (A) = A
and putting A = o(¢) we get (o (e)) = a(e)

Corollary: Let X be a set, and let € be a family of subsets of X. Then there is a
smallest o-algebra on X that includes «.

Or Let ¢ be an arbitrary collection of subsets of X, then there exists smallest
sigma algebra A, of subsets of X containing «.

(Smallest in the sense that if A is a c-algebra of subsets of X containing ¢ then
Ay A)

Proof: Let {A;}7° be a collection of c-algebras containing . This collection is non
— empty. Since it contains at least P(X) then A, =N;2, 4; is the c-algebras
containing ¢. Let A be another o-algebras containing ¢, then N;2; A; € A so that
N2, A; = Ay € A. This implies A, c A

Hence A, is the smallest s-algebras containing e.
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Recall:
If X and Y are two setsand f: X — Y then

« fX)CSY

= |f E c Y then E needs not to be subset of f(X) and f~1(E) = {xeX: f(x)eE}
thus if EN f(x) = @ then f~1(E) = ¢

= IfEcYthenf(fY(E))SE

= =X

= fTUES) = (FUE)

= fTUES) = fFY/E) = fAW)/fHE) = X/FHE) = (FHE)”

= fTHUT E) =Up fTH(ED) also f7H(nY° Ep) =n7 f7H(E)

= If £ is an arbitrary collection of subsets of Y then f~1(¢) = {f "1(E): Ees}

Preposition: Let f: X — Y if B is a c-algebra of subsets of Y then f~1(B) will be
a c-algebra of subsets of X.

Proof:

Since YeB therefore f1(Y) = Xef ~1(B)

Now suppose Aef ~1(B) then A = f~1(E) for some EeB

Since B is a c-algebra, therefore E€eB so that

fTHED) = (FHE))" = A% f7H(B)

Let {4} be asequence in f~1(B) then 4, = f~1(E,) for some E,eB
So that UY° E,,e B . B is a c-algebra

Then f~1(UY Ep) =V fTH(E,) =UT° Ane f1(B)

This proves that f ~1(B) is a c-algebra.
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Preposition: Prove for a function f: X — Y and an arbitrary collection & of subsets

of X, a(f‘l(s)) = f1(a(e)

Proof: Since g(¢) is a o-algebra on subsets of Y, therefore f‘l(a(e)) isao-
algebra on subsets of X, so that o (f‘l(a(e))) =fo(€) .evvn. @)

And since € € a(¢) therefore f~1(e) < f71(a(e)) ........ (i)
Implies o(fL(e)) S0 (f—l(a(e))) v &, C &, then a(g,) C a(e,)

Sothat  o(f X&) S f Y (a(e)) ....... (iii)

To prove the inverse inclusion, let A, be an arbitrary c-algebra of subsets of X,
then we claim that A, = {A € Y: f~1(A)e A, } is c-algebra

Let Ee A, then f~1(E)e A, so that f~1(E€) = (f"1(E)) e A; * A, o-algebra
Implies E€e A, by definition

Let {E;}7°€ A, then {f "1(E))} e A, so that f~1(UL E;) =UT f1(EDe A4
Since A, is a c-algebra

Then U7 E;e A,. This proves that A, is c-algebra

In particular; If we choose A; = a(f~1(g)) then
A, ={AcY:f~1(Aea(f(e))}is ac-algebra.

Now ¢ € A, » Ae e then f~1(A)e f71(e) < a(f1(e))
= 0(e) € 0(A,) = A,

So f1(a(e)) € fF (AR Sa(f(e)

= Y a(e) Sa(f ) .o (iv)

From (iii) and (iv) we get o(f1(®)=f(o()
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Borel Subsets of R

Let B be the intersection of all the c-algebra of subsets of R containing every open
subset of R. Then the member of B are called Borel subsets of R.

The Borel 6-algebra

Let (X, B) be a topological space then (B) is called Borel c-algebra of open
subsets of topological space X. It is denoted by B(X) or By. Then the members of
B(X) are called Borel Sets.

Or The Borel c-algebra on R? is the s-algebra on R¢ generated by the
collection of open subsets of R¥; it is denoted by B(R%).The Borel subsets of RY
are those that belong to B(R%). In case d = 1, one generally writes B(R) in place
of B(RY).

Lemma: Let p be the collection of all closed sets in a topological space (X, B)
then o(p) = o(B)

Proof: Let Ee p a closed set then E€ will be open. Then E€e B < ¢(B)

= E€c0(B) = (E)°€a(B) = Ec 0(B)  0(B) Is c-algebra
Thus p € a(B)

= od(p) S 0(6(23)) = o(B) & S ey thena(ey) S o(ey)
=>0d(p)<Sa(B) (1)

For inverse inclusion let Fe B an open set then F¢ will be closed

= Fep S a(p) > (F)°co(p) = Fea(p) ~ o( p)is c-algebra
Thus B € a( p)

= 0(B) S a(a(p)) =a(p) v & C g, theno(ey) S o(sy)
S o(B)C0(p) o (ii)
From (i) and (ii) o(p) = o(B)
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Proposition (Just Read): The c-algebra B(R) of Borel subsets of R is generated
by each of the following collections of sets:

(a) The collection of all closed subsets of R
(b) The collection of all subintervals of R of the form (—o0,b]
(c) The collection of all subintervals of R of the form (a,b]

Proof: Let B,,B,,and B; be the c-algebras generated by the collections of sets in
parts (a), (b), and (c) of the proposition. We will show that B(R) 28, 28, 238,
and then that B; 2 B(R); this will establish the proposition.

Since B(R) includes the family of open subsets of R and is closed under
complementation, it includes the family of closed subsets of R; thus it includes the
o-algebra generated by the closed subsets of R, namely B,. The sets of the form
(—oo,b] are closed and so belong to B, ; consequently B, 23B,.

Since (a, b] = (=, b] N (=0, a], each set of the form (a,b] belongs to
B,; thus B, 2B;. Finally, note that each open subinterval of R is the union of a
sequence of sets of the form (a,b] and that each open subset of R is the union of a
sequence of open intervals. Thus each open subset of R belongs to B, and so
B, 2 B(R)

As we proceed, the reader should note the following properties of the c-algebra
B(R):

(a) It contains virtually every subset of R that is of interest in analysis.
(b) It is small enough that it can be dealt with in a fairly constructive manner.

It is largely these properties that explain the importance of B(R).

Proposition (Just Read): The c-algebra B(R%) of Borel subsets of R% is
generated by each of the following collections of sets:

(a) the collection of all closed subsets of R4

(b) the collection of all closed half-spaces in R¢ that have the form
{(x1,...,x4) * x; < b}forsome index i and some b in R;

(c) the collection of all rectangles in R4 that have the form
{(x,.o0xqg) ra; < x; < b; fori=1,...,d}
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Let us look in more detail at some of the sets in B(R%).Let G be the family of all
open subsets of R%,and let F be the family of all closed subsets of R¢. (Of course
G and F depend on the dimension d, and it would have been more precise to write
G(R%) and F(R%).) Let G; be the collection of all intersections of sequences of
sets in G ,and let F; be the collection of all unions of sequences of sets in F. Sets in
G; are often called G; -, and sets in F, are often called F... The letters G and F
presumably stand for the German word Gebiet and the French word ferme, and the
letters 6 and 6 for the German words Summe and Durchschnitt. Now we properly
define above discussed terms.

G; Set: Let (X, B) be a topological space. A set E of X is called G; set if E is an
intersection of countably many open sets. i.e. E =N7° G; where G; are open.

F, Set: Let (X,3B) be atopological space. A set E of X is called F; setif E is a
union of countably many closed sets. i.e. E =U7° F; where F; are closed.

Remark:

= |f Eis G;setthen E€ is F, set and vice versa.

= If E is G; set then there exists a sequence {E;}7° of open sets such that
E =Ny E;

= G setis the limit of decreasing sequence. i.e. if {G,,}7° be a sequence of
open sets then lim,,,, G,, =N G, = G

= |, setis the limit of increasing sequence. i.e. if {F,}{° be a sequence of
closed sets then lim,,_,, F, =U° E, = F

Proposition (Just Read): Each closed subset of R? is a G; , and each open subset
of R% is an F..

Proof: Suppose that F is a closed subset of R%. We need to construct a sequence
{U,} of open subsets of R? such that F = N,U,. For this define U, by

U, = {x € R%: ||x — y|| <%f0r50meyinF}

(Note that U, is empty if F is empty.) It is clear that each U,, is open and that

F <n, U,. The reverse inclusion follows from the fact that F is closed (note that
each point in n,, U,, is the limit of a sequence of points in F). Hence each closed
subset of R% isa G; .

If U is open, then U® is closed and so is a G; . Thus there is a sequence {U,}
of open sets such that U° = n,, U,,.The sets U are then closed, and U = u,, U§
hence U is an F,.
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Lemma: Let {E,,}7° be an arbitrary sequence in c-algebra A of subsets of X. Then
there exists a disjoint sequence {F, }{° in A such that Uy’ F,, = U7 E,

Proof: Given {E,,}7° be an arbitrary sequence in o-algebra A of subsets of X.

We now define a new sequence {F, }7° in A such that

Fy = E;

F, =E;/E; S E,

F; =E;/E,UE, C E;

E, =E,/E;UE,U..UE,_; S E,

>FE=E,Nn(E;VUE,U...UE,_;)° “A/B =AnN B¢

>F =E,N(E,NE,‘N..NnE,_;) by De — Morgan’s Law

Since {E,, }7° be an arbitrary sequence in c-algebra A therefore
E.N(E“NEN..NE,_VeA=> FEeA V neN

Implies {E,}7° is a sequence in A

Now we have to show that {F,}7° is a disjoint sequence in A.i.e. F, N F, = ¢
Let m < n then by definition of E, we have F,, € E,,

>FE,NF, SE,NE, ... (i)

Consider E,,NE,=E,N(E,NE,NE‘N..NE,,°N..NE,_{)
S>E,NE, =E, NE,; )N (E,NE“NE,N..NE5_NES,. N..NE5_))
S>E,NE,=¢pn(E,NE“NE,N..NE5_NES,. N..NE5_))
>E,NE =¢

Thus ()=>F,NE, =¢

Hence proved that {F,}7° is a disjoint sequence in A

Now we have to prove that U F, = U” Ej,

SinceE, €E,=>UE, CSU’E, ... (i1)
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Letx e U E, = x € E, for some neN

If ‘m’ is the smallest positive integer then x € E,,, butx &€ E;, E,,..., E_1
>xeE,/JE{UE,U..UE,,_=>xeE,N(E;UE,U..UE,,_;)f
>xeE, N(EFSNESN..NE,_°)=>x€eE,>xecF,=>xe ULE,
U E, CU’”E, ... (iii)

From (ii) and (iii) Uy F, =U7 E,

Proposition (Just Read): Let X be a set, and let A be algebra on X. Then A is a
o-algebra if either

(a) A is closed under the formation of unions of increasing sequences of sets, or
(b) A is closed under the formation of intersections of decreasing sequences of
sets.

Proof: First suppose that condition (a) holds. Since A is an algebra, we can check
that it is a c-algebra by verifying that it is closed under the formation of countable
unions. Suppose that {E;} is a sequence of sets that belong to . For each n let

B, =UT E;. The sequence {B,} is increasing, and, since A is an algebra, each B,
belongs to ; thus assumption (a) implies that U,, B,, belongs to A .However, U; E;
Is equal to U,, B,, and so belongs to A . Thus A is closed under the formation of
countable unions and so is a c-algebra.

Now suppose that condition (b) holds. It is enough to check that condition
(a) holds. If {E;} is an increasing sequence of sets that belong to A ,then {E{} isa
decreasing sequence of sets that belong to A , and so condition (b) implies that
N; Ef belongs to A .Since U; E; = (N; E7)¢ , it follows that U; E; belongs to A .
Thus condition (a) follows from condition (b), and the proof is complete.

Set of extended Real Numbers
Aset R = {—o0} UR U {00} is called set of extended real numbers.
Set Function

Let X + ¢ and ¢ be an arbitrary collection of subsets of X, then the function
u: € = [0, 00] is called the set function.
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Properties of Set Function

Additive Set Function: A set function u: e - [0, oo] is said to be additive if
E,,E, e and E; N E, = ¢ such that u(E, UE,) = u(E,) + u(E,)

Sub — Additive Set Function: A set function u: & — [0, o] is said to be
additive if E;,E, e € and E; U E, € € having no need to E; N E, = ¢ such
that u(Eq U E) < u(Ey) + u(Ey)

Monotone Property: A set function u: e - [0, o] is said to be monotone if
E,E, e esuchthat E; C E, = u(E;) < u(E,)

Finitely Additive Property: A set function u: € — [0, oo] is said to be
finitely additive if for every disjoint sequence {E,, }7°

We have (U7 E;) = X7 u(E;)

Finitely Sub — Additive Property: A set function u: € — [0, oo] is said to be
finitely sub — additive if for every disjoint sequence {E,, }7°

We have u(U7 E;) < X7 u(Ey)

Countably Additive Property: A set function u: e — [0, oo] is said to be
finitely additive if for every disjoint sequence {E,, }7°

We have u(Uy’ E;) = X7 u(E;)

Countably Sub — Additive Property: A set function u: € — [0, o] is said to
be finitely sub — additive if for every disjoint sequence {E, }{°

We have u(Uy’ E;) < X7 u(E;)

Signed measure: If p is countably additive and satisfies (@)= 0, then it is a
signed measure. Thus signed measures are the functions that result if in the
definition of measures the requirement of non — negativity is removed.

Rough Sketch of Measures

Roughly speaking a measure is a weight distribution on a set X. For example, if we
toss a coin, the sample spaceis S = {H,T}so W(H) = % = W (T). Also noted that
measure is a set function.

Pre —

Measure

Let A be sigma algebra of subsets of a non — empty set X, then a non — negative
extended real valued function u: A — [0, o] is called a measure if u(¢p) =0
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Measures

Let A be sigma algebra of subsets of a non — empty set X, then a non — negative
extended real valued function u: A — [0, o] is called a measure if;

i ulp)=0
i. If {E;}{° isadisjoint sequence in A then u(UP E;) = X7 u(E;)

Or Let X beaset, and let A be a s-algebra on X. A measure (or a countably
additive measure) on A is a function u: A — [0, o] that satisfies u(¢)= 0 and is
countably additive.

Remember:

= |f Xisaset,if A is aoc-algebraon X, and if u: A — [0, oo] is a measure on ,
then the triplet (X, A ,u) is often called a measure space.

= If Xisasetand if A is a o- algebra on X and if u: A — [0, o] is a measure
on A then the pair (X, A ) is often called a measurable space.

= If Xisaset, if A is a c-algebra on X, and if u: A — [0, 0] is a finite
measure on , then the triplet (X, A ,u) is often called a finite measure
space. i.e. u(X) < o

= If Xisaset, if A is a c-algebraon X, and if u: A — [0, 0] is a o-finite
measure on , then the triplet (X, A ,u) is often called a o- finite measure
space. i.e. there exists a sequence {E;}7° in A such that X =u?{° E; with
U(E;) <o ViEN

» Let (X, ) be a measurable space then the members of A are called A —
measurable sets.

» Let (X, A .u)is a measure space a set DeA is called o- finite set if there

exists a sequence {D,}7° in A such that D =U7° D, with u(D,,) < o0 Vn €N

= If (X, A ,n) is a measure space, then one often says that pu is a measure on
(X, A ), or, if the c-algebra A is clear from context, a measure on X.
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Examples:

(@) Let X be an arbitrary set, and let A be a s-algebra on X.

Define a function p : A — [0,+o0] by letting W(E) be n if E is a finite set with
n elements and letting W(E) be +oo if E is an infinite set. Then p is a measure;
it is often called counting measure on (X, ).

(b) Let X be a nonempty set, and let A be a c-algebra on X. Let x be a member of
X. Define a function oy : A —[0,+0] by letting 64(E) be 1 if x € E and letting
O«(E) be 0 if x ¢ E. Then dy is a measure; it is called a point mass concentrated
at Xx.

(c) Let X be the set of all positive integers, and let A be the collection of all
subsets E of X such that either E or E® is finite. Then A is an algebra, but not a
o-algebra .Define a function p : A —[0,+o0] by letting W(E) be 1 if E is infinite
and letting u(E) be O if E is finite. It is easy to check that p is a finitely additive
measure; however, it is impossible to extend p to a countably additive measure
on the c-algebra generated by A (if Ex = {k} for each k, then w(U7° E}) = w(X)
=1, while X7 u(Ey) = 0).

(d) Let X be an arbitrary set, and let A be an arbitrary c-algebra on X. Define a
function p : A —[0,+0] by letting u(E) be +oo if E # ¢, and letting w(E) be O if
E = ¢.Then p is a measure.

(e) Let X be a set that has at least two members, and let <A be the c-algebra
consisting of all subsets of X. Define a function p : A — [0,+0] by letting w(E)
be 1if E # ¢ and letting w(E) be 0 if E = ¢.Then p is not a measure, nor even a
finitely additive measure, for if E; and E, are disjoint nonempty subsets of X,
then W(E; U E,) =1, while w(E;) + w(E,) = 2.

() The set function u: Br — [0, o] where X = R defineas u(E) = |E| isa
measure on By.

(g) The set function u:Br — [0,00] defineas u(E) = {0 l].c 2ekb IS @ measure

1 if 2¢E

on By.

Solution: Clearly u(¢) = 0 because 2 & ¢

Let {E;}7° be a disjoint sequence in By then

Case—I:If 2 ¢ E; Vithen u(U" E;) =0 =X u(E;)

Case —Il: If 2€E, for ke N then u(U E;) =1 = X7 u(E;)

Thus u is a measure on By.
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(h) Give an example of set function which is not a measure.
Or The set function u: P(R) — [0, 0] where X = R define as
0 if Eis finite

u(E) = {1 if E is infinite is not a measure on P(R).

Solution: Clearly u(¢) = 0 because ¢ is finite.

Let {{n}}." be a disjoint sequence in P(R) then

u({n}) =0 vne R and since {n} is finite = . u({n}) =0
But u(Uy {n}) =1=u(N) since N is infinite.
Implies p(UP {n}) # X3° u({n})

Hence u is not countably additive. Not a measure.

Lemma: Let X # ¢ and A is a c-algebra on X, also u: A — [0, 0] is a
measure on a c-algebra A, then prove that u has finitely additive property.

i.e. for adisjoint sequence {E;}T in A we have u(Ut E;) = YT u(E;)
Proof:

Let {E;}7° be a disjoint sequence in A suchthat E; = Vi=n+1n+2,..
Since u is a measure therefore u(¢@) = 0 and u (U E;) = X7 u(E;)

= u[(UT E) U (Upyq ED] = XTu(E) + X1 u(Ey)

= u[(UT E)) U (Uileg @)] = 21 1(E) + X1 1)

= ul[(UT E) U (@)] = X7 w(ED) + Xr41(0) “ulp) =0

= p(U1 E;) = X7 n(Ey)
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Lemma: Let X # ¢ and A is a c-algebra on X, also u: A — [0, oo] is a measure
on a c-algebra , then prove that 4 has monotonicity property.

Or Let (X, A ,u) be a measure space, and let E; and E, be subsets of X that
belong to A and satisfy E; € E,. Then u(E;) < w(E,).

Or Let u be a signed measure on the measurable space (X, A ), and let E, be a
subset of X that belongs to A and satisfies —oo < u(E,) < 0. Then there is a
negative set E; that is included in E, and satisfies u(E;) < u(E,)

Proof: LetE,,E,eAand E; € E,thenE, = E; U (E,/E;)
= u(E;) = u(Ey U (Eo/Ey)) = pu(Ey) + u(EL/Ey) ++ p is finitely additive
= u(E,) — u(Ey) = u(E,JE)) =0 = EE,e A EyJE € A, u(E,/E;) =0
= u(Ez) — u(Ey) = 0= p(Ey) = p(Ey) = w(Ey) < p(Ez)

Lemma: Let X # ¢ and A is a c-algebra on X, also u: A — [0, ] is a measure
on a c-algebra , also if E; € E,. Then prove that w(E,/E;) = u(E,) — u(E)

Proof. LetE,,E,eAand E; € E,thenE, = E; U (E,/E;)
= u(E;) = u(Ey U (Eo/Ey)) = p(Ey) + u(E,/Ey) ++ u is finitely additive
= W(Ez/Eq) = p(Ez) — p(Eq) wEy N (E2/E) = ¢

Lemma: Let X # ¢ and A is a s-algebra on X, also u: A — [0, oo] is a measure
on a o-algebra A, then prove that 4 has Countably Sub — additive property.

i.e. for adisjoint sequence {E;}7° in A we have u(U° E;) < X7 u(E;)

Proof:

Let {E;}7° be a sequence in A then U E; = E; U (E,/E;) U (E3/E; UE,) U ...

= u(U’ E;) = u(E; U (Ey/E;) U (E3/E; UE,) U ...)

= u(Uy° Ep) = p(Eq) + p(Ez/Ey) + p(Es/E; U Ey) + -

= u(UP E;) < u(Ey) + u(Ey) + u(E;) + - =X u(E;) monotonicity property

= u(U7 Ey) < X7 u(E;)
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Lemma: Let X # ¢ and A is a c-algebra on X, also u: A — [0, ] is a measure
on a c-algebra A, then prove that u has finitely Sub — additive property.

i.e. for afinite sequence {E;}} in A we have u(U% E;) < X1 u(E;)

1 Proof: Let {E;}7? be a sequence in A define {F,}’ by F, = E; ;k=1,2,..,n
andF, =@ YVk=n+1,n+2,.. then U} E; =UT F;

= u(Ut E;) = u(Uy F) < X7 uF) = X1 u(F) + Xaer u(Fy)

= u(UT Ep) < YT u(F) + X u(e) “Fe=@ Vkz=zn+1
= u(UT Ep) < 2T u(Fe) + X71(0) wu(p) =0
= u(UT E;) < YT u(E;) v F, = E;

2" Proof: Let {E;}* beasequenceinAsuchthatE;=¢ Vk=n+1n+2, ..

then U E; = (UL E)) U (U1 E)) = (VT E) “Ei=oVk=2n+1
= u(UT Ep) = p(uy Ey) < X7 p(Ey) = X1 p(E) + Xrvq H(E)

= u(UT Ey) < 2T u(E) + X7 u(e) “Ei=p Vkzn+1

= p(Ut Ep) < XTu(E) + Xr1(0) wu(p) =0

= p(Ut E;) < X3 pu(E)

Finite measure

Let X # @ and A is a c-algebra on X, then u:A — [0, o] is called a finite
measure if u(X) < oo,

o- Finite measure

Let X # @ and A is a o- algebra on X, then u: A — [0, oo] is called a o- finite
measure if there exists a sequence {E;}7° in A such that X =U7° E; and u(E;) < o

Note

If {E;}3° is a monotone sequence in A then {u(E,)}5° is also a monotone sequence.
So lim,,_,, u(E,) exists in [0, oo]
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Question: Give an example of measure which is o- finite but not finite measure.
Solution:

Let X = N and A = P(N) then define a function u: P(N) — [0, ] by
u(E) = |E| this measure is o- finite but not finite measure because u(N) = o
which is not finite. But for a sequence {{n}}io such that N =u$ ({n}) and

u({n}) = |{n}| = 1 < oo for each neN.

This implies u is o- finite but not finite measure.

Question: Give an example of measure which is finite measure.
Solution:

Let X = {1,2}and A = {¢, X, {1}, {2}} is a o- algebra on X then define a function
p: A = [0,00] by pu(p) = 0,u(X) = 1,u({1}) = % = n({2}) then p is a measure
onA and u({1}u{2}) =pu({12h) =1

Also u({1}) +p({2) =>+-=1and u(X) = 1 < oo

Therefore u is a finite measure.

MONOTONE CONVERGENCE THEOREM FOR MONOTONE
SEQUENCE OF MEASUREABLE SETS (The Continuity of Measure)

Let X # @ and A is a c-algebra on X, also u: A — [0, o] is a measure then

a) If {E,}7° is an increasing sequence then
u(UT Ep) = lim p(Ey,) = p (,llil{?o En)
b) If {E,,}7° is a decreasing sequence with u(E;) < oo then
u(NY En) = lim p(E,) = p(lim £, )

Proved on next page
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Theorem: Let X # ¢ and A is a c-algebra on X, also u: A — [0, o] is a measure
then if {E,,}{° is an increasing sequence then lim,,_,, u(E,) = u (limEn)
n—>oo

Proof: Note that if {E,,}7° is a monotone sequence in A then {u(E,)}7" is also
monotone sequence. So that lim,,_,, (E,,) exists in [0, co]. Now suppose that
{E,, }7° is increasing then {u(E,,)}7° is increasing. Here we discuss two cases;

Case — I: If u(E,, ) = oo for some nyeN then limy,_,c, u(E,) = ........ ()
Now E,, CUT E, = lim E, « {E,}7° is increasing
n—>0o
= u(E,,) <u (lim En) by monotonicity of
n—oo
> M(AmEn) > u(Ey,,) =0 = “(HJOE”) > 00 = M(T{LngoEn) =0 ... (i)
From (i) and (ii) we get lim,, o u(E,) = (lim En)
n—-oo
Case— Il: If u(E,) < oo VneN then taking E,, = ¢ we define a disjoint sequence
{F}1 as
Fy = E1/E,
F, = E;/E;

F, = E,/E,_{ VneN

Obviously U E, =UTF, ....... (ii1)

Since we know that fact that for increasing sequence lim,,_,, E,, =U{" E,,
= lim,, E, =U7 E, from (iii)

> u(limEy) = w(US B = 2P u(E) = p(lim Ey ) = I 4(En/Enr)

)
= p(limEy) = SP[u(En) = #(En-1)] = Jim TEi[1(Er) — w(En-1)]
)

= (lim E, ) = lim [{0(E;) = w(Eo)} + {u(Ez) — w(ED} + -+ + {u(Ey) —

n—oo

u(Ex-1)}]
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= p(limE, ) = lim [u(E) — p(Eo)] = Jim [u(E,) — 0]
n—oo k—oo k—oo

Here we use the fact u(E,) = u(p) =0

= u (lim En) = lim u(E,) = limu(E,) = u (limEn) = limp(E,)
n—-oo k— oo n—oo n—oo n—o

Theorem: Let X # ¢ and A is a c-algebra on X, also u: A — [0, 0] isa
measure then if {E,,}7° is a decreasing sequence then lim,,_,., u(E,) = u (limEn)

n—-oo
where u(E{) < oo

Proof:

Suppose that {E}, }7° is decreasing with u(E;) < oo thenlim,,_, . E,, =N7° E,
Consider E, /N E, = E; N (N7 E,)° ~A/B =AnN B¢

= E; /N7 Ep = E; N (VY ER) =U7 (Ey N ER) =U7° (E1/Ey)

= u(E1/NT Ey) = u(VT (E1/Eyn))

Since {E; /E,,}7° is increasing therefore lim,,_, ., (E; /E,,) =VU7° (E1/E,)

= w(E /07 Ep) = u(Ey) — u(ny Ey) = u(lim,, o (E1/Ey))

= p(Er) — pllimpo Ey) = lim (u(Er/E)) (N, ) = limuEy)
= p(Er) = pimy-co En) = lim (u(E1) ~ lim (u(En))
= p(Er) — p(limp o Bn) = p(Ey) — lim (u(Ey)) v u(E;) <o

= p(lim,, ., Ey) = ,IQLTO(”(E"))

MUHAMMAD USMAN HAMID (0323 - 6032785)



26

Hahn Decomposition Theorem

Let (X, A) be a measurable space, and let u be a signed measure on (X, A). Then
there are disjoint subsets P and N of X such that P is a positive set for u, N is a
negative set for u, and X = PUN.

Proof:

Since the signed measure u cannot include both +oo and —0 among its values, we
can for definiteness assume that —oo is not included.

LetL = inf{u(A): Aisanegative set foru}#¢@ .............. (1)

Choose a sequence {A,} of negative sets for u for which L = limu(A,,), and let
N =U" A,

Where N is a negative set for u (each A — measurable subset of N is the union of a
sequence of disjoint A —measurable sets, each of which is included in some A,,).
Hence L < u(N) < u(4,) holds for each n, and so L = u(N).

Furthermore, since u does not attain the value —oo, (N) must be finite.
Let P = N€. Our only remaining task is to check that P is a positive set for p.

If P included an A —measurable set A such that u(A) < 0, then it would include a
negative set B such that u(B) < 0 by the following result;

(Let u be a signed measure on the measurable space (X, A), and let A be a subset
of X that belongs to A and satisfies —oo < u(A4) < 0. Then there is a negative set
B that is included in A and satisfies u(B) < u(4)),

And N UB would be a negative set such that

U(N UB)= u(N)+u(B) < u(N)= L where w(N) is finite
However this contradicts (i), and so P must be a positive set for .
Hahn decomposition

A Hahn decomposition of a signed measure u is a pair (P,N) of disjoint subsets of
X such that P is a positive set for u, N is a negative set for u,and X = P UN.

MUHAMMAD USMAN HAMID (0323 - 6032785)



27

Jordan Decomposition Theorem : Every signed measure is the difference of
two positive measures, at least one of which is finite.

Proof: Let u be a signed measure on (X, A). Choose a Hahn decomposition (P,N)
for u, and then define functions u* and u~ on A by

ut(A) =u(ANnP) and u=(4) = —u(ANN).

It is clear that u* and u~ are positive measures such that 4 = u* — u~.Since +oo
and —oo cannot both occur among the values of y, at least one of the values u(P)
and u(N), and hence at least one of the measures p+ and p—, must be finite.

» The variation of the signed measure p is the positive measure |u| defined by
|u| = u* — u~. Itis easy to check that |u(A)| < |u|(A) holds for each A in
A and in fact that |y is the smallest of those positive measures v that satisfy
|u(4)| < v(A) foreach Ain A.

= The total variation [|u|| of the signed measure u is defined by

lull = |pl(X)
= Complex Measure: Let (X, A) be a measurable space, then u be a complex

measure if u(p) = 0and u(UY E;) = 2.7 u(E;) for disjoint sequence E;

Proposition: Let (X, A) be a measurable space, and let u be a complex
measure on (X, A). Then the variation |u|of p is a finite measure on (X, A).

Proof: The relation |¢|(¢) = 0 is immediate.

We can check the finite additivity of |u| by showing that if B; and B, are disjoint
sets that belong to A ,then |u|(B1 U By) = |u|(By) + |u|(By).

For this, note that if {A;}7 is a finite partition of B; U B, into A — measurable sets,
then  X;|u(4;)] < Zjlu(4; 0 By)| + Ejlu(4; 0 B2)| < |pl(By) + |ul(B2)

Since |u|(By U B,) is the suprimum of the numbers that can appear on the left side
of the inequality, it follows that |u|(By U B,) < |u|(By) + |u|(B)

A similar argument, based on partitioning B, and B,, shows that

lul(By) + |l (B2) < |ul(By U By)
Thus |u|(B; U By) = |u|(By) + |u|(B,), and the finite additivity of |u| is proved.
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Lemma: Let X # ¢ and A is a c-algebra on X, also u: A — [0, oo] is a measure
on a c-algebra A, then for an arbitrary sequence {E,,}1 in A we have
u(lmt InfE,) < lmt Infu(E,)

Proof: We have Imt InfE, =U,s1 (Ngsn Ex) Where {N;s, E; }T is an increasing
sequence, then Imt InfE,, =U, 51 (Ngsn Ex) = lim,_, o (Ngsn Ex)

= p(lmt InfEy) = p(limy, o (Ngzn Ex))

= u(lmt InfE,) = lim (u(Ngsy Ex)) by monotone convergence theorem
n—-oo

= u(lmt InfE,) = lim Inf (u(Ngsn Ex)) as limit exists
n—-oo

= .u(lmt InfEn) < lim Inf(#(En)) “Nigzn Ek < En .u(nkzn Ek) < .U(En)
n—oo

= u(lmt InfE,) < lmtinfu(E,)

Lemma: Let X # ¢ and A is a c-algebra on X, also u: A — [0, o] is a measure
on a c-algebra A, then there exists a set A € A with u(A4) < co suchthat E,, € A
for all n € N then we have

u(lmt SupE,) = lmt Supu(E,)

Proof: We have Imt SupE,, =N,,;51 (Uxsn Ex) Where {U,-,, E;}T is a decreasing
sequence, then Imt SupE,, =N,s1 (Ugsn Ex) = limy 00 (Ugsn Ex) -....... (1)

Since E,, € A € A foralln € N therefore U,s, E, € A
= U(Ups1 Ex) S u(4) < oo by monotonicity of u
= U(Upsq Ex) <

(l) = ,u(lmt SupEn) = :u(limn—mo(ukzn Ek))

= u(lmt SupE,) = lim (u(Ugs, Ex)) by monotone convergence theorem
n—oo

= u(lmt SupkE,) = lim Sup(u(Ugsn Ex)) as limit exists
n—oo

= ,u(lmt SupEn) = Al_glosup(.u(En)) “Ukzn Ek = En .U(URZn Ek) = .U(En)

= u(lmt SupE,) = lmt Supu(E,)
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Lemma: Let (X, A, u) be a measure space. If D € A is a o- finite set then there
exists an increasing sequence {F,}7° in A such that lim F, = D and u(E,) < o
n—->0oo

also there exists a disjoint sequence {G,,}7° in A such that U G, = D and
u(G,) < o foralln € N.

Proof: Suppose D € A is a o- finite set then there exists {D,,}7° in A such that
D =U? D, and u(D,,) < oo for all n € N. Now define a sequence {E,}7° as
Fn =U711 Di ............. (l)

Then clearly the sequence {E,}7° is increasing in A, then lim F, =U7° E, and

n—oo

U E, =U (UP D;) =U® D, = D implies Tlli_rEan =D

Now (i) = u(F,) = u(UT D;) = YT u(D;) < o(i) = u(F,) <

Now we define a sequence by {G,}7° by

G,=F G,=F,/F, , ... . G,=FE,JF,_4 vn > 2
Then {G,}7° is a disjoint sequence such that U° F,, =U{° G,, = D

Thus  u(Gy) = u(F;) < oo(i) = p(G) <

Now u(Gy) = u(E/Fn-1) = u(Fy) — u(Fpq) < p(fy) < oo

= u(G,) < o« vn =2

Lemma: If (X,A,u) is a o- finite measured space then every D € A is a o- finite.

Proof: Let (X, A, u) is a o- finite measured space then there exists {E,,}7° in A
such that U” E,, = X and u(E,) < o VvneN

Let D € A define a sequence {D,};° such that D,, = D n E,, then
UrD,=U"DNE)=DN(UE)=DNnX=D=U"D,=D
NowD, € E, VneN

= u(Dp) < u(Ep) < 0= u(Dy) < o0

Hence D € A is a o- finite.
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Remarks

= Null Set: Let (X, A, 1) be a measure space, and E € X. Then E is called
Null Set with respect to u if u(E) = 0. This also sometime called u —
negligible.

= ¢ is Null Set in every measure space but a Null Set need not to be ¢

Lemma: Countable union of null sets is null set.

Proof: Let {G;}7° be a collection of null sets in (X, A, u). We need to show that
U G;isanull set.i.e. u(U G;) =0

Since u(UY G;) = X7 u(G;) =0 asu(G;))=0VieN
Therefore u(U G;) = 0 implies U G; is a null set.

Hence Countable union of null sets is null set.

Complete a- Algebra: Let (X, A, i) be a measure space, then o- Algebra A is
called Complete o- Algebra with respect to measure u if every subset E,, of a null
set E is a member of A.

In other words, E, € E implies u(E,) < u(E). Remember since u(E) = 0
therefore u(E,) < 0 but u(E,) = 0. Hence u(E,) =0

Complete Measure Space: A measure space (X, A, ) is called a complete
measure space if o- Algebra A is a complete o- Algebra with respect to measure u

For example: Let X = {a,b,c}and A = {¢p, X, {a},{b, c}} isa o- Algebraon A

the ndefinepon A by u(p) =0,u(X) =1,u({b,c}) =0,u({a}) = 1thenuis
a measure on A, ({b,c}) isanull setin A, but {b} S {b, c} is not a member of o-
Algebra. So (X, A, 1) is not a complete measure space.
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Outer Measures: Let X be a set, and let P(X) be the collection of all subsets of X
/An outer measure on X is a function u* : P(X) — [0, +o0] such that

(@) u(p)=0
(b) if E; € E, € P(X), then u*(E,) < u*(E,) (monotonicity)
(c) if {E,,}7° is an infinite sequence of subsets of X, then

w (UL E) <Y u(E) (countably sub — additive)

Remember

= An outer measure on X is a monotone and countably sub — additive function
from P(X) to [0 ,+o0] whose value at ¢ is 0.

= In general, an outer measure does not satisfy additivity condition on P(X)
and so fails to be a measure but we will prove later that there exists a o-
Algebra A € P(X) such that outer measure when restricted to A satisfy the
additivity condition and hence becomes a measure.

= A measure can fail to be an outer measure; in fact, a measure on X is an
outer measure if and only if its domain is P(X).

= For each outer measure u* on X there is a relatively natural c-algebra M-
on X such that the restriction of u~ to M, is countably additive, and hence a
measure.

Examples:

(@) Let X be an arbitrary set, and define u* on P(X) by pu* (A) =0 if A = ¢ and
u*(A) = lotherwise.Then p* is an outer measure.

(b) Let X be an arbitrary set, and define pu*on P(X) by pu*(A) = 0if A is
countable, and p*(A)= 1if A is uncountable. Then p*is an outer measure.

(c) Let X be an infinite set, and define p*on P(X) by p*(A) = 0 if A is finite, and
w*(A) = 1if A is infinite. Then p*fails to be countably subadditive and so is
not an outer measure.

(d) Let X = {1,2} then P(X) = {¢, X, {1}, {2}}. Define P(X) by u* (¢) =0,
w {1} =5u"({2}) = 7, u*(X) = 8 then u* is an outer measure.

(e) Let X = {1,2} then P(X) = {¢, X, {1}, {2}}. Define P(X) by u* (¢) =0,
w {1} =5,u"({2}) = 10,u*(X) = 16 then u* is not an outer measure,
because not countably sub — additive.
e w ({13 u{2}) £ ({1) + ({2}

(f) For a set function u*: 2 = P(X) — [0, =], following functions are outer
measures.

. . 0 ifA=¢ . 0 if Ais countable

W) = Al wd) = {1 ifA+¢@ '’ W) = {1 if Aisuncountable
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Property: Sum of two outer measures is outer measure.

Proof: let /" and ‘g’ be two outer measures from 2% — [0, o] then define
(f +9):2% = P(X) = [0,0] by (f + g)(4) = f(4) + g(4)

= NowifA=¢@then(f+g)(@)=f(p)+g(@p)=0+0=0
=>(f+9)(@)=0 » f and g are outer measure.
= LetA;,A, € 2° = P(X) suchthat A, € A, then

f+9)A) = (F+9)A4,)
= AndletAq, A,,...,A; € 2% = P(X) and A CU 4; then

f+9A@ =f(A)+g(A) <XTfA)+2X79(4)
(f+9)(A) =f(A)+g(A) = XT7[f(4) + g(AD] = X7(f + g)A;
(f +9)A) < X7 + 9)A;

Hence f + g or Sum of two outer measures is outer measure.

Property: Difference of two outer measures needs not to be outer measure.

Proof: let u: P(X) - [0,+c] and u' : P(X) — [0, +oo] be two outer
measure defined respectively by

(0 ifA=¢ (0 if Ais countable
wA) = {1 if A+ ¢ w(A) = {1 if Aisuncountable

Then define y — p' : P(X) - [0, +o0] by (u — p)(A) = u(4) — 1'(4)
Clearly (u — 1")(¢@) = 0 but if A is uncountable and A = ¢ then
(u—u)) =pd)—pwA)=0-1

> (- p)(4) = -1

= (u—p)(4) & [0, o]

Thus u — u' : P(X) - [0, +oo] is not an outer measure. Hence the result.
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Property: Scalar multiplication of outer measures is an outer measure.

Proof: let u : P(X) — [0, +oo]be an outer measure and ‘c’ be a non —
negative real number then define cu : P(X) — [0, +o] by (cu)A = cu(4)

= NowifA = ¢ then (cu)p = cu(p) =0
= (cw)p =0
= LetA;,A, € 2° = P(X) suchthat A, € A, then
u(Aq) < p(d;) = cu(4y) < cu(4z) = ()i < (cwA;
= AndletAq, A,,...,A; € 2% = P(X) and A SUT A; then
(cwA = cu(A) < c X7 u(4y) < X7 cu(4))

(c)A < X7 cu(Ay)
Hence cu or Scalar multiplication of an outer measures is an outer measure.

Remark
Let E € P(X) then forany A € P(X) we have;
ANE)YN(ANE)=¢ and ANE)UANE®)=A

u* - Measurable Set: Let u* be an outer measure on P(X) we say that E € P(X) is
1 - Measurable or additive if for all A € P(X) we have carethedory condition as
follows;

wA)=w@ANE)+u (ANE°)

Where A is called testing set for E. Remember that the collection of all u* -
Measurable sets is denoted by 72 (u*)

Remember:

" IfA=(ANE)VU (AN E®) then by sub — additivity of u* we have
w ) spwAnE)+u (ANES)
In order to prove carethedory condition i.e.
p(A) =u(ANE)+u"(ANES)
We need only to verify that u*(A) = W (ANE)+ u (ANES)

= A p*-measurable subset of X is one that divides each subset of X in such a
way that the sizes (as measured by p*) of the pieces add properly. A
Lebesgue measurable subset of R or of R¢ is of course one that is
measurable with respect to Lebesgue outer measure.
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Property: ¢ and X are u* - Measurable. Or ¢, X € m(u*).
Proof: By carethedory condition for any 4 € P(X)

WA =wAnE)+u (ANnES) ......... (1)
LetE=¢in(i) w4 =pAng)+u(Ane°)
wA)=u(p)+u(AnX)=0+pu"(4)

u*(A) = u*(A) implies ¢ € m(u*)

Nowlet E=Xin(i)) uA)=uAnX)+u (AnX°)
W) =pw@+pAne) =p ) +u(p) =p(4)+0
u(A) = u*(A) implies X € m(u*)

Thus ¢ and X are u* - Measurable.

Property: If Eis u* - Measurable then E€ is u* - Measurable. Or if E € m(u*)
then E€ € m(u").

Proof: If E € m(u*) then for all A € P(X) we have
wA)=w@ANE)+u (ANE®)

w(A) = (ANE)+ u (An (ES) by taking E = E€
Implies E€ € m(u*)

Remark: if E € m(u*) then E€ &€ m(u*).i.e. if E ¢ m(u*) then E€ is not
Measurable. For example, consider X = {1,2} then P(X) = {¢, X, {1},{2}}. Define
PX) by u* () =0,u*({1}) =5,u*({2}) = 7, u*(X) = 10 then u* is not an outer
measure, because not countably sub — additive.

e p ({13 v {2} £ p~({1) + " ({2ZD)

Take A = X and E = {1} then

WANE)+pw(AnE) =p (An{1}) +p (An{2}) = p({1) + {2}
WANE)+uw(ANE)=5+4+7=12 # u*(X)

If {1} is not u* - Measurable then {1}¢ = {2} is also not u* - Measurable.
Similarly for A = X and E = {2}
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Lemma: Let X # ¢ and u*: P(X) — [0, o] be an outer measure on X. If
E\,E, € m(u*) then E; UE, € m(u*) for E;,E, € P(X). i.e. The union of a finite
collection of measurable sets is measurable.

Proof: Since E; € m(u*) then for a testing set A € P(X) we have

WA =pw(AnE)+u (AnES) ... (i)

If we take a particular testing set A N E;¢ € P(X) for E, € m(u*) we have
WANES) =@ ((AnE)NE)+ 1 ((ANE)NE")

WANES) =p((AnE)NE)+u(An (B NE))

WANES)=p ((ANE)NE)+u(An(E,VE)Y) ... (ii)
Using (i) in (i)
WA =pANED)+p ((ANE)NE) +w (AN (Ey UE)S) ... (iii)

To prove the required E; U E, € m(u*) consider first two terms of above
(ANEDU(ANES)NE)=@ANE)VU(AN(E;°NE))
(ANEDU((ANEC)NE,)=An(EL VU (E;NE))
(ANEDU((ANES)NE,) =An(E, U (E,/E))
(ANEDU((ANES)NE)=AN(E;VE,)

AN(E;UE) =(ANEDU((ANES)NE,)

> u(An(ELVEy)) = ((A NEHU(ANEDN EZ))
Su(AN(ELVE))Sw(AnE) +uw ((AnES)NE,)
SWANED)+p (ANE)NE) =p (AN (ELVEy)) e, (iv)
Using (iv) in (iii) u*(4) = u* (AN (E; UE,)) + u*(A N (E; U E,)°)
And w(A) < (AN (ELUEY))+u (An (B U E)°)

Hence p(A) =p(An(ELVEY)) + p (AN (Ey U E5))

Implies E,UE, € m(u*)
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Remark:

= IfEE, ....,E, € m(u*)then UL E; € m(u*)
= Every subset of a null set is u* - Measurable.
= Measure always positive.

Lemma: Let X # ¢ and u*: P(X) — [0, ] be an outer measure on X. If
E\,E, € m(u*) then E; N E, € m(u*) for E;, E, € P(X).

Proof: Let E;, E, € m(u*) then E;, E,© € m(u*)
= E,CUE," = (E; NEy)° € m(u*) = ((E; NER)) = E; NE, € m(u”)

Lemma: Let X # ¢ and u*: P(X) — [0, o] be an outer measure on X. If
E € P(X) such that u*(E) = 0 then every E, € E is u* - Measurable. In particular,
E itself is u* - Measurable.

Or  Prove that every subset of a null set is u* - Measurable. In particular, a null
setis u* - Measurable.

Or  Any set of outer measure zero is measurable. In particular, any countable set
IS measurable.

Proof: Let E is anull setthen u*(E) = 0. And E, € E then by monotonicity of u*
we have u*(E,) < u*(E) = 0 implies u*(E,) < 0, but u*(E;) =0

Thus u*(Ey) = 0
ForAe P(X)wehave ANE, CE,andANE,CC A

Then u* (AN Ey) < u*(Ey) ...... () andu*(ANES ) <u*(4)......... (i)
Adding (i) and (ii) we get WANE)) +u (ANEy) < u*(Ey) + u*(4)
W(ANE)) +u (ANE)) < u*(4) since u*(Ey) =0

u(A) = p (AnEy) +u (AN Ey)

But obviously we have u*(4) < u* (AN Ey) + u* (AN Ey©)

Then pu*(4) = u*(ANEy) +u (AN E,) Implies E, is u* - Measurable.
By the similar argument we can show that E is u* - Measurable.

ie. WA =u"AnE)+u (AnE°
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Preposition (Countably Sub —Additive Property):

Outer measure is countably subadditive, that is, if {A4,}7° is any countable
collection of sets, disjoint or not, then

w (U Ap) < X7 u(4,)

Proof:

Let {A4,,}7° be a sequence in P(X), for which we have to show that;

u(Uy 4 < X7 (AR

Let {E;'}° be a sequence in £ and cover of A,

ie. A, U E; then u*(4;) < u*(UP E;)

Then by hypothesis u*(4,) < X7 p(E;") = X7 p(E) = u(41)
Let forany € > 0 we have Y7’ p(E;) < u*(4,) +¢€/2

Similarly Y.¥ p(E?) < p*(43) + €/22 continuingly X7 p(Ef) < u*(4,) + €/2F
For this 4, CUy EF implies UX_; A, SUX., (U2, EM)

= W (Upzq Ap) < 27U EY) (1)

Since {E;}{° is a sequence for which p(U;2; E;) < X7 p(E;) then

() = u(Upzy 4p) < 2P QT p(ED™)

= W (Upzg Ap) < 27 W (Ay) +€/27)

= P (Upsg Ap) S TP (An) + X9

= W (Upzg Ap) S XT W (An) +€

Since € > 0 was an arbitrary positive real number therefore inequality true for all
€ > 0 and we get

w(Un—i A,) < X7 u"(4,) and u* is countably sub — additive.

Hence the result. i.e. u*(E) is an outer measure.
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Lemma (Finitely Additive Property): Let X # @ and u*: P(X) — [0, oo] be an
outer measure on P(X). IfE;,E, € m(u*) and E; N E, = ¢ then

w(EL VE,) = p(Ey) + ' (Ez)

Proof: Since E; € m(u*) then for any A € P(X) we have

w(A) = ANE) +u (AnE")

In particular if E; U E, = A then

W (Er U Ey) = p'((Ey VEY) NE;) + ' ((Ey U E,) NE,°)

W (Er U Ey) = p'((Ey NEp U (B N Ey)) + (B Y E)/E,)

u(Ey UEy) = u*(E; V) +u (Ey) “E,NE,=¢ and (E,VUE,)/E; =E,
p(EL VEy) = p(Ey) + p(Ez)

Lemma: Let X # ¢ and u*: P(X) — [0, o] be an outer measure on X. If

Proof: By finitely sub - additive property we have,

w(Ey UEy) < p (Ep) + p(Ey)

u(EyUEy) <u*(Ey) ... (1) U (Ey)) =0
Since E; € E; U E, then by monotonicity of u*

We have u*(E;) < u*(E;UVE,) ....... (i1)

Combining (i) and (ii) u*(E; VE,) = u*(Ey)

Lemma: If A,B € m(u*)and B € Athen A/B € m(u*)

Proof: Since B € m(u*) then B¢ € m(u*) also then A, B¢ € m(u*)
= ANB¢emu")

= A/B € m(u*) -+ ANBS =A/B
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Caratheodory Theorem:

Let px be an outer measure in X. Then, m(u*) is a o—algebra, and px is c—additive
on m(u*).

Proof: We will split the reasoning into four steps.

Step — I: m(u*) is an algebra.

Proof: IfE € m(u*) then E€ € m(u*)

Thenalso E,E€ € m(u*) and E U E€ € m(u*)

Implies m (1) is an algebra, because it closed under compliment and finite union.
Step — II: m(u*) is a o- Algebra.

We need to show that z2(u*) is closed under compliment and closed under
countable union.

P—1:LetE € m(u*) then for all A € P(X) we have;
w@)=pwANE)+wANE)=p" (AN (E)) +u"(ANES)

pA) =p (ANES) +p (An (E))

Implies E€ € m(u*). Then m(u*) is closed under compliment.

P —11: Let {E;}{° be a sequence in m(u*) we have to prove U° E; € m(u*)
Since m(u*) is closed under finite union. i.e. U} E; € m(u*)

Then for 4 € P(X) we have  p*(A) = pw* (AN (UL E)) + p* (A n (UL E))
Applying limit approaches to infinity;

lim,, o u*(A) = limy,e, p* (A N (U EY)) 4 limy, o0 p* (A N (UF E))

W@ =pu(An (U7 E)) +w (AN (VT EN)

Implies U E; € m(u*). Thus m(u*) is a o- Algebra.
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Step — I1l: m(u*) is a Additive.

Since E; € m(u*) then forany A € P(X) we have

wA) =pAnE)+u (AnE")

In particular if E; U E, = A then

p(Ey UEy) = pu*((Ey VE) NEy) + p((Ey U Ey) NE;°)

p(Ey UEy) = p*((Ey NEY) U (E;NEY)) + u((EyUEL)/E;)

u(Ey UE,) = u*(E; U @) + u*(E,) “E;NE,=¢ and (E;UE,)/E, = E,
w(EL VE,) = p(Ey) + ' (Ez)

Step — IV: pxis 6—additive on m(u*)

Since p= is countably sub—additive, and additive, then by result “additive function
Is o—additive if and only if it is countably sub - additive” gives the conclusion.

Additive and o—additive functions
Let A < P(X) be an algebra. and u : A — [0, +oo] be such that p(¢) = 0.

= \We say that p is additive if, for any family A, A, ,...,A, € A of mutually
disjoint sets, we have
n

ROUT 4D = ) u(4)

» We say that u is c—additive if, for any sequence (A,) € A of mutually
disjoint sets such that U A; € A we have

ROUT A = ) u(A4)

MUHAMMAD USMAN HAMID (0323 - 6032785)



41
Lemma: Let A be any set and {E;}T be a finite disjoint collection of measureable
sets then u*(A NUT E;) = YT u (AN E;) and particularly u* (Ut E;) = YT u*(E;)

Or Let X # ¢@andu™: P(X) — [0, 0] be an outer measure on X. Let {E;} be a
disjoint sequence in m(u*) then for all A € P(X);

W ANVt E) =XTu (ANEy)

Proof: We prove it by induction method;

Forn=1,theresultistrue.i.e u*(ANE;)) =u(AnE,)

Suppose that result is true for n = k;

w(AnUYE) =Y (AnE)

Now we check at n = k + 1; using the fact that E,, = E} ., is u* - Measurable.

w ANV E) = ((ANUS™ E) 0 B ) + 1t ((ANUE E)) 0 B ©)
w(AnUKT E) = p (A n (U E n Ek+1)) +u* (A n (U E n Ek+1c))
w(ANUET E) = (AN Epyy) + 1 (A n (U¥ El)) ~+ {E;}} be a disjoint sequence.
w(ANUTTT E) = p (AN Egyy) + X5 (ANED

W(ANUITTE) = ST (AN Ey)

Induction is true for n = k + 1.Hence the result. i.e. u”*(ANUT E;) = YT u" (AN E;)
And p* (U Ep) = X1 1" (E) ford=¢

Lemma: If u* is an outer measure, then z2(u*) is an algebra.

Proof: IfE € m(u*) then E€ € m(u*)

Thenalso E,E€ € m(u*)and E U E€ € m(u*)

Implies m(u*) is an algebra, because it closed under compliment and finite union.
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Lemma: If u* is an outer measure, then m.(u*) is a a- Algebra.

Proof: We need to show that m(u*) is closed under compliment and closed under
countable union.

P—1:LetE € m(u*) then forall A € P(X) we have;

pWA)=pw@nE)+u (ANE) =p (An(E))+u (ANES)

piA) =p(ANE) +pu (AN (E)°)

Implies E€ € m(u*). Then m(u*) is closed under compliment.

P — Il (2* method): The union of a countable collection of measurable sets is measurable.
Let {E;}7° be a sequence in m(u*) we have to prove U E; € m(u*)

Since m(u*) is closed under finite union. i.e. U} E; € m(u™)

Then for 4 € P(X) we have  p*(4) = pw* (A n (U E)) + p* (A n (UL E))
Applying limit approaches to infinity;

lim,, ., u*(4) = lim,_ u*(A N (U7 El-)) + lim,,_,o u*(A N (UT E;)€)

w(A) = p(An (P E)) + 1 (An (UF E)°)

Implies U E; € m(u*). Thus m(u*) is a o- Algebra.

P — 11 (2" method): Let {E;}% be a sequence in #(u*) then there exists a disjoint
sequence {F,}7° in m(u*) such that U® E, =UT E;

Suppose that UT° F,, =UT° E; = E then UT F; € E implies E€ < (U} F;)¢
ThenforA € P(X) wehave ANE¢<SAn (U}F)°

Thenu* (ANE®) <u*(An (U F)Y) ... (1)

Since UT F; is u* - Measurable, as m(u*), then for all A € P(X) we have;
w(A) = p(An (UL F)) +u (An (U F)°)

wA) = (A0 (UL F)) +u (AN ES) ¢ B¢ € (UL F)°

WAz (An(UFF))+u*(ANE) =X u (AN F) + p*(An (U E)°)

WA =Yt AnFE)+u (An (U ED)S) ... (ii)
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‘n’ then (i1) implies

WAz X (AnF) +u(An (Uy E)°)

43

WA = p (VP (ANF)) +u (AN (UT ED) (U E) S X7t (ED)

WAz (An(UP F)) +p (An (U E))

w(A) = p(An Uy E)) +u (An (U E)°) “UP E, =UP" E;

But u*(4) < u*(An (U Ey)) + u (AN (UF E)°)
Then u*(A) = p* (AN (UP Ey)) + 1* (A n (U5 EF)
Implies U® E; € m(u™)

Thus m(u*) is a o- Algebra.

Remark

= Since o- Algebra is closed under countable intersection therefore m(u*) is

closed under countable intersection.
ie. IifEE,, .., E,..€ m(u*)then Ny E; € m(u*)
= |f u* is zero on X then subset of X is u* - Measurable.

Symmetric difference ()

Symmetric difference is given as follows;
FAG=(F/G)U(G/F)=(FNG)U(F°NG)=FUG/FNnG
Explanation:

Let F,G < X then symmetric difference will be as follows;

FAG = (F/G)U (G/F) = (FNG) U (F° N G)
FAG=(FU(FNG))N(G°UF NG))
FAG=((FUG)N(FUF))N((G°NG)N (FCUGT))
FAG=(FUu)nX)nXn(FnG)X)=Fue)n(FNnG)©
FAG=FUG/FNG
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Theorem: If F € m(u*) and u*(FAG) = 0 then G € m(u*).
Proof:(1* method)

Since u*(FAG) =0and F/G,G/F < FAG

Implies F/G,G/F € m(u*) because every subset of null set is u*-measurable
= (F/G)", (G/F)‘ € m(u)
NowFNG=Fn((F/G)F ... (1)

Andsince F,(F/G)¢ € m(u*) implies F N (F/G)¢ € m(u*)

=>FNGemu") using (i)

Fromfigure G = (FNG)U (G/F) .......... (i1)

Andsince FNG,G/F € m(u*) implies(FNG) U (G/F) € m(u*)

=G Eemu") using (ii)

Proof: (2" method) Since u*(FAG) = 0 and F/G,G/F € FAG

Implies F/G,G/F € m(u*) because every subset of null set is u*-measurable
= (F/G)%,(G/F)° € m(u")

Now F NG = F n (F/G)° be intersection of two u*-measurable sets is u*-
measurable then ¢ = (F N G) U (G/F) being union of two u*-measurable is u*-
measurable.

Theorem: If E,F € m(u) and u(EAF) = 0 then u(E) = u(F).
Proof: Since u(EAF) = u(E/F) + u(F/E) and u(EAF) = 0

We have u(E/F) = u(F/E) =0 Alsowriting E = (E/F)U(ENF)and
F = (F/E)U(FNE)Wehave u(E) = u(E/F) + u(E n F)

and u(F) = u(F/E) + u(F NE)

And hence U(E) =u(ENF)=u(F)
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Theorem:

Let e € P(X) suchthat ¢, X € € and p: € — [0, o] given by p(¢) = 0 and p is
countably sub — additive i.e. p(E; UT®) < X.7° p(E;) then for any E € P(X);

w(E) =inf{d7 p(E;):E CUY E;; E; € €} is an outer measure.

Proof: To prove u* is an outer measure we will prove u*(¢) = 0, monotone
property as well as countable sub — additive property.

P—1:u* (@) = 0: Since ¢ CUT ¢ and p(¢) = 0 therefore }.7° p(p;) = 0, this
implies  u*(¢) = inf{X7 p(@:) 19 SUT @5 @; €} > u'(p) =0

P — 11: Monotone Property:

Suppose A,B € P(X) and A < B then every covering sequence for B is covering
sequence for A but every covering sequence for A needs not to be covering
sequence for B

Then {37 p(Ey): B CUT Ej; E; € e} S {XT7 p(F): A SUT Fy; F; € €}
Since every covering sequence for B is covering sequence for A therefore;
inf{Xy p(F): A CUY F; F € e} < inf{XT p(E;): B CUT Ej; E; € €}
Implies u*(A) < u*(B) ~AC B .inf(B) <inf(A)

P — 111: Countably Sub - Additive Property:

Let {4,,}7° be a sequence in P(X), for which we have to show that;

pw (U Ap) < X7 u(4,)

Let {E;"}}° be a sequence in € and cover of A,

ie. A; CUP E;/thenu*(4,) < u* (UYL E;)

Then by hypothesis u*(4,) < X7 p(E;") = YT pE) =z w(4)
Let forany € > 0 we have Y. p(E;) < u*(4;) +€/2

Similarly X p(E?) < u*(4z) + €/22 continuingly X7 p(Ef) < u*(4y) + €/2%
For this 4, CUy EF implies Uy, A, CUX., (U2, EM)

> ' (UZey A) S 5P AU ED) v (i)
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Since {E;}7° is a sequence for which p(U2, E;) < X.7° p(E;) then
(D) = p*(Unz1 An) < X7 QT p(ED™)

= U (Upz1 4n) < 27 (W (4n) +€/27)

= (Uiog 4n) S TP W (An) + 37

= W (Unz1 An) S 27U (Ay) €

Since € > 0 was an arbitrary positive real number therefore inequality true for all
e > 0 and we get

u(Ur—i A,) < X7 u"(4,) and u* is countably sub — additive.

Hence the result. i.e. u*(E) is an outer measure.

Theorem: Let u* be an outer measure on X and m(u*) be the collection of all u* -
measurable subsets. Prove that u* when restricted to z2(u*) is a measure.

Furthermore (X, m(u*), ) is complete measure space.

Proof: Since u*: P(X) — [0, o] is countably sub — additive so its restriction
I L uey:m(u”) — [0, 00] is also countably sub — additive. We are to show that

W L uey:m(u) — [0, 00] is a measure on m(u*).
I: Since u*(¢@) = 0 therefore u* 1,,,(, (@) =0

I1: For countably additive suppose {E;}7° be a sequence in m(u*) therefore {E;}7°
is a disjoint sequence in 7z (u*) and

(UL E) <Y u(E) -y IS an outer measure

= U Ly (UL ED) S X0 Ly (ED) (1)

Now for neN we have U} E; CU E;

= U (VT ED) S U™ Ly (U Ep)

« If {E; 3T em(u”) and disjoint then u™ 1,,,,+(UT E;) = YT u* 1,0 (E;) therefore

= YT L (B S 15 (U Ep)
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= U (VT ED) = X105 1y (Ep)

Since this is true for all neN therefore we have

DU (UL ED) 2 X700 L (ED) (ii)
Combining (i) and (ii)  u" 1y, (U E) = X7 U5 Ly (Ep)
I L ey 1S cOuntably additive.

Hence p* 1,,,,+) is @ measure on 1 (u*)

Now let Eem(u*) be a null set then p*(E) = 0 implies u* 1,,,+(E) =0
then every subset of E is u* - measurable. Implies every subset of E is a member of
m(u*) and hence (X, m(u*), u) is complete measure space.

Interval

An interval is the set of real numbers. e.g. I = [a,b] = {x:x ERAa < x < b}
and length of interval I = [(I) = b — a , also keep in mind [a, b], (a, b) have same
length.

Notations: Let R is the set of real numbers then;

» 7, = Collection of ¢ and all open intervals on R.
» 7. = Collection of ¢ and all close intervals on R.
» 71,. = Collection of ¢ and all open close intervals on R. i.e. (a, b]
» 7., = Collection of ¢ and all close open intervals on R. i.e. [a, b)
" T=1,UT,.UT. UT,. = Collection of ¢ and all intervals on R.

Remember: Let R is the set of real numbers then:

" [ar OO] = [a' OO) and (—OO, b] = [—OO’ b]

= For extended real valued function l: T — [0, ] and VI € T we have
I[((I)=b—a and I(p)=0

= For an arbitrary disjoint sequence {I,,}7° in T we have

UE 1) = ) 10y
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Theorem: Open interval (a, o) is u* — measurable. We may use jut measurable.
Or A monotone function that is defined on an interval is measurable.

Or Every Borel setin R is measurable.

Proof:

Actually we have to prove every interval is measurable. Using the fact m(u*) is
o —Algebra.

Let A be any set of real numbers then E = (a,©),E¢ = R — (a,©) = (—x,a]
For u* — measurable set E = (a, o) we have to prove

wA)=w@ANE)+u (ANE®)

w(A) = (An(a,0)+p (AN (—,a))

Suppose 4; = AN (a,)and A, = A N (—oo,a] then

pi(4) = p (A + ' (4,)

Obviously true that Ay <p (A +u(4y) (1)
Therefore we are to show that u*(A4) = u*(4;) + u*(4,)

Now if u*(A) = oo then there is nothing to prove.

But if u*(A4) < oo then for any e > 0 there exists a countable collection {I,,}7° of
open intervals such that

YOU(L) < W (A) + € voneo. (i) v 1t (A) < X211

Letl, =1, N (a,o)and I, = I, N (—oo,a] then I, I,/ are intervals and
L,=1L,ul/

=3P =YX0U) + X000 (iii)
Now 4; €Uy (I;) and A, CU? (1)

= u'(A) < p (VY (IR) = XP1UUL)

=>uw(A) < XTI (a)

Similarly  p*(4,) <X7U({) (b)
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From (ii) YU Su(A)+ e

= (A +e= X7 U()

= u (A)+e=XP 1) + X7 1UY) using (iii)

> u(A)+e=>pu(A) +u(4,) using (a) and (b)

Since € > 0 was an arbitrary, so € —» 0

>u(Ad)=2p(A) +u(4y) (iv)

From (i) and (iv) we get u (A =pu (A) +u(A4,)

= u*(A) = u (AN (a,0)) + p (AN (—,a])

Hence Open interval (a, o) is u* — measurable. We may use jut measurable.

Hence in view of above all discussion, the o —Algebra m(u*) contains all the
open sets in R. Since B is the smallest & —Algebra containing all the open sets, we
conclude that Borel set in R is measurable.

Lebesgue Outer measure
The set function uj: P(R) — [0, o] defined by for all E € P(R)
ur(E) = inf{X71(L,) 1 E UL In; Iy € T}

Is called Lebesgue outer measure on P(R) where I: T — [0, o] such that [(¢) = 0
andl(I)=b—a

Lebesgue Sigma Algebra

The collection m (u;) of all u; — measureable sets is denoted by 1, is called the
Lebesgue o — Algebra. Member of 71, are called 71, — measureable or Lebesgue
measurable set s, the pair (R, 72;) is called Lebesgue measurable space and the

triplet (R, 72, u; ) is called Lebesgue measure space, where y; is measure on m,; .

Remark:

m(u*) in general is ¢ — Algebra, so m(u;) is o — Algebra in particular case.
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Lemma:  Singleton are null sets in Lebesgue measure space.

Or for every xeR we have u;{x} = 0 and xem,,

Or  Prove that Lebesgue outer measure of singleton sets is zero i.e. u;{x} =0
Proof:

Let xeR then for all e > 0 we have (x—€,x+€) € 7, so that (x—€,x+€), 9, @, ...
is an open cover for {x} then uj{x} < l(x—€,x+€) + l(p) + l(p) + - =2 €

vil(x—€,x+€)=2€ and I(p) =0
> u{x}<2e foralle>0
Since € was an arbitrary therefore we have uj{x} = 0

= xXemy, Since if y; (E) = 0 then Eem,,

Lemma: Prove that every countable subset of R is a null set in Lebesgue
measure space. i.e. (R, 7, u;)

Proof: Let E be a countable subset of R then E is countable union of
singletons. i.e. E =U, g {x}.

Then u;, (E) = py,(Uyep {x}) = Xxepm{x} =0
=>u (E)=0 Since y; {x} =0 Vx € R

Question: Prove that the set of rational numbers Q is null set and Qe

Solution:  Since Q is countable subset of R then Q is countable union of
singletons. i.e. Q =U,¢q {x}.

Then u;,(Q) = .UL(UxEQ {x}) = YxeoUrix} =0
= u, (Q) = 0i.e. Qis null set Since y; {x} =0 Vx e R

= Qemy
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Question: Prove that the set of irrational numbers u; (Q' = Q€) = oo but Q'em,
Solution: SinceR=QuQ'andQ' =R—-Q =R/Q

Then p,(Q") = p,(R/Q) = p(R) — p,(Q) = 00 = 0= p (Q') = 0

Since Rem; and Qem; then R/Qem,; as m, is sigma algebra.

= Q'em,

Dense Subset of X: Let (X, 7) be a topological space a subset E of X is called
dense in X if for all opensets O in X wehave ONE # g or E =X

Preposition: If Eisanull setin (R, 7, u;) then E€ is dense in R.

Proof: Suppose Eem, isanull setin (R, m,, u;) i.e. uj (E) = 0 and let
I € Eisanopen interval then yu; (1) < uj(E) =0=>u;(1) =0

But in fact, u; (I) > 0
Hence I £ E implies EC NI # ¢. Thus E€ is dense in R.

Lemma:  Prove that Lebesgue outer measure of an interval is its length. i.e.
u; (I) = 1(I) where I is an interval in R.

Proof: Case — I: If I is a finite closed interval i.e. I = [a, b] where a, b € R such
that a < b for every €> 0 we have [a, b] € (a—€, b+€) so that (a—€
,b+€),p, @, ... is covering sequence of open intervals that cover [a, b] then by
definition of u; we have uj ([a, b]) < X7 L))

u;([a,b]) < l((a—€,b+€)) + L(g) + I(p) + -

ui(f[a,bp) <(b—a)+2€+0+0+ -

Since this is true for all €> 0 therefore y; ([a, b]) < (b —a) = I(I)
pi(la, D) <UD ... (i)

Now we will prove the reverse inequality u; ([a, b]) = I(I) but this is equivalent to

Xy =zun (ii)
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For any countable cover {I;}7° in t, of the I i.e. I CU7° [; it its sufficient to prove
inequality (ii) by using Hein Borel Theorem, according to which “every countable
cover of closed interval can be reduced to finite sub — cover”

For a finite sub — cover i.e. if {I;}} is the finite sub — cover of the interval [a, b]
then we are to prove Y1 1(I;)) = 1(1) ... (iii)

Since I cUT [; and as for a € Y1 I(1;) there exists an open interval (a,, b,) € {I;}}
soa € (a,,b;)thena; <a<b; <b

If b, < bthen b; € [a, b] but b; & (a,, b,) then there exists an open interval
(a,, b,) € {I;}{ such that b, € (a,,b,) thena, < b; < b,

Preceding in this manner, we get an open interval (ay, b,) € {I;}{ such that
a, < b < by i.e. b€ (ag, by), S0 we obtain a sub — sequence of {/;}} that will be

{(ay, by), (az, by), ..., (ax, bi)} < {I;}7 therefore 33 1(1;) = XY (a;, by)
X1l) = l(aq, by) + U(ay, by) + -+ 1(ay, by)
Z?l(ll) 2 b1 —a1 +b2 _az ++bk _ak

YHI) = (b —a) + (b1 — Aje—q1) + -+ (b — ay) a; < by
Y1) >by—a; =b—a a—bj_1 <0
YrU) = 1) by=2ha <a
pi(la, b)) =1 (iv) be=b—a; = —a
From (i) and (iv) u; ([a, b]) = (D) be—a zb-a
ie. ui (D = 1D

Case—Il: If I = (a,b) then (a,b) S [a, b]
Then by monotone property u; ((a, b)) < p;([a,b]) = l([a,b]) = b —a

ui((ab))<b-a L. %)
For €> 0 we have ui((a,b)) = b —a—c€
Since €> 0 was an arbitrary therefore ui((ab))=b—a ... (vi)

Combining (v) and (vi) u;((a,b))=b—a
Thus u; (1) = I(1)
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Case — IlI: If I = (a, b] then (a, b] = (a,b) U {b}

Then p;((a,b]) = i ((a,b)) + u;({bH =b—a+0 sy () =0
u;((a,b]) =b —a.Hence pu; () =I(I)

Case — IV: If I = [a,b) then [a,b) = {a} U (a, b)

Then p;([a, b)) = u;({a}) +p;((@,b)) =0+b—a “pu({a) =0
u;([a,b)) = b —a.Hence u;(I) =1l()

Case—V: IfI = (a, ) then (a,n) € (a, «)

Then u;((an)) < pj((a,©)) =>n—a < pi((a x))

Since this hold for all neN we must have  p; ((a, ©)) = o = [((a, ©0))
Thus wi (D =1

Case—VI: If I = (—oo,b) then (—n, b) S (—0, b)

Then ;((—n,b)) < pi((=o0,b)) = b — (=n) < i ((—o0, b))

Since this hold for all neN we must have  p;((—0,b)) = o0 = I((—0, b))
Thus u () =1(I)

Theorem:

Prove that every Borel set is Lebesgue measurable. Or u; — measurable.

Or Prove that By € m; = m(u;)

Proof: As every interval in R is 7, — measurable. And since every open setin R
Is countable union of open intervals in R therefore it is member of m1,. If B be a
collection of open sets in R then B € m,,

Implies 6 (B) S o(m;) =m,
e. Br<Smy=m(u;)

Remark: The condition u; (A) = uy;(ANE) +u;(AnE°) YA€ P(R) is
equivalentto u;(I) = u;(INE)+u;(INE°) Vvl €1,
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Lemma:
Prove that every interval in R is Lebesgue measurable. Or yu; — measurable.
Or Provethatt € m; = m(u;)

Proof: Note that a subset E of R is u; — measurable, if for all I € t, we have
L) = (INE)+u (INE)

Case—l:IfI = (a,0) €1, &a e RthenI =INR

I =1n][(a, o) U (a,o)] “X=AUA°s0R = (a,») U (a,»)*
I=[In(a ®)]UI[ln(a )]

Since I N (a, o) and I N (a, )¢ are disjoint so that;

LD =1(In(a0))+ LN (ax))

(D) = i (10 (a,0)) + i (I N (a,0)°) (D) = 1)

Implies (a,0) € m,

Similarly  (—o0,b) € m,

Case—Il:IfI = (a,b) € T, then (a,b) = (—oo,b) N (a, ™) € m,

Implies (a,b) € m, m, IS o —algebra

Case—Ill: If I = (—o0,0) € 7, then (—o0,0) = (—o0,b) U (a,0) = R € m,
Implies (—o00,0) € m, m, IS o —algebra

Case — IV: If I = [a, b] then [a,b] = {a} U (a,b) U {b} € m,
Implies [a,b] € m, ~m, IS o —algebra
Case—V:IfI =[a,b) then[a,b) ={a} VU (a,b) € m,
Implies [a,b) € m, ~ my IS o —algebra
Case— VI: If I = (a, b] then (a,b] = (a,b) U {b} € m,
Implies (a,b] € m, ~ my IS o —algebra

Hence every interval in R is u; — measurable.
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Theorem: Prove that the Lebesgue measure space (R, 7, ;) is o —finite but not
finite.

Proof: Since R = (—oo, ) therefore y; (R) = [(R) = oo,

so (R, 7, ;) is not finite.

Now consider the sequence {(—n, n)};° in m; then U° (—n,n) = Rand
p(—n,n) =l(-n,n) =n—-(-n) =2n< o

Hence (R, m,, u;) is o —finite space.

Translation of a Set

For each element x,, and subset E of R% we will denote by E + x, the subset of R¢
definedby E + x, = {y € R%:y = x + x, for some x in E}

The set E + x, is called the translate of E by x,. We turn to the invariance of
Lebesgue measure under such translations.

Or  Let X be a linear vector space over a field R then for E € X and x, € X we
have E 4+ x, = {x + x,: x € E} and call it x, translate of E

Dialation of a Set

Let X be a linear vector space over a field R then for E € X and «<€ R we have
« E = {« x: x € E} and is call dialation of Eby «

Remark:

= For acollection ¢ of subsets of X(R) and for all x, € X we have
e+xg={E+xy:E€¢} andx e = {xx: E € ¢}

" (E+x)+x,=E+ (x;+x,)

» (E+x)=(E°+x)

» IfE; CE,thenE; +XxCE,+x

» UPE; +x=U(E; +x)

u ﬂf’Ei+X=ﬂi° (EL+X)

= o (BE) = (x B)E

" (xE)¢ =x E€

= FE — x is translation invariant.
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Translation Invariant: Let (X, A ,u) be a measure space where X is a linear
vector space over a field R then;

» ¢ — algebra A is called translation invariant if for all E € A and x € X we
have E + x € A

= The measure u is said to be translation invariant if forall E € A and x € X
we have E + x € A and u(E + x) = u(E)

= The measure space (X, A ,u) is called translation invariant if A4 and u both
are translation invariant.

Theorem: Prove that Lebesgue outer measure is translation invariant.
Or Provethat forall E € P(R) and x € R we have uj (E + x) = uj (E)
Proof:

First we will show that [: 7, — [0, 0] i.e. I(I) =b—aforl = (a,b) € T, IS
translation invariant.

Ifl =(a,b) et thenl +x=(a+x,b+x)€t,and (I +x) = I(])

ie. lU+x)=la+x,b+x)=b+x—a—-x=b—a=1I1()

if I =(a,)orl =(—o,b)orl = (—o00,0)

then I+ x=(a+x,o)orl +x = (—o0,b+x)orl+x = (—o0,0)

and forall [(I +x) = o0 =1(I)

henceforall/ e t,andx € Rwehavel + x e t,and (I + x) = 1(I) ...... (1)
so length of I is translation invariant.

Now let {I,,}7° be an arbitrary sequence in 7, such that E CU?’ I,. Then for an
arbitrary x € R we have {I,, + x}7" int, with (I, + x) = l(I,,) ; Vn EN

Now E + x € (U° I,,) + x CUP (I, + x) implies E + x cUy (I, + x)

Ui (E +x) < pj (U9 (I, + x)) by monotonicity property
HL(E+x) <27 pp (I +x) = X0 LU +x) = X711
up(E +x) < 371 (I) from (i)
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Since u; (E) =inf{371(U,):ECUP L, , I, €1, }

Therefore w;(E+x) <u;(E)  ........... (ii)

Applying (ii) to (E + x) and its translation by (—x) i.e. (E + x) + (—x) we obtain
Ui (E +x) 2 i ((E +x) + (=) = pi (E)

Implies u; (E +x) = u;(E) ... (iii)

From (ii) and (iii) we obtain ~ uj (E + x) = uj (E)

This shows that Lebesgue outer measure is translation invariant.

Theorem: Prove that Lebesgue measure space (R, 72, u; ) is translation invariant.
Or Provethat forall E € m; and x € Rwe have E + x € m,,
and y; (E + x) =y, (E) furthermore m; + x = m,,
Or The translate of a measurable set is measurable.
Proof: LetE € m; and x € R we are to show that E + x € m,
For this we have to show that for all A € P(R) following phenomenon;
up(A) = pi(An (E+x)) + u;(An (E +x)°)
For this we will solve R.H.S. and equate it with L.H.S

Ui (AN E+x)) + i (AN (E +x°) = (AN E + 0} —x) + i {An
(E +x)°) - %)

= p (A=) n{(E+x) —x}) + pr (A=) n{(E +x)° = x3)

= i ((A—0) N {(E +x) —x}) + i (A —0) 0 {(E +x) — x3)
=u((A=2)NE)+p((A—x) N E°)

=u;(A—x) considering (A4 — x) a testing set for E € m,,

= u;(A4) since y; is translation invariant

So u;(A) =u(An(E+x)+ui(An (E+x)°) forall A € P(R)

Implies E + x € m,,
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Since restriction of u; to m1, become measure, mean outer measure become
measure. i.e. u; = u;, therefore
For u; (E + x) = u; (E) we have u; (E + x) = u, (E)
Now for E € m; and x € Rwe have E + x € m, impliesm; + x S m, ....... )
Let E € m;and x € Rthenwe have E — x € m,
>(E—-x)+xeEm +x=>E+(—x+x)eEm, +x=>E€Em; +x
So m, Sm,+x ... (i1)

Combining (i) and (ii) mp+x =my

Addition modulo 1: Forx,y € I = [0,1) in R we define addition modulo 1 by
i _{x+y ifx+y<1
Ty = x+y—-1 ifx+y=>1

The operation + takes a pair of elements from [0,1) to an element of [0,1).
The operation + is commutative as well as associative. i.e.
x+y = y+x and x+(y+z) = (x+y)+z

Translation of Emodulo1: LetE < =[0,1)andy € = [0,1) we define
translation of E modulo 1 by E+y = {x+y:x € E} and call it y translate of E
modulo 1.

Lemma: Lebesgue measure is translation invariant modulo 1

Let E € [0,1) and if E € m, then for every y € [0,1) we have E+y € m, and
uL(E+y) = p (E)

Proof: Let E € [0,1) and y € [0,1) then the intervals [0,1 —y) and [1 —y, 1) are
disjoint.i.e. [0,1—y)N[1—y,1) =¢

Now we define two subsets of E as follows;
Since E, [0,1 — y),[1 — y,1) € m, therefore E;, E, € m, as m,, is o —algebra.

Thenusing E = E; U E, we have u, (E) = u,(E; UE,)
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p(E) = p(E) +p (E) (1)
SinceE;+y ={x+y:x €E;}={x+y:x€EE Ax+y<1 iex<1-y}

Implies E;+y = E; +y € m,, 1S translation invariant
Now y, (E1+y) = p, (Ey +y)
w,(Ey+y) = u (E)) (i1) -+ 1y is translation invariant

Also Since E,+y = {x+y:x € E,}

E,(4y={x+y—-1:x€E,Ax+y=>1 i.e.x =1—y}

Implies E,+y = E, + (y — 1) € m,, ~ m is translation invariant
Now u, (Ex+y) = (B, + (v — 1))

u(Ex+y) = u, (Ey) (i) . 1S translation invariant
Now E+y = (E;UE,)+y € m,

E+y = (E;+y) U (Ey,+y) € my,  m,, is o —algebra.
Then p, (E+y) = pu (Ex+y) + pu (Ex+y)

u (E+y) =, (Ey) + py (E2) by (ii) and (iii)

u (E+y) = p (E) by (i)

Hence proved Lebesgue measure it translation invariant modulo 1
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Theorem:

There is a subset of R, and in fact of the interval (0,1), that is not Lebesgue
measurable.

Or Theinterval (0,1) € m, contains a non - Lebesgue measurable set
Proof:

First we define a relation ~ on (0,1) € R by letting x ~ y hold if and only if

x — y is rational. The relation ~ partition (0,1) into equal classes {E} any two
numbers of (0,1) which are in same equivalence class differ by a rational. i.e.
x,y € E, for some ‘k’ if x — y is rational. And any two numbers of (0,1) which
are not in same equivalence class differ by an irrational. i.e. x € E;,y € E; for
some ‘i, J” if x — y is irrational. Since these equivalence classes are disjoint, and
since each intersects the interval (0,1), we can use the axiom of choice to form a
subset P of (0,1) that contains exactly one element from each equivalence class.
We will prove that the set P is not Lebesgue measurable

By axiom of choice, construct a set P < (0,1) by picking exactly an element
from each equivalence class. Also let {r;,: neZ. } be rational in (0,1) withr, =0
and for each neZ', let P, = p+r, we will check that

(a) the sets P, are disjoint
(b) the interval (0,1) is included in U,/ B,
()P g&my
a) Contrarily suppose that P, = {P,: P, = p-+r,;; neZ. } are not disjoint i.e.
P, N B, # ¢ for m # n then x € B,, N P, implies x € P,, and x € P, then there
exists p,,,, b, € P such that x = p,,,+r;,, and x = p,,+7, then p,,+7,,, = p,,+7;,

Since p,,+n, is either p,,, + r;,, or p,,, + (1, — 1) also p,,+m, is either p,, + r;, or
pn + (r;, — 1) therefore in either case p,,, — p,, is rational number, so p,,,, p,, € E
for some «.

Now since p,,, p, € E. for some « therefore Pcontains exactly one element from
each equivalence class, thus for p,, = p,, we have m = n, which is contradiction.
Hence B, NP, =@ form #n

b) Now we claim that (0,1) =U,,_,» P,

nezy 'n

Since £, < (0,1) for all neZ} implies U,,.;r B, € (0,1) ......... (1)
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Now let x € (0,1) then x € E, for some « and since Pcontains exactly one
element from each equivalence class therefore there exists p € P such that p € E,
S0 x — p is rational in (0,1)

Implies x — p € {n,: neZ. } therefore x — p = r;,, for some neZ’
Here we discuss two cases;

. Ifx>pthenx=p+n €RB, vx—p=20€(0,1)
. Ifx>=pthenp—x=n,

Letr,,=1—1, € (0,1)thenx =p — 1,
Impliessx =p—1r,=p—-AQ-1rn,)=p—1r,+1€P,

Hence x €U,,.,

¢ Byimplies (0,1) SU, 2 By oo (i1)
Combining (i) and (i)  (0,1) =V, B,

c) Now we will show that P & m,

Contrarily suppose that P € m, then from (0,1) =U,,.,: P, we obtain
ﬂL((O’l)) = “L(Unezj_ n)
(OD) = > (P

nezy
1-0= Znezi u, (P+r,) = Znez; u; (P) -y is translation invariant
1=2nezz it (P) e (iii) where u; (P) = 0

Since P € m, then u; (P) = 0 but if 4, (P) = 0 then equation (iii) reduces to
0 =1, also if u;(P) > 0 then equation (iii) reduces to 1 = oo which is
contradiction.

Thus P & m,.

Hence the result.
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Functions and Integrals

This chapter is devoted to the definition and basic properties of the Lebesgue
integral. We first introduce measurable functions—the functions that are simple
enough that the integral can be defined for them if their values are not too large.
After a brief look at properties that hold almost everywhere (that is, that may fail
on some set of measure zero, as long as they hold everywhere else), we turn to the
definition of the Lebesgue integral and to its basic properties. The chapter ends
with a sketch of how the Lebesgue integral relates to the Riemann integral and then
with a few more details about measurable functions.

In this section we introduce measurable functions and study some of their
basic properties. We begin with the following elementary result.

Proposition: Let (X, A) be a measurable space, and let A be a subset of X that
belongs to A i.e. AeA . For a function f : A — [—oo, +00] the following
conditions are equivalent for all t € R.

@f{x € A: f(x) < t}=f1([—,t]) belongs to A
) {x € A: f(x)> t} = f"1((t, »]) belongs to A
©){x € A: f(x) = t} = f"1([t, 0]) belongs to A
({x € A: f(x) < t}=f"1([—o,t)) belongs to A

Proof: (a) & (b)

Lette Randletd;, ={x € A:f (x) < t}and 4, ={x € A: f (x) > t}then
AlnAz =g0andA1 UAZ :A

Let A, € AthenA, = A/A; € A  Alissigmaalgebra
And A, € Athen A, = A/A, €A - Alissigmaalgebra
Implies (a) © (b)

(c) & (d)

Lette Randletd;, ={x € A:f (x) = t}and 4, ={x € A: f (x) < t}then
Al ﬂA2=(pandA1UA2=A

LetA, € AthenA, = A/A; €A  + Aissigmaalgebra
And A, € AthenA; = A/A, €A - Aissigmaalgebra
Implies (o) & (d)
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(d) = (a)

Suppose (d) istruethen{x € A: f (x) < t}belongsto A then foreveryx € A
andt € Rwe have f (x) < tifandonlyif f (x) < t +%for all n € N and since
A is sigma algebra therefore

{x €e A: f(x) < t} =n7 {x EA:f(x)< t+%} belongs to A
{x € A: f (x) < t}belongsto A whichis (a)
Implies (d) = (a)

(b) = ()

Suppose (b) istruethen {x € A: f (x) > t}belongsto A then foreveryx € A
andt € Rwehave f (x) = tifandonlyif f (x) < t —%for all n € N and since
A is sigma algebra therefore

{x €e A: f(x) = t} =n7 {x EA:f(x)> t—%} belongs to A
{x € A: f (x) = t} belongs to A which is (c)
Implies (b) = (c)

Hence all given conditions are equivalent.

Measurable functions

Let (X, A) be a measurable space, and let A be a subset of X that belongs to A.
An extended real valued function f: A - R or f: A —» [—o0, +] is measurable
with respect to A if

xeA:f@<t)={xeA:f(x) €[00} =f(([~o1)) €A
Remark:

= Above definition requires that we must be able to measure inverse image of
intervals of the type[—oo, t) for t € R

= A function that is measurable with respect to A is sometimes called A -
measurable or, if the o-algebra A is clears from context, simply measurable

= |ncase X = R%, a function that is measurable with respect to B(R%)is called
Borel measurable or a Borel function.
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Examples:

(@) Let f : R? — R be continuous. Then for each real number ‘t’ the set
{x € R*: f(x) < t}isopenandso is aBorel set. Thus f is Borel
measurable.

(b) Let | be a subinterval of R, and let f : I — R be non-decreasing. Then for
each real number ¢’ theset{x € I : f (x) < t}isaBorel set (it is either
an interval, a set consisting of only one point, or the empty set). Thus f is
Borel measurable.

(c) With A = P(X) every extended real valued function defined on X is A —
measurable.

(d) Let (X, A) be a measurable space, and let B be a subset of X. Then yg,the
characteristic function of B, is A -measurable ifand only if B € A .

Question: Let A, and A, are sigma algebras such that A, € A, then every
A, — measurable function is A, — measurable.

Solution: Suppose f is A, — measurable function then forall x € Aand t € R we
have {x € A: f (x) < t} € A, and since A; S A, therefore we have
{x € A: f (x) <t} €A, andthisimplies f is A, — measurable.

Result: If A = {p, X} is the smallest 0 —algebra on X then f: A — [—oo, +0] an
extended real valued function on X is A —measurable if and only if f is constant
function.

Proof:

Suppose f is A —measurable then for t € Rwe have {x € X: f (x) <t} € A
If{xeX:f(x)<t}=¢@thenf (x) =constant =c>t;Vx € Xandt € R
If{fxeX:f(x) <t}=Xthen f (x) =constant =c <t;Vx € Xandt € R

Conversely: Suppose f is constant function. i.e. f (x) =c;Vx € X andlett e R

voicesro<0={] 3

Ineach case; {x e X: f (x) <t} € A;VtER

Hence f is A —measurable.
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Result: With A = P(X) every extended real valued function defined on X i.e.
f:X - R is A —measurable.

Proof: For every subset of X and t € R we have {x € A: f (x) < t} € P(X).
Sof is A —measurable.

Proposition: Let (X, A ) be a measurable space, let A be a subset of X that
belongs to A , and let f and g be [—oo, +00] — valued measurable functions on A.
then

a) {xe A: f(x) < g(x)}belongto A

b) {xe A: g(x) < f(x)}belongto A

c) {x €A:f (x) < g(x)}belongto A

d) {xeA: f(x)=g(x)}belongto A
Proof: Note that the inequality f(x) < g(x) holds if and only if there is a rational
number r such that f(x) <r < g(x). Thus

a) As
xed: f(x) <g(x)} =V (Ixed: fx) < rinf{xed:r < g(x)})

So{x €A: f(x) < g(x)}, as the union of a countable collection of sets that
belong to A , itself belongs to A .

b) Similarly

{xed:g(x) <f(x)} =V (xed:gx) < rin{xed:r< f(x)})
So{x € A: g(x) < f(x)}asthe union of a countable collection of sets that
belong to , itself belongs to A.

c) As we know that

xeA:f(x)=g(x)} = A—-{x€A: gx) <f (x)}
Imply that {x € A: f (x) < g(x)} belongs to .

d) {x € A: f(x) = g(x)} is the difference of {x € A: f(x) < g(x)} and
{x € A: f(x) < g(x)} and so belongs to A.

Characteristic Function: For an arbitrary subset E of X then characteristic
0 ifx&E

function of E is defined as yz: X — [0,1] by yz(x) = {1 if xeE

Note: In measure theory yz is replaced by 1.
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Result: Let (X, A ) be a measurable space and let EeP(X) then 15 is A —
measurable if and only if Ee A.

Proof: Suppose E€ A and let t € R be fixed then we are to show that 1 is A —

© ift<o
measurable, then {xe X: 1;(x) <t} =<{E° if0<t<1
X ift>1

In each case {xe X:1;(x) < t}e A andso 1€ A

Conversely: Suppose that 15 is A — measurable then for all ¢ € R we have
{xe X:1(x) < t}e A and in particular if t = 0.5 then {xe X: 15(x) < t} = E€
so that Ee A as A is sigma algebra.

Proposition: Let (X, A ) be a measurable space, let D be a subset of X that
belongs to A , and let f be A — measurable functions on D. then

a) fY([c,d)) ={x€ D:c<f(x)<d}belongto A
b) f~1((c,d]) ={x € D : ¢ < f (x) < d} belong to A
¢) f~Y((c,d)) ={x € D:c < f(x)<d}belongto A
d) f7([e0o]) ={x € D : f (x) = co}belong to A

e) f71([-»]) ={x € D: f (x) = —co}belong to A
f) f71([c]) ={x € D: f (x) = c}belong to A

Proof: Here for all case we will use the following result
A is o —algebra, f~1is A — measurable and f~1(N{ E;) =n f1(E))

a) As
fH e, d)) = f~'([c,0] N [—o0,d)) = f7([c,0]) N f7H([—0,d))e A
=S (Je,d)={x€eD:c<f(x)<dlA

b) As
f1c,d) = f1((c, 0] N [—o0,d]) = f7((c,0]) N f~H([—o,d])e A
> fM(c,d)={x€D:c<f(x)<d}leA

c) As
f1e,d) = f7H((c, @] N [~o,d)) = fH((c,0) N fH([—o0,d))e A
=S (c,d) ={x€ D:c<f(x)<d}eA

d) As
fH (oD ={x€ D:f(x) =0} =nP{x € D:f(x)>kleA
= fH([o]) ={x € D: f (x) = o}e A
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e) As
fA([—o)={xeD:f(x)=-o}=n{x € D:f (x) < —kleA
= fH ([~ ={x€ D:f(x) =—}eA

f) As
fAcD={x€eD:f(x)=c}
fFTA(cD={xeD:f(x)=c}n{xe€ D:f(x)<cleA
>f M ([cD={x€D:f(x)=cleA
Question:

Let G be an open setin R, and let (R, 72;) be a measurable space and f: D — R is
m; — measurable on Demn; then show that f~1(G)em,,

Proof:

Since G is open subset of R therefore there exists disjoint collection of open
intervals in R such that ¢ =U7° I, then

f716) = f7H(UY L) =7 fTHIem,,  implies f~1(G)em,
Here we use the following results;

f is m - measurable and 1, is ¢ — algebra

Proposition:

Let (X, A ) be a measurable space, let D be a subset of X that belongs to A , and
let f/: D — R be an extended real valued <A — measurable functions on D. then for
all ke R =R U [—o0, 0] we have {x € D : f (x) =«} belong to A

Proof:

If x€ Rthen f~1([x]) ={x € D: f (x) =x}e A

If x= oo then f~1([0]) ={x € D: f (x) = wo}e A

If xc= —cothen f71([-o]) ={x € D: f (x) = —o}e A
Hence {x € D : f (x) =x}e A forall x¢ R

Note: Converse of this proposition not holds. See next.

MUHAMMAD USMAN HAMID (0323 - 6032785)



68

Proposition: An extended real valued function f: D — R defined on De A
satisfying {x € D : f (x) =x}e A needs not to be A — measurable.

Proof: Consider the Lebesgue measurable space (R, 72, ). And also we know that
there exists a non — Lebesgue measurable subset of (0,1) i.e. P < (0,1) then let

define a function £: (0,1) = {x, —x} by f(x) = {_9; ifxe(0,1)/P ojﬂf;cce;P

then for every <€ R the set {x € (0,1) : f (x) =} is either singleton or empty
set. In each case it is member of m, but if we choose «= 0

then{x € (0,1): f (x) =0} =P & m,.Sothatf is not A — measurable.

Theorem :

Let (X, A ) be a measurable space, let D be a subset of X that belongs to A , and
let f: X — R be an extended real valued measurable functions on D. then for every
D, € D such that Dye A then restriction of f on D, is A — measurable.

Or For a measurable subset D of E, f is measurable on E if and only if the
restrictions of f to D and E ~D are measurable.

Proof: Since f is measurable functions on D and <A is sigma algebra then for
Dy S DeAwehave{x € Dy: f(x) <«}={x€ D:f(x) <«}N Dye A

Implies f on D, is A — measurable.

Theorem:

Let (X, A ) be a measurable space, and {D;}7° be a sequence in A also D =U{° D;.
Let f: X — R be an extended real valued measurable functions on D. if the
restriction on D,, is A — measurable for all n € N then f is A — measurable on D.

Proof:

Since f is A —measurable functions on D; and A is sigma algebra then for xe R
consider

x€D:f(x)=sc}={x €Uy D;:f (x) S} =UP{x € D;:f(x) SxjeA

Implies f is A — measurable on D.
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Theorem: Let (X, A ) be a measurable space, and De A then every constant
function on D is A —measurable.

Proof: Let f(x) = ¢ VxeD then for all x€ R we have

D ifc<«

{xe D: f(x) Soc}:{(p if ¢ >oc

In each case {xe D: f(x) <o«}e A for all x€ R. So that f is A — measurable on D.

In the following proposition we deal with arithmetic operations on
[0, +00] —valued measurable functions and on R —valued measurable functions.
Arithmetic operations on [—oo, +00] — valued functions are trickier and are seldom
needed.

Proposition: Let (X, A ) be a measurable space, let D be a subset of X that
belongs to A , let f and g be [0, +o0] —valued measurable functions or extended
real valued measurable functions on D, and let ¢ be any real number. Then

f+ecf,f+g9.f—9f%fg andg ; (g # 0) are A — measurable.

Proof: Let x€ R also using f measurable function then
{xeD:f +c(x) <«} ={xeD: f(x) +c <«} ={xe D: f(x) <X —c}e A
Implies f + ¢: D - R is A — measurable.

oooooooooooooooooooooooooooooooooooo

If c = 0 then ¢f = 0 so f being constant function is A — measurable.

If ¢ > 0 then for all <€ R we have
{xe D: (cf)x <oc} = {xe D:cf (x) <oc} = {xe D: f(x) < Z} e A
If ¢ < 0 then for all <€ R we have
{xe D: (cf )x <o} = {xe D cf (x) <o} = {xe D: f(x) 22} e A

Implies ¢f: D - R is A — measurable.

Particularly —f is A — measurable for c = —1

....................................
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Now we are to show that f + g: D — R is A — measurable function, equivalently
we are to show that the set {xe D: f + g(x) >«}e A
Let xe R also using f and g measurable functions then consider the set
{xe D:(f + g)x >x} ={xe D: f(x) + g(x) >x} = {xe D: f(x) >x —g(x)}

Since f(x),« —g(x) € R and set of rational number Q is dense in R therefore
f(x) >r >x —g(x) where r € Q. And we claim that;

{xeD:(f + g)x >x} =U,co {x €ED : f(x) > r}n{x €D :x —g(x) <71})
To show this let y € {xe D: (f + g)x >}

Then (f + g)y >x= f(y) + g(y) >x= f(y) >x —g(y)
= f(y) >r >x —g(y) wherer € Q then

yeE{xeD:f(x)>r}n{xeD:x—glx)<r}
>V EUo((xED: f(x) > rin{x €D :x—g(x) <r})

=>{xeD:(f +9)x >x} CUeg {XED: f(x) > r}n{x €D :x —g(x) <7})

Now suppose that y €U,¢q {x €D : f(x) > r}n{x € D :x —g(x) <71})
>ye{xeD:f(x)>rin{xeD:x—g(x)<r} wherer eQ
= f(y) >r >x —g(y) wherer € Q

= f(y) >x—g(y) = f) +gy) >x= (f + g)y >x where r € Q
=SUpeg {x €D : f(x) > r}n{x €D :x —g(x) <r}) € {xe D: (f + g)x >}

Combining (i) and (ii)

{xeD:(f + g)x >x} =U,co {x €ED : f(x) > r}n{x €D :x —g(x) <71})
Implies {xe D: f + g(x) >x}e A  asis A sigma algebra

Implies f + g: D - R is A — measurable.
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Now we are to show that f — g: D — R is A — measurable function on D

Since g is A — measurable function on D then —g is also A — measurable
function on D. Now Since f and —g are A — measurable function on D
therefore their sum f + (—g) = f — g is also A — measurable function on D

Implies f — g: D - R is A — measurable.

Let f2: D - R is extended real valued function defined on D such that for all xe D

f20) = [f(0))?

Now we are to show that f2: D - R is A — measurable function on D, then
consider the set {xe D: f2(x) >}

If x€ R < 0 then we have {xe D: f?(x) >x} = De A
If <€ R > 0 then we have {xe D: f?(x) <o}

= {xe D: [f(x)]? <o} = {xe D: f(x) < £V}

= {xe D: f(x) < +Voc} U {xe D: f(x) = —x}e A
So {xe D: f?(x) <x} = De A

Implies f2: D - R is A — measurable.

oooooooooooooooooooooooooooooooooooo

Now we are to show that fg: D — R is A — measurable function on D
since fg = 1 [(f + 9)% = (f — 9)]
Also £, 9,f%49%5f+9.f — g (f + 9% (f — g)? are A — measurable

Therefore i [(f + 9)*> — (f — 9)?] = fg is A — measurable

Implies fg: D — R is A — measurable.

....................................
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Now we are to show that i :D —» R is A — measurable function on D. For this
first we show thaté:D — R is A — measurable function on D. Letl: D - Ris
1

g
extended real valued function defined on D such that for all xe D; é(x) =5

Consider the set {xe D: ﬁ >oc} and <€ R then discuss following assumptions;

If <= 0 then assuming g as A — measurable

{xe D:l(x) > 0} = {xe D:— > O} ={xeD:g(x) < 0}e A
g 9(x)

If <> 0 then assuming g as A — measurable
1 1 1

{xe D.E(x) >oc} = {xe D'ﬁ >oc} = {xe D:g(x) < ;}ecﬂ

If << 0 then assuming g as A — measurable and A as sigma algebra

{xe D:g(x) >oc} = {xe D:ﬁ >o<}

= {xeD:g(x) > é;g(x) > 0} U {xe D:g(x) > é;g(x) < O}EC/Z
{xe D:g(x) >o<} = {xe D:g(x) > i} U {xe D:g(x) < i}e A
Hence in each case é:D — R is A — measurable function on D.

Now using the fact “If f and g are A — measurable then fg is A — measurable”

Impliesi—i = f.i:D — R is A — measurable.

oooooooooooooooooooooooooooooooooooo
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Larger and Smaller of two functions or Maximum and Minimum of f and g

Let f and g be [—oo, +00] —Vvalued functions or extended real valued functions
having a common domain A. The maximum and minimum of f and g, written
fVvgandf A g, are the functions from A to [—oo, +00] defined by

(f V 9)() = max(f(x), g(x) and (f A g)(x) = min( f(x), 9(x))
F) I F ) > 900

Equivalently, we can define f V g by (f V g)(x) = { g(x) otherwise

f&) if fx) <g(x)

g(x) otherwise

F A9 ={

Limit inferior and limit superior of a sequence
If { f.} is a sequence of [—oo,+00]-valued functions on A, then

" sup f: A = [—0o0,+0] is defined by
(sup fu)(x) = sup{ fu(x):n = 1,2,.. }
» inf f,: A = [—0,+00] is defined by
(inf () = inf{ fu(x)in = 1,2,.. }
" lim,, e sup f,, = lim,_ o (sup{ fx(x):k =n})
» lim,, e inf f, =lim, . (inf{ fr(x):k =n})
The domain of limf,, consists of those points in A at which Imtsupf,, and
n
Imt(inf f,,) agree.
Remember

= For an increasing sequence i.e. x,, < x,,; We have
lim,, o inf x, = lim, L (inf{x,(x):k =n}) =lim,(infisn{xi})
= For a decreasing sequence i.e. x,, = x,,; We have

lim,,_,e SUP x;,, = lim,_, oo (sup{ x;,(x): k = n}) = lim,_, o (Suprsn{xi})
= {f,}7° is a sequence of functions and {f;,(x)}7° is a sequence of real
numbers.

" (minn:1,2 ..... N fn)(x) =ming_q, n (X))
- (maXn:1,2 ..... N fn)(x) = maxy=1;,. N (fn(x))
» (Imtinf f,)(x) = lmtinf (fn(x)) and
(Imt sup f)(x) = Imt sup (f(x))
= (limy f)(®) = lim (£,(0)
- (infneN fn) (x) = inanN(fn(x)) and (SuanN fn) (x) = SupneN(fn(x))
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Proposition: Let (X, A) be a measurable space, let A be a subset of X that belongs
to A , and let f and g be [—o0,+00]-valued measurable or extended real valued
functions on A. Then f vg and f Ag are measurable.

Proof: The measurability of f v g follows from the identity

fx EA:(fVgx)<«x} ={x€eAdA: f(x)<xin{x € A: g(x) <}
And the measurability of f A g follows from the identity

fxeEA: (fAg)x)<x} ={xeEA:f(x)) Sx}U{xe€EA: g(x) <x}

Proposition:

Let (X, A) be a measurable space, let D be a subset of X that belongs to A, and let
{f,}1° be a monotone sequence of extended real valued measurable functions on D.
Then lim,,_,,, f;, existson D and is A — measurable.

Proof:

Since {f,};" is a monotone sequence on D, therefore {f;, (x)};" is a monotone
sequence of extended real valued numbers so that lim,,_,, f, (x) in R for all
x € D. And hence lim,,_,,, f;, existson D.

Now we are to show that lim,,_,., f;, = f IS A — measurable on D.

If f,, is increasing then lim,,_,,, f,, =V f, using A as sigma algebra for every
€ Rwe have; {x € D:(lim,_,, f,)(x) >x} ={x € D:lim,_,o, f, (x) >}

= lim,, o f,, (x) >x& f,,(x) >x  for some n

= {x € D: (lim,_,o, f,)(x) >x} =U, ey {x € D: f,,(x) >x}e A
= lim,_, f;, IS A — measurable on D

If f,, is decreasing then —f,, is increasing

So that lim,,_,,, (—f;) IS A — measurable on D

= —(lim,_, f;) IS A — measurable on D

= lim,,, f;, IS A — measurable on D

Note: We may write the above phenomenon as follows with a different proof.
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Proposition:

Let (X, A) be a measurable space, let D be a subset of X that belongs to A, and let
{f}7" be a monotone sequence of extended real valued measurable functions on D.
Then Imt f,, is A — measurable on D.

Proof: Let xe Rand x € D also using A as sigma algebra and each f,, is A —
measurable and Let Dy = {x € D:lmt sup f,, = Imt inf f,,} be the domain of
Imt f,, then;

{x € Dy:lmt f,, <x} = Dy N{x € D:lmtsup f,, <x}e A
= {x € Dy:Imt f,, <x}e A

= Imt f,, IS A — measurable on D

Proposition:

Let (X, A) be a measurable space, let D be a subset of X that belongs to A, and let
{f.}1° be a monotone sequence of extended real valued measurable functions on D.

.....

Proof:

Let x€ R and x € D also using A as sigma algebra and each f;, is A —
measurable then

min,_;, n{fn(¥)} <xe f,(x) <« forsomen =1,2,...,N

.....

= {x € D: (minn:1,2 ..... N fn)(x) <°(} =Up=12,.Nn 1X €ED: f(x) <x}e A

= min,—q1,__y fn IS A — measurable on D
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Proposition:

Let (X, A) be a measurable space, let D be a subset of X that belongs to A, and let
{f}7" be a monotone sequence of extended real valued measurable functions on D.

.....

Proof:

Let x€ Rand x € D also using A as sigma algebra and each f,, is A —
measurable then

max,-1, nin(x)} >xe f(x) > forsomen =1,2,..,N

.....

.....

Proposition:

Let (X, A) be a measurable space, let D be a subset of X that belongs to A, and let
{f}7° be a monotone sequence of extended real valued measurable functions on D.
Then inf,,cy f;, IS A — measurable on D.

Proof:

Let x€ Rand x € D also using A as sigma algebra and each f,, is A —
measurable then

inf, ey {f, ()} <xe f,(x) <x forsomen € N
= {x € D: (inf,cy f,) (x) <} = {x € D: inf £, (x) <o<}

= {x € D: (inf,cy f,) (x) <X} =U, ey {x € D: f,,(x) <x}e A

= inf, ey fr 1S A — measurable on D
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Proposition: Let (X, A) be a measurable space, let D be a subset of X that belongs
to A, and let {f,,};° be a monotone sequence of extended real valued measurable
functions on D. Then sup,ey fr, IS A — measurable on D.

Proof: Let x€ R and x € D also using A as sigma algebra and each f,, is A —
measurable then

Suppenifn(x)} >xe f(x) >x forsomen € N

= {x € D: (suppepy fr)(x) >x} = {x € D:supf,(x) >oc}

nenN
= {x € D: (suppen f) (x) >} =Upey {x € D: f;,(x) >}e A
= SUPnen fn 1S A — measurable on D

Proposition: Let (X, A) be a measurable space, let D be a subset of X that
belongs to A, and let {f,,}7° be a monotone sequence of extended real valued
measurable functions on D. Then Imt inf f,, is A — measurable on D.

Proof: We know that Imt inf f,, = lim,,_, o (infisn{fi}) Where {inf,s,{fi}}7 is
an increasing sequence and since infys,, f,, 1S A — measurable foralln € N
therefore

Imtinf f,, = lim,_ o (infisn{fx}) is A — measurable on D
Proposition:

Let (X, A) be a measurable space, let D be a subset of X that belongs to A, and let
{f,}1° be a monotone sequence of extended real valued measurable functions on D.
Then lmt sup f,, is A — measurable on D.

Proof:

We know that Imt sup f,, = lim,,_,o (SUPksn{fi}) Where {supysn{fi}}7" is a
decreasing sequence and since supys, fn 1S A — measurable foralln € N

Therefore Imt sup f,, = lim,,_, o (SUPrsnifi}) is A — measurable on D
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The positive part f* and the negative part f~of f

Let D be a set, and let f be an extended real-valued function on D. The positive
part f* and the negative part f~ of f are the extended real-valued functions
defined by

T =(fv0)(x) =max(f(x),0)and f~ = —(f A0)(x) = —min( f(x),0)
The absolute value of f

Let D be a set, and let f be an extended real-valued function on D. The absolute
valued of f is the extended real-valued functions defined by |f|(x) = |f(x)| =0

or  |f](x) = max(f(x), —f(x))
Remember
“fl=f"+f"
= Forany x € D at least one of f*and f~ is zero. So that f* — f~ is well
defined and we have f = f* — f~

Proposition: Let (X, A) be a measurable space, let D be a subset of X that
belongs to A, and let f be an extended real valued measurable functions on D.
Then f*, f~,|f]| are A — measurable on D.

Proof: Since we know that f* = max(f(x),0) and f and 0 are A — measurable

.....

Therefore f* is A — measurable on D € A.

Also we know that f~ = —min(f(x),0) and f and 0 are A — measurable on

.....

Therefore f~ is A — measurableon D € A.

Now |f| = f* + f~ being addition of A — measurable on D € A is A —
measurableon D € A

Proposition: Let f be a measurable function on E. Then f* and f~ are integrable
over E if and only if |f| is integrable over E.

Proof: Assume f* and f ~are integrable nonnegative functions. By the linearity of
integration for nonnegative functions, |f| = f* + f~ is integrable over E.
Conversely, suppose|f| is integrable over E. Since 0 < f+,f~ < |f| on E, we
infer from the monotonicity of integration for nonnegative functions that both f*
and f~ are integrable over E.
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Properties That Hold Almost Everywhere

Let (X, A ,u) be a measure space. A property of points of X is said to hold

u —almost everywhere if the set of points in X at which it fails to hold is

u —negligible. In other words, a property holds ¢ —almost everywhere if there is a
set N that belongs to A , satisfies u(N)=0, and contains every point at which the
property fails to hold. More generally, if E is a subset of X, then a property is said
to hold x-almost everywhere on E if the set of points in E at which it fails to hold is
u-negligible. The expression p-almost everywhere is often abbreviated to u — a. e.
or to a.e. [u]. In cases where the measure p is clear from context, the expressions
almost everywhere and a. e. are also used.

Consider a property that holds almost everywhere, and let F be the set of
points in X at which it fails. Then it is not necessary that F belong to ; it is only
necessary that there be a set N that belongs to A , includes F, and satisfies u(N)= 0.
Of course, if p is complete, then F will belong to A.

In short we can define Almost Everywhere as

A property is said to be almost everywhere if the set of points where does not hold
IS a set of measure zero.

Or Let (X,A,u) be ameasured space, a property P holds almost everywhere in
X, iffaset N € A such that u(N) = 0 and property P is hold for all x € X/N.

Equal almost Everywhere

For a given complete measure space (X, A , i), we say that two extended real
valued A — measurable functions f and g defined on D € A are equal almost
everywhere (i.e. f = g a.e.) if there exists a null set N in (X, A , u) such that
N cDand f(x) = g(x) forall x € X/N.

Remember

= Inabove definition f = g a.e.onD if f = g outsideanull set N c D
This does not exclude the possibility that f(x) = g(x) for some and indeed
foreveryx e N

= Every subset of a null set is null set and belongs to Sigma algebra.
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Proposition:

Let (X, A ,u) be acomplete measure space, then every extended real-valued
function defined on anull set N in (X, A ,u) is A — measurable.

Proof:

Let x€ R and f be an extended real-valued function defined on a null set N in
(X, A ,u) then

{xeN:f(x) <x}c N
~ u(N) = 0 and every subset of a null set is null set and belongs to A.
>{xeEN:f(x) Sx}c NeA

Implies f is A — measurable on the null set N.

Proposition:

Let (X, A ,u) be acomplete measure space, and let f and g be extended real-
valued functions on D € A that are equal almost everywhere. If f is A —
measurable on D, then g is A — measurable on D.

Proof:

Suppose f = g a.e.on D then there exists a null set N in (X, A , u) such that
N c Dand f(x) = g(x) forall x € X/N.

Since f is A — measurable on D then it is A — measurable on D/N by theorem “if
f is A — measurable on D then f is A — measurable on D, € D”

But f = gon D/N sothat g is A — measurable on D/N € D.

Since (X, A, u) is a complete measure space then by theorem “Let (X, A, u) be a
complete measure space, then every extended real-valued function defined on
anull setNin (X,A,u) is A — measurable.” g is A — measurable on N c D.

So g is A — measurableon D = (D/N) UN.

Remark

If £ is A — measurable on {D;}7 then it is A — measurable on UT D;
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Existence of limit Almost Everywhere

Let (X, A, u) be a measure space, and {f,,}7° be a sequence of extended real
valued A — measurable function on D € A. Then we say that lim,,_,, (f;,) exists
almost everywhere on D € A if there exists a null set N such that lim,,_,, (f;,)
existson D/N.

Equivalently we say that {f,, (x)}7° converges a.e. on D if {f;,(x)}1° converges on
D/N where u(N) = 0.

Note that the convergence of the sequence {f,,};° depends on the convergence of
{fL(x)} forx € D

Lemma:

Let (X, A, u) be a measure space, and {f,,}7° be a sequence of extended real
valued A — measurable function on D € A. If for every n > 0 there exists a A —

measurable subset E of D (E' € D) with u(E) < %such that lim,,_,, f,,(x) exists
forall x € D/E then lim,,_,, f;,(x) exists almost everywhere on D.

Proof:

From the condition for all n € N there exists a A — measurable subset E,, of D
(E,, € D) such that u(E,) < % and lim,,_,, f,,(x) exists for all x € D/E,,.

Now we have to prove lim,,_,, f,, (x) almost everywhere on D.

Define N =n{° E, then N € D such that u(N) = u(n* Ey) < u(Ey) < - ;Vn
i.e. u(N) =0,soNisnull setin (X,A,uw)
D/N=DnNnN¢=Dn(NPE,)*=Dn U ES) =U (DnES) =uU? (D/E,)
=>x€D/N ©x€DJE, fork e N

Hence lim,,_, ., f,, (x) exists for all x € D/E,

Implies lim,,_,, f,,(x) exists forall x € D/N

That is lim,,_,, f,, (x) exists almost everywhere on D.
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The Integral

In this section we construct the integral and study some of its basic properties. The
construction will take place in three stages.

= \We begin with the simple functions

» As our next step, we define the integral of an arbitrary [0, +o0] — valued
A —measurable function on X

= Finally, let f be an arbitrary [—oo, +00] —valued A — measurable function
on X. If [ f*du and [ f~du are both finite, then f is called integrable (or
u — integrable or summable), and its integral [ fdu is defined by

[fdu=[f*du—[fdu

The integral of f is said to exist if at least one of [ f*du and [ f~du is finite, and
again in this case, [ fdu is defined to be [ f*du — [ f~du. In either case one
sometimes writes [ f(x)u (dx) or [ f(x) d(ux) in place of [ fdu

Step Function

Let/ =[a,b]inRand P = {a = xq, X1, e, X—1) Xjo» X 41, -, Xn = b} IS Q
partition of interval I = [a, b] such that I =U? I}, where I,, = (xj_q1, xx+1) thena
real valued function f: 1 — R is called step function that is defined as follows;

Cr leEIk

Or

k=0,1,2,..,n

A real valued function ¢ with I = [a, b] is called a step function if there exists a
partition a = x, X1, ..., Xk—1, Xi» Xj41, --» Xn = b Of the interval I = [a, b] such
that f is constant on each sub —interval I, = (xy_1, X 4+1)- 1.€.

¢, ifx€el

f(x)={dk A k=0,1,2,...n
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Simple Function:
Let (X, A ,u) be a measure space, and f: D € A — R is called simple function if

» D(f) €A (domainof f)
= R(f) is finite subset of R. i.e. Range of f is only finitely many reals.
= fis A — measurable function on D(f)

We will denote the collection of all simple A — measurable real valued functions
with § and S, the collection of all non — negative functions in §

Question:
Every step function is simple but Simple function needs not to be a step function.

Answer: Consider the following function;

(1 ifxeq@
f(x)‘{o if x € Q'

This is simple function but not a step function.

Keep in mind a simple function is linear combination of characteristic functions.

Canonical Representation:  Let f be a simple function on D € A in a measure
space (X, A, u), also let ¢y, c,, ..., c,, are distinct values assumed by f on D and let
D; = {x € D: f(x) = c¢;} then {D;}} is a distinct collection with D =U? D; then the
representation f(x) = X7 ¢;1p,(x) ;V x € D is called the canonical representation
of fonD

Remark

= |n above definition the collection {D;}} is a partition of set D € A
i.e.D=uUfD;andD;ND; =¢ ; Vi,j=1.2,..,n
» IfD;eAandc; e Rfori=1,2,...,nandif we have D =UT D, then if
f(x) =XT¢1p,(x) ;Vx € D isasimple function on D then the expression
T ¢i1p,(x) may not be a canonical representation of f. Since {D;}} may not
be disjoint collection and c;,; may not be distinct.
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Integrable Function

Suppose that f: X — [—oo, +0] is A — measurable and that D € A .Then f is
integrable over D if the function f, | is integrable, and in this case fodu, the

integral of f over D, is defined to be fufde”- Likewise, if D € A and if f isa
measurable function whose domain is D (rather than the entire space X), then the
integral of f over D is defined to be the integral (if it exists) of the function on X
that agrees with f on D and vanishes on D€.In case u(D€) = 0, one often writes
[ fdu in place of fodu and calls f integrable, rather than integrable over D.

Lebesgue Integral of a Simple Function

Let f(x) = X7 ¢;1p,(x) be a canonical representation of a simple function f on
D € A in a measure space (X, A , u) then Lebesgue Integral of f on D with
respect to u is defined as; fodu = YTc;u(D;)

Lebesgue Semi — Integrable Function

If Lebesgue Integral of f exists in R then we say that f is Lebesgue Semi
integrable on D

Or A simple function f onaset D € A is called u — Semi integrable on D if
J fdx € R

Lebesgue Integrable Function

If Lebesgue Integral of a simple function f on D € A exists in R then we say that
f is Lebesgue Integrable on D

Or A simple function f onaset D € A is Lebesgue Integrable on D

Or u — integrable on D if [ fdx € R
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Question:
Give an example of a simple function which is semi — Lebesgue integrable.

Solution: Consider (R, By, ;) be a Borel measureable space and let a simple
function f: IR — R is defined as f(x) = {0 yxeQ

1 ifxeq@’
representation of f is f(x) = 0.15(x) + 1.14,(x)

then canonical

And so its Lebesgue integral is fRfduL =0.u,(Q) + 1. u,(QH

Set of rational is

I]RdeL =0+ pu,(R/Q) countable union of
— singletons. i.e.
fRfdliL=liL(R)—liL(Q)ZOO—OZOOER .LLL(Q)=0

fRfduL € R Implies f is semi — Lebesgue integrable.

ooooooooooooooooooooooooooooooooooooooooo

Question: Give an example of a simple function which is Lebesgue integrable.

Solution: Consider (R, By, 1;) be a Borel measureable space and let a simple

function £:[0,1] - R is defined as f(x) = {(1’ i;i E g,'; [[%11]]

representation of f is f(x) = 0.1pn[0,17(x) + 1. 1g,n0,17(X)

then canonical

And so its Lebesgue integral is f[o,l]fduL =0.u,(QN[0,1]D) + 1.4, (Q"' Nn[0,1])

Jpfdu, =0+ u,(Q N [0,1]) = p,([0,1]1 0 Q") = p,([0,11/Q)
Jpfdu, = ([01]) —p(Q)=1-0=1€R

fRfduL ER Implies f is Lebesgue integrable.
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Question:
Give an example of a simple function which is not Lebesgue integrable.
Solution:

Consider (R, By, 4;,) be a Borel measureable space and let a simple function
—1  if x €Uyezr [2k + 1,2k + 2]

1 if X €Upezr [2k, 2k + 1] then

f:]0,00) - Ris defined as f(x) = {
canonical representation of f is
fG) = (D1,

[2k+1,2k+2](x) + 1. 1uk [2k,2k+1] (x)

ezl ez,

And so its Lebesgue integral is

J fdu, = (=1, (Upezr [2k + 1,2k + 2]) + 1. (Upezr [2k, 2k +1])
| fduw, = (=1).Zpezr w2k + 1,2k + 2] + 1. Xyepr iy [2Kk, 2k + 1]

[ fdu, = —o0 + oo = Undefined and Lebesgue Integral is not exists
Implies f is not Lebesgue integrable.

Proposition:

Let (X, A, u) be a measure space, let f belongs to S, is a simple function defined
onaset D € A with finite members i.e u(D) < coand let k € R. Then kf is

simpleon D € A and [ kfdu =k fdu
Proof:

Since f is simple function on D therefore there exists a disjoint sequence {E;}1 and
distinct numbers {c;}T such that D =U7T E; and its canonical representation is

f(@) = £ ¢i15,(x) then

kf(x) = kXt clg,(x) = (kf)x = X7 (kc;)1g,(x) thisis canonical
representation of kf and it is a simple function.

Now [ kfdu = 31 ke;u(E) = kX7 c;u(E;) = kf ,fdu
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Proposition (Linearity of Integration):

Let (X, A ,u) be a measure space, let f & g belongs to S, are simple function
defined on a set D € A with finite members i.e u(D) < oo then f + g is simple on

DeAand [ (« f+Bg)du = [ fdu+ B[, gdu
Proof:

Since f & g are simple function on D therefore there exists disjoint sequences
{E;}} and {Fj}lnand distinct numbers {c;}} and {dj}Tsuch that D =U? E; and
D =UT" F; and their canonical representations are f(x) = X7 ¢;1g,(x) and
9() = X1 d1p,(x).

Now we define G;; = E; N Fj then {G,;:i = 1,2,...,n;j = 1,2, ..., m} is a disjoint
collection such that D =UJL UL, G;; then (f + g)x = X7, Y7y (¢ + dj)lcij(x)

This implies f + g and also in similar way « f + g issimpleon D € A
Then [, (< f + Bg)dp = Biey X%y ( ¢; + Bd;)u(Giy)

J (e f+ Bg)du = Xy Xy o ciu(Gij) + Xiey X%y Bd;u(Giy)

[p( f+ Bg)dp = Ty By ciu(E; 0 Fy) + B R, Xty din(E; 0 Fy)
Jp( f+Bg)du =e¢ By ci| ST n(E: 0 F)] + B EJLs & n(Ei 0 )]
Jp( f+Bg)du =e¢ By cip| ULy (B: 0 )| + B XLy djp| U, (B0 F)]
Jp e f + Bgdu = By cou| By 0 (U1 )| + B X2y djp| (Vi B 0]
[p( f + Bg)dp = T} ciulE; n D] + B XL, dju[D 0 F

(e f+ Bg)du = Ty cou(Ey) + B Xy diu(F;)

Jp( f+Bg)du = [ fdu+ B ,gdu
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Proposition (Monotone Property): Let (X, A, u) be a measure space, let f & g
belongs to S, are simple function defined on a set D € A with finite members i.e

u(D) <candf <gonD € Athen [, fdu < [, gdu

Proof: If f < gtheng — f > 0sothat [ (g — f)du =0

= [pgdu+ (=f,fdu) =0 “Jp(f+@du= [ fdu+ [, gdu
= [pgdu— [, fdu=0 [ pkfdu = k[ fdu

= [pgdu = [ fdu= [ fdu< [, gdu

Proposition:

Let (X, A, u) be a measure space, let f belongs to S, is simple function defined
onaset D € A with finite members i.e u(D) < oo and if D;, D, are disjoint
measurable subsets on D € A with D = D, U D, then

Jofdu= [, fdu+ [, fdu

Proof: Since f is simple function on D therefore there exists a disjoint sequence
{E;}T and distinct numbers {c;}} such that D =UT E; and its canonical
representation is f(x) = X7 ¢;1g,(x).

Now if D = D; U D, and D; N D, = @ then 1,(x) = 1p (x) + 1p,(x)

Now [, fdu = Xt ciu(E) = X1 ciu(E; 0 D) = X7 ciulE; 0 (Dy U D,)]
fod.U = X1 cul(E;n D) U (E; N Dy)] = X1 ¢ [u(E; 0 Dy) + u(E; N Dy)]
fod/,t =Yrqu(E;nNDy) + Y cu(E;nDy) (1)

Now {E; n D,}} and {E; n D,}} are disjoint sequences

And Ul (E;nD;) =UTE;NnD; =DND; =D,

Also Ut (E;nD,) =UYE;NnD, =DND, =D,

@)= [ fdu=J, fau+ [, fdu
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Proposition: Let (X, A , i) be a measure space, let f be a simple function defined
onaset D € A then if u(D) = 0'then [ fdu =0

Proof: Since f is simple function on D therefore there exists a disjoint sequence
{E;}} and distinct numbers {c;}} such that D =U? E; and its canonical
representation is f(x) = X7 ¢;1g,(x).

Let u(D) = 0and E; < D then u(E;) < u(D) = 0 implies u(E;) =0
So [, fdu = X1 cju(E;) = 0 implies [ fdu =0

Proposition: Let (X, A , i) be a measure space, let f be a simple function defined
onasetD € A thenif f = 0then [ fdu =0

Proof: Since f is simple function on D therefore there exists a disjoint sequence
{E;}} and distinct numbers {c;}} such that D =U? E; and its canonical
representation is f(x) = X1 ¢;1g,(x).

Letf =0thenc; =0 Vi=12,..,n
So [, fdu = X3 ciu(E;) = 0 implies [, fdu = 0
Proposition:

Let (X, A, u) be a measure space, let f be a simple function defined on a set
D € Athenif f > 0then [ fdu >0

Proof:

Since f is simple function on D therefore there exists a disjoint sequence {E;}} and
distinct numbers {c;}} such that D =U? E; and its canonical representation is

fx) =21 cilg,(x).
Let f = 0then f(x) = X7 ¢;lg,(x) =0

So [, fdu = XTciu(E;) = 0implies [, fdu =0
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Proposition: Let (X, A , i) be a measure space, let f be a simple function defined
onasetD € A thenif f < 0then [ fdu <0

Proof: Since f is simple function on D therefore there exists a disjoint sequence
{E;}} and distinct numbers {c;}} such that D =U? E; and its canonical
representation is f(x) = X7 ¢;1g,(x).

Let f <Othen —f = 0then —f(x) = X7 c;1g,(x) =0

So—f, fdu=—X1 c;u(E;) = 0 implies — [, fdu =0
Hence [ fdu <0
Proposition:

Let (X, A, u) be a measure space, let f be a simple function defined on a set
D € A then f is u —integrable on D iff u({x € D: f(x) # 0}) <

Proof:

Since f is simple function on D therefore there exists a disjoint sequence {E;}} and
distinct numbers {c;}T such that D =U7T E; and its canonical representation is

f(x) = X¥¢ilg ().

Let f is u —integrable on D then [, fdu = Y1 c;u(E;) < oo

Now u({x € D: f(x) # 0}) = u({x €Ut E;: f(x) # 0})

p({x €D:f(x) # 0}) =pu({x € E;: f(x) # 0}) <o~ pu(E;) <
Conversely suppose that u({x € D: f(x) # 0}) < o

=> u(D) <o Vx€eD

Since E; < D therefore )7 c;u(E;) < o

= fodu <o

Hence f is u —integrable on D
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Proposition:

Let (X, A ,u) be a measure space, let f be a simple function defined on a set
D € A. Let{E,, E,, ..., E,} be a disjoint collection in A such that D =U?} E; then
f issimple functionon E; € A ;i = 1,2,..,nand [ fdu = ¥, fEifdy

Proof:

Since f is simple function on D therefore there exists a disjoint sequence {Dj}: and

distinct numbers {CJ}Z such that D =UT D; and its canonical representation is
flx) = ’fclej (x). Also the Lebesgue integral of f on D € A will be

[ fdu=3"cu(D;) e (i)

Since f assumes finitely many values on D so its restriction to E;; i = 1,2, ..., n
assumes only finitely many values with D =U? E;. Hence f is simple function on
E; € A;j=12,..,n Then we have a disjoint sequence {D N E;}} and distinct

numbers {c;} such that E; =UZ (D; N E;) ;i,j = 1,2,...,n and its canonical
representation is f(x) = X7 ¢;1 D;NE; (x)

Then from (i) we have [ fdu = Y7, ¢;u(D;)

[ fdu =Y cu(D;n D) = T, ciu (Dj N (un Ei)) « D =UN E
J fdu =Y cu (U{‘ (D;n El)) by distributive property
Jpfdu=Y"1¢ ¥, u(D; NE;) by definition of measure
Jpfdu = X[ E]1 u(D; N Ey)]

[ofdu= S5, [, fdu
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Proposition:

Let (X, A, u) be a measure space, let f belong to §,, and let {f,,} be a
nondecreasing sequence of functions in S, such that f (x) = lim,_«f,(x) holds
ateach x in X. Then [ fdu = lim,_o [ fodu.

(This proposition is a weak version of one of the fundamental properties of the
Lebesgue integral, the monotone convergence theorem. We need this weakened
version now for use as a tool in completing the definition of the integral)

Proof: Since from Proposition we know that

“Let (X, A, u) be a measure space, let f & g belongs to S, are simple function
defined on a set D € A with finite members i.e u(D) < wand f < gonD € A

then [ fdu < [, gdu”
Therefore [ fidu < [ fodu <+ < [ fdu
Hence lim,_,of,du exists and satisfies lim, o[ fodu < [ fdu ... )

Conversely: Let € be a number such that 0 < € < 1.We will construct a
nondecreasing sequence {g,} of functions in S, such that g,, < f,, holds for each n

and such that lim, . [ g,du = (1 —¢)J fdu
= iMoo ) gndp = (1= &) fdu < limyoof fodu = [ godu < [ frdu

= limyoe) gudu = [ fdu < lim,of fodu € 1s arbitrary
= [ fdu < limoof fudu Ll (ii)
From (i) and (ii) [ fdu = lim,_o[ f,du

Lemma: Let (X,A,u) be a measure space, and let f;, f,, g, and g, be
nonnegative real-valued integrable functions on X such that

fi—fr=091—92Then [ fidu— [ fodu = [ grdu— | g,du
Proof: Since the functions f;, f,, g, and g, satisfy f; — f, = g, — g,,they also
satisfy f; + g, = g1 + f, and so satisfy [ fidu + [ g.du = [ g1du + [ fodu

since all the integrals involved are finite, this implies that

| fidu— [ fodu = [ g1du— [ g,du
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Examples of Integrable Functions

a) If u is a finite measure, then every bounded measurable function on
(X, A, u) is integrable.

b) In particular, every bounded Borel function, and hence every continuous
function, on [a,b] is Lebesgue integrable.

c) Suppose that A is the o —algebra on N containing all subsets of N and that
u is counting measure on . It follows that a nonnegative function f on N is
u — integrable if and only if the infinite series Y. f(n) is convergent, and that
In that case the integral and the sum of the series agree. Since a not
necessarily nonnegative function £ is integrable if and only if f* and f~ are
integrable, it follows that f is integrable if and only if the infinite series
Y.f (n) is absolutely convergent. Once again, the integral and the sum of the
series have the same value.

d) Note that a simple measurable function that vanishes almost everywhere is
integrable, with integral 0.

....................................................

Proposition:

Let (X, A ,u) be a measure space, and let f be a [—o0, +o0] —valued or extended
real valued A4 — measurable function on X. Then f is integrable if and only if |f|
is integrable. If these functions are integrable, then | fdu| < [ |f|du

Proof:

Recall that by definition f is integrable if and only if f* and f~ are integrable.
since |fl=f*+f"

Jplfldu= [ pf*du+ [, fdu Ip(f+@du= [ fdu+ [,gdu
Thus the integrability of f is equivalent to the integrability of |f].

Now | fdu| = [, f*du+[,f~du| < [ frdu+[,f~du<[Ifldu

Hence |[ fdu| < [ |fldu
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Proposition: Let (X, A , ) be a measure space, and let f and g be
[—o0, +00] —valued or extended real valued <A — measurable function on X that
agree almost everywhere. If either fodu or ngdu exists, then both exist, and

J fdu= [, gdu

Or Let (X,A,u) be ameasure space, let f & g are simple function defined on a
set € A . Assume that f & g are u —integrable on D. If f = g almost everywhere

onD € A then [ fdu = [ gdu
Proof:

Given that If f = g almost everywhere on D € A then there exists a null set
N < Din(X,A,u)suchthat f(x) =g(x) Vxe€D/N

Since D = (D/N) U N therefore

Jofdu=Jppfdu+Jyfdu= [y fdu “u(N)=0= [, fdu=0
Jpfdu= [, ygdu » f = g almost everywhere
[pfdu= 1, ygdu+0= [, gdu+ [y gdu=[,gdu

Jpfdu=J,gdu

Proposition:

Let (X, A, u) be a measure space, and let f bea [0, ] —valued A — measurable
function on X. If t is a positive real number and if D, = {x € X: f(x) = t}, then

u®D) <7 [y fdu<J fdu
Proof:

Since 0 < txp, < fy,, < fand f < g implies [, fdu < [, gdu then
Jtxpdu < [ fdu < [ fdu
tu(De) < [ fdu < [ fdu w tu(Dy) = [ tyxp,du

u(D) <[, fdu <~ fdu
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Corollary: Let (X, A, u) be a measure space, and let f be [—oo, +00] —valued or
extended real valued A — measurable function on X. Then {x € X: f (x) # 0} is
o —finite under pu.

Proof: Consider a sequence A, 4,, ... such that 4,, = {x eX:|f ()| = %}

Now using the result “Let (X, A , u) be a measure space, and let f be a
[0, o] —valued A — measurable function on X. If ¢t is a positive real number and if

Dy = {x € X:f(x) 2 t}, then u(D,) < [, fdu <+ [ fdu”

If we replace f with |f| we conclude that u(A,) = u ({x EX:|f )| = %}) is
finite under . Then UY” 4, = {x € X: f (x) # 0} is o —finite under p.

Corollary: Let (X, A, u) be a measure space, and let f be [—oo, +00] —valued or
extended real valued <4 — measurable function on X that satisfies [ |f|du = 0.
Then f vanishes u —almost everywhere.

Proof: Consider a sequence A4, 4,, ..., such that A,, = {x EX:|f )| = %}

Now using the result “Let (X, A , u) be a measure space, and let f be a
[0, o] —valued A — measurable function on X. If ¢t is a positive real number and if

D= {x € X:f(x) 2 ¢}, then u(D,) < ¢ [, fdu < 7 f fap”
If we replace f with |f| we conclude that

u(Ay) = p({x € X:|f ()| = 3}) < nf |fldu = 0 hold for each n € Z*
Since UP A, =UF {x € X:|f ()| =3} = (x € X: f (x) = 0}

Therefore u(UP 4,) = (U7 {x € X:If (0] 2 1}) = u(lx € X:f () # 0))
pllx € X:f (0 # 0 = (UF {x € X:1f ()] 2 1}) Rearranging

Pl €X:f (0 # 0P =P p{x € X:If (I = 1} <nf Ifldu=0

Implies u({x € X: f (x) # 0}) = 0. Thus f vanishes u —almost everywhere.
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Corollary:

Let (X, A, u) be a measure space, and let f be [—oo, +00] —valued or extended
real valued A — measurable function on X such that fAfdu > 0 holds for all A'in

A (or even just for all A in the smallest c-algebra on X that makes f measurable).
Then f > 0 holds u —almost everywhere.

Proof: Let A = {x € X: f(x) < 0}.Then [ fx,du = [ ,fdu = 0 (since f < 0on
A, yet we are assuming that fAfdu > 0). It follows from Corollary

“Let (X, A, u) be a measure space, and let f be [—oo, +00] —valued or extended
real valued A4 — measurable function on X that satisfies [ |f|du = 0. Then f
vanishes u —almost everywhere”

That f y, vanishes almost everywhere and hence that f > 0 holds almost
everywhere.

Corollary:

Let (X, A, u) be a measure space, and let f be [—oo, +00] —valued or extended
real valued A — measurable function on X. Then |f(x)| < oo holds at u —almost
every x in X,

Proof: Using the result

“Let (X, A, u) be ameasure space, and let f be a [0, o] —valued A — measurable
function on X. If t is a positive real number and if D, = {x € X: f(x) = t}, then

D) <7 [y fdu<f fdu
If we replace f with |f| we conclude that

u(Ay) = p(fx € X:|f () = n}) <= [ |fldu =0 holds for each n € Z*

Thus u({x € X:|f (x)] = 0}) spu({x € X:|f ()| =n}) < %f |fldu = 0 holds
for each n

Andso u({x e X:|f (x)| = 0}) =0
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Limit Theorems

In this section we prove the basic limit theorems of integration theory. These
results are extremely important and account for much of the power of the Lebesgue
integral.

non — Negative Functions

Let (X, A ,u) be a measure space, a real valued function f:D - RonD € A is
said to be non — negative if f(x) = 0; Vx € D with u(D) < o

Lebesgue Integral of non — Negative Functions

Let (X, A, u) be a measure space, let f be a non — negative extended real valued
A —measurable function on D € A with u(D) < oco. Then Lebesgue Integral of
non — negative function f on D with respect to u is defined as;

Jpfdu = Supocger ) gdu

Where suprimum is taken over all non — negative simple function g on D such that
g=sf

Remark: A non — negative extended real valued function need not to be bounded
and therefore there exists may not be simple function ¥ such that f < ) then the
equality fody = Inffswazpdu for a bounded real valued A —measurable

function does not exists for a non — negative extended real valued A —measurable
function f.

This fact has the consequence that while the integral of a non — negative extended
real valued A —measurable function can be approximated by integrals of simple

functions from below, it cannot be approximated by integrals of simple functions
from above.

Lemma (Without Proof): Let (X, A, u) be a measure space, let f, f;, f, be non —
negative extended real valued A —measurable functions on D € A then

= |f fodu = 0 then f = 0 almost everywhereon D € A
= 1f Do € D is A —measurable then [, fdu < [ fdu
= If f > 0 almost everywhereon D € A and [, fdu = 0then u(D) = 0

“ Iffy<fonDeAthen [ fidu< [, fodu
= If f; = f, almost everywhere on D € A then [, fidu = [, fodu
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Preposition

Let (X, A ,u) be a measure space, and let f be a non — negative simple functions
on X. Then show that a set function v: A — [0, o] defined as v(4) = fAfdu for
all A € A is a measure on A.

Proof: To show that v(4) = | 4Jfdu is a measure we have to show;

" v(p)=0 _
= For a disjoint sequence {E;} we have v(UY E;) = X7 v(E))

Let f(x) = X7 ¢;1p,(x)be a canonical representation of f on X then UT D; = X
then the restriction of f on A € A is given by f(x) = X1 ¢;1p,na(x) then

v(4) = [, fdu =31 c;u(D; N A) € [0,00] forall A € A

Particularly if A = ¢ then

v(p) = [ fdu =31 cipu(D; N @) = Xt ciu(p) = 0 () =0
v(p) =0

Now let {E;} " be a disjoint sequence in A then;
n
1

il (u§° (D;n E]))

cizu(Di NE;)

)
Yo}

0o
1

v(UP Ej) = i [2 ciu(D; N E))

v(Uf E) = X7 v(E))

Hence v(4) = fAfdy IS a measure.
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Theorem: (The Monotone Convergence Theorem)

Let (X, A, u) be a measure space, and let {f,,}7° be an increasing sequence of
[0, o] —valued or non — negative extended real valued A —measurable functions

onD € Aand f(x) = limy,efy(x) onD € A. Then [ fdu = lim,o [, frdu

In this theorem the functions f and f3, f5, ... are only assumed to be nonnegative
and measurable; there are no assumptions about whether they are integrable.

Proof:

Since {f,,}7° is an increasing sequence of non — negative extended real valued

A —measurable functionson D € A then f(x) = lim,_f,(x) exists in [0, o]
forall x € D sothat f(x) = lim,_f,,(x) is anon — negative extended real
valued A —measurable functions on D € A, also f is A —measurable function ( if
{37 is A —measurable so its limit exists)

Since f,, < f therefore [ f,du < [, fdu VYneN

Also f, < fnyq therefore [ fodpu < [ foradu

So { f pfndi:n € N} IS an increasing sequence of non — negative extended real
valued numbers bounded above by [ ofdu

Hence liMyooof pfodu = [pfdu @)

Now let g be an arbitrary non — negative simple functions on D € A such that
0 < g < f with <€ (0,1)arbitrarily fixedas0 <x g<g<fonD €A

Define a sequence {E, }7° of subset of D by setting as follows for all n € N
E,={x€eD:f,(x) =x g(x)} ... (i1)

Since f,, and o< g are A —measurable therefore for all n € N we have E,, € A
Now f,, < fn4q1 IMpliesE, € E, 4

And this shows that {E,,}7° is an increasing sequence in A

Since E,, € D thereforeU"E, <€D ... (ii1)

We claim that U® E,, = D

Toseethisletx € D
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If f(x) = 0thensince 0 < g < f therefore g(x) =0andsince0<g<f,<f
therefore f,,(x) = 0

This implies f,,(x) = 0 =x g(x) and x € E,,

Implies D € E,, forsomen € N

ThenD CU E, ... (iv)

If f(x) > 0thensince 0 < g < f and xe (0,1) we have f(x) >x g(x)
Since f,, is an increasing function therefore there exists n € N such that
fn(x) >x g(x)andsox € E,

Implies D € E,, for somen € N

ThenD CUT E, ... %)

Using (iii),(iv),(v) we have UL E,=D

Now define a set v on A by setting v(D) = ngdy then v is a measure
Now [, fudp = [ fadu > [ o« gdu=cx [ gdu=xv(E,)
Implies [, f,du = v(E,) or < v(E,) < [, fdu

> lim,_,,V(E,) < limnﬁoofondu

>X v( lim,,oEy) < limnﬁoofondu

= v(UP Ey) < limye0f pfudu + E, is increasing

=0 (D) < limysof ,fndit

= [pgdu < limy o[ | fudu

Since this holds for arbitrary non — negative simple function g on D such that
0<g<fwehaveo [ fdu < lim, o[ frdu

> [ fdu < limyof , fod voc€ (0,1); K= 1 o, (vi)
Hence from (i) and (vi) liMy oo pfudu = [ fdp

Note: This theorem is not valid for decreasing sequence. (See Next)
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Theorem:

Let (X, A, u) be a measure space, and let {f,,}7° be a decreasing sequence of
[0, o] —valued or non — negative extended real valued A —measurable functions
onD € Aand f(x) = limy,ofy(x) onD € A. Then [ fdu # lim,o [, frdu

Proof:

Consider a Lebesgue measure space (R, 7, 1, ) and {f,,}7° be a decreasing
sequence of [0, co] —valued or non — negative extended real valued functions on R
defined by f,, = 1) ; V1 € N then we have

foTldlu'L = fpl[n,oo)(x)dllL = HL([n, OO)) = 00

= limn—moijnd.u =

Now f(x) = lim,_,.f,,(x) = 0 for decreasing sequence {f,}% i.e.
{f..}:°converges to infimum then

f)=0= [, fdu=0
Hence [ fdu # lim, o/ ,frdu
Lemma (Without Proof)

Let (X, A ,u) be a measure space, and let f be a non — negative extended real
valued functions on X then there exists a sequence of non — negative simple
functions {g,,};° on X such that;

Jn, approaches f on X
» g, approaches f uniformly on an arbitrary subset E of X on which f is
bounded.

fod/'l = limn—wongnd.u
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Corollary: Let (X,A,u) be a measure space, and let Y1 f; be a finite series
whose terms are [0, +o0] —valued or non — negative extended real valued
A —measurable functionson D € A. Then [ Y7 fi du = Y2 [ fidu

Proof: Let f;, f, be two non — negative extended real valued A —measurable
functions on D € A then there exists two increasing sequences {gnl}:o and {gnz}io

on X such that g,, = f; and g, = f> thenthe {g,, + g,,} = fi + frasn -
and clearly is a non — negative increasing sequence of simple functions on X. Then
by monotone convergence theorem we have

limysoof (g, + Gn,)du = [, (fi + f)du ... ()

Now consider limn_mofb(gn1 + gnz)du = limn_,oo(ngnld,u + ngnzd,u)
iMoo | (G, + Gny)di = limy oo [ [ G, dp + limy, oo [ | g, dp

iMoo ) (Gn, + Gn,)du = [ frdu+ [ fodu (ii)

Using (i) and (ii) J,(A+fddu= [ fidu+ [ frdp .o (iii)
By repeated application of (iii) to the sequence ).} f; we obtain

f X1 frdu= Z’fffkd.u

Beppo Levi’s Theorem: Let (X, A, u) be a measure space, and let .7° f;, be
an infinite series whose terms are [0, +oo] —valued or non — negative extended real
valued A —measurable functionson D € A. Then [ ¥ fo du = 3T [ fi.du

Proof: If {f,,}7° is a sequence of non — negative extended real valued
A —measurable functions on D € A then for 1 f; ;n € N we have

f X1 frdu= erffkd.u

Now the sum of the series }.7° f; is the limit of the sequence of partial sums
{31 fx ;n € N}andsince {f,,} is non — negative therefore {}:1 f; ;n € N} is
increasing with lim,, S, = lim,_ e 27 fr At = 2.7 fx

Then by monotone convergence theorem  lim, o X2 fi du = X2 [ fidu

limy o0 21 [ frdu =35 [ frdu ie. [ XPfedu=3X7[ frdu
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Corollary: Let (X,A,p) be a measure space, and let f be a non — negative
extended real valued A —measurable functions on D € A. Suppose A, B € A such
thatAUB=DandANB =¢.If f=00nBThen [, fdu=[,fdu

Proof: Since f is non — negative extended real valued A —measurable
functions on D € A then there exists an increasing sequences {g,,};° of non —
negative simple function such that g,, = f andsince0 < g, < falsof =0onB
therefore g, = 0 on B foralln € N and fBgndH = 0 then

Jpgndu = [ gndu+ [ ggndy = [ ,gndu “ [ pGndp =0
Now g,, = f on D implies g, = f on A

Then by monotone convergence theorem

Jpfdu = limy oo ,gndu = limy oo [ ,gndu = [ ,fdu

Hence [, fdu = [ ,fdu

Corollary:

Let (X, A, u) be a measure space, and let f be a non — negative extended real
valued A —measurable functions on D € A. If {D;}} is a disjoint sequence in A
such that U? D; = D Then fU;LDifdy =y fDifdy

Proof: Let f be a non — negative extended real valued A —measurable
functions on D € A and {D;}} be a disjoint sequence in A such that U} D; = D

f(x) if x €D;
0 ifxeDp/p, N

{fDi}: IS a non — negative extended real valued A —measurable sequence of
functionson D € A and X7 fp, = f then

fod“ = fD 21 fp, du = erfoDid,u
[ofdi=232Jp fo.du “ [pfdu=[,fduwhen f =00nB

J fdu =Z’1‘fDifdu “ f = fp,onD; whereU} D; =DandD; N D; = ¢

Then define a function f,  on D by setting fp. (x) = {
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Corollary:

Let f be a bounded measurable function on a set of finite measure E. Suppose A
and B are disjoint measurable subsets of E. Then

Jaopfdu = fdu+ [ fdu
Proof:

Both f. x4 and f. y are bounded measurable functions on E. Since A and B
disjoint,

fXavs =f-Xatf-Xp
Furthermore, for any measurable subset E, of E

e fau=Jpf xpdu

Therefore, by the linearity of integration,

Jaosfan = f xavsdun = [ f - xadp+ [ f . xgdp = [ ,fdu+ [ fdu
Hence Jaopfdu=J fdu+ [ fdu
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Corollary:

Let (X, A ,u) be a measure space, and let f be a non — negative extended real
valued A —measurable functions on D € A. If {D;}{° is an increasing sequence in
A such that lim,_,,D; = D Then fD:u‘fDifd“ = limn%ofDifd,u

Proof:

Let f be a non — negative extended real valued A —measurable functions on
D € A and {D;}7° be a disjoint sequence in A such that lim,,_,.D; = D Then

f(x) if x€D;

define a function f;,, on D by setting fp, (x) = {0 if x € DD, then {fDi}T is
l

an increasing sequence with lim,_,fp, = f on D.

So by monotone convergence theorem we have limn_,oofoDid,u = fodu
limn—wofDifDid,u = fodM

limnﬁmfpifdﬂ = fod.u
Corollary:

Let (X, A ,u) be a measure space, and let f be a non — negative extended real
valued A —measurable functionson D € A. If {D,;}{° is a disjoint sequence in A

such that U D; = D Then fD:u‘fDifd” =y fDifdy

Proof: Let f be a non — negative extended real valued A —measurable
functions on D € A and {D;}7° be a disjoint sequence in A such that U° D; = D
Then define an increasing sequence {E,,}3° such that;

E, =UT D; and lim,_E, =V’ E, =U7° D; = D then by theorem

“Let (X, A, u) be a measure space, and let f be a non — negative extended real
valued A4 —measurable functions on D € A. If {D;}7° is an increasing sequence in
A such that lim,,_,D; = D Then fD:U‘fDifd'u = limnﬁwaifdy”

We have [, fdu= limn%ofEnfdu or [, fdu= limn%ofu,llDifdu
= [ fdu = limy o X} fDifd#

= [pfdu =37 [, fau
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The next result is often used to show that a function is integrable or to provide an
upper bound for the value of an integral.
Fatou’s Lemma

Let (X, A, u) be ameasure space, and let {f,,};° be a sequence of [0, +co] —valued
A -measurable functions on X. Then [ Imtf,du < Imt[ f,du

Or Let (X,A,u) be ameasure space, and then for every sequence {f;,};° of hon
— negative extended real valued A —measurable functions on D € A, we have

[ ImtInff,du < Imtinf [ f,du

Proof: We have lim,,_,, inff,, = lim,,_, o (infisnfix) Where {infis,fi}7" IS an
increasing sequence of extended real valued A —measurable functionson D € A,
then by monotone convergence theorem;

[ imtInff,du = lim [ infisnfiedlt e @)

Since {infisnf} is an increasing sequence in R therefore its limit exists in R and
is equal to ‘lim (inff,)’ so that from (i)

n—oo
J Imtinf f,dp = lmtlnff (infrznfi)du
[ Imtinff,du < Imtinf [ f,du Y Mfysnfi < fa;VREN
Hence [ Imtinff,du < Imtinf [ f,du
Lebesgue’s Dominated Convergence Theorem (Without Proof)

Let (X, A ,u) be a measure space, let g be a [0, +00] —valued integrable function
on X, and let f and f3, f5, ... be [0, +00] —valued A — measurable functions on X
such that f(x) = lim,,f,(x) and |f,(x)| < g(x),n = 1,2,...hold at

pu —almost every x in X. Then f and f;, f5, ... are integrable, and

ffd.u = limnﬂmffnd.u
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The Riemann Integral

This section contains the standard facts that relate the Lebesgue integral to the
Riemann integral. We begin by recalling Darboux’s definition of the Riemann
integral, as given in the Introduction (we use it as our basic definition), and then we
give a number of details that we omitted earlier. We also give the standard
characterization of the Riemann integrable functions on a closed bounded interval
as the bounded functions on that interval that are almost everywhere continuous.

Partition of an Interval:

Let [a,b] be a closed bounded interval. A partition of [a,b] is a finite sequence
{a;}y of real numbers such thata = a, < a; < - < a, = b and We will
generally denote a partition by a symbol such as p or p,,.

Refinement of a Partition

If {a;}; and {b;}; are partitions of [a,b] and if each term of {a;} appears among
the terms of {b;}7*,then {b;}7* is a refinement of or is finer than {a; }

Lower Sum and Upper Sum

Let f be a bounded real-valued function on [a,b].If p is the partition {a;}q of [a,b]
and if m; = inf{ f(x): x € [a;_1,a;]} and M; = Sup{ f(x): x € [a;_4, a;]} for
i=1,...,n,then

= The lower sum I( f, p) corresponding to f and p is defined to be
imi(a; —a;_4)

= The upper sum u( f, p) corresponding to f and p is defined to be
2X1Mi(ai —a;)

= |tis easy to check that if p is an arbitrary partition of [a,b],then
I(f,p) <u(f,p)

» |If p; and p, are partitions of [a,b] such that p, is a refinement of p,, then
LCf,p) < U(f,p2) andu( f, p2) < u(f,p1)

= If p, and p, are arbitrary partitions of [a,b],then I( f, p1) < u(f, p3)

» Let p; be a partition of [a,b] that is a refinement of both p, and p, and note

that I( f, 1) < I(f, p3) S u(f,p3) <u(f,p2)

Hence the set of all lower sums for f is bounded above by each of the upper sums
for .
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Lower Integral of a Function

Let (X, A ,u) be a measure space and f is bounded function definedon D € A
with u(D) < oo then the suprimum of the set of lower sums [( f, p) is the lower

integral of f over [a,b] and is denoted by the formula f_ba fdx = Supgsff g(x)dx
where g(x) is simple function.

The lower integral satisfies b a f_ba fdx < u( f, p)for each upper sum u( f, p) and
so is a lower bound for the set of all upper sums for .

Upper Integral of a Function

Let (X, A, u) be a measure space and f is bounded function defined on D € A
with u(D) < oo then the infimum of the set of upper sums is the upper integral of f

over [a,b] and is denoted by fa_b fdx = Inffsgf g(x)dx where g(x) is simple
function.

It follows immediately that [* fdx < [ fdxand [* fdx = [ ° fdx.then f is
Riemann integrable on [a,b], and the common value of f_ba fdx and fa_b fdx is
called the Riemann integral of f over [a,b] and is denoted by ff fdx or f(ff(x)dx

Riemann Integral

Let f be a step function on [a,b] then Riemann Integral of f on [a,b] is defined by

jbf(x)dx = zn: ciA(x;) = zn: ci(x; — x;-1)

Remark

= We can write the step function as f(x) = X7 ¢;1¢x,_ , x) () + 20 di 1y (x)

» The step function’s value at the end points of the sub — intervals have no
bearing on existence or value of Riemann Integral the step function
f(x)(Since d; does not appear in the definition of integral)

= The value of Riemann Integral of step function is independent of choice of
partition of [a,b] as long as step function is constant on the sub — interval of
the partition.
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The following reformulation of the definition of Riemann integrability is often
useful.

Lemma: A bounded function f: [a, b] — R is Riemann integrable if and

only if for every positive € there is a partition p of [a,b] such that

u(f.p)-U(f.p)<e

Theorem: Let [a,b] be a closed bounded interval, and let f be a bounded

real-valued function on [a,b].Then

(@)  fis Riemann integrable if and only if it is continuous at almost every
point of [a,b], and

(b) if £ is Riemann integrable, then f is Lebesgue integrable and the
Riemann and Lebesgue integrals of f coincide.

The mesh or norm || p|| of a partition (or a tagged partition) p is defined by

p = max(a; — a;_,), where {a;} is the sequence of division points for p. In

other words, the mesh of a partition is the length of the longest of its

subintervals.

The Riemann sum R( f, p) corresponding to the function f and the tagged

partition p is defined by R( f, p) = X1 f(x;)(a; —a;—1)

Proposition: A function f: [a, b] = R is Riemann integrable if and only if

there is a real number L such that imt,R( f, p) = L where the limit is taken

as the mesh of the tagged partition p approaches 0.Ifthis limit exists, then it
is equal to the Riemann integral fff(x)dx

oooooooooooooooooooooooooooooooooooooooooooooooooooo

Remember

Let (X, A ,u) be a measure space and f is simple function defined on

D € A with u(D) < oo then f will be Lebesgue Integrable.

Bounded Function: Let (X, A, u) be a measure space and let f be a
function defined on D € A then f is said to be bounded if there exists a real
number M > 0 suchthat |f(x)| <M ; Vx €D

Let g and h be simple functions on D € A such that g(x) < f(x) < h(x)
then such pairs of simple functions always exists when f(x) is bounded.
Such pairs always exists for instance g(x) = —M and h(x) = M will do.
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Lemma: Let (X,A,u) be ameasure space and f;, f, are bounded real valued
measurable functions defined on D € A with (D) < oo, if f; = f, almost

everywhere on D then [ fidu = [ fodu

Proof: Let ®;;i = 1,2,3, ... be the collection of all simple functions g; on D
such that g; < f; then foldu = Supglsfl{ngldu:gl € CI>1}

And [, fodu = Supg,<p{f9.du: g, € ,}
Firstly we will show that for every g, € @, and g, € &, such that
nglduu = ngde

Since f; = f, almost everywhere on D then there exists a null set D, € D such that
f1(x) = f,(x) almost everywhere on D/D,

Since f; and f, are bounded on D then there exists M > 0 such that
f(x1), f(xz) € [-M, M] implies —M < f(xq), f(x2) <M

Define a simple function g, on D by setting g, (x) = {31(96) ;X € D/Do o

M ;X € Dy
g2 = /> vg. < fiand f; = f,ae.onD/D, sothatg, < f, ;—M < f,
Hence g, € ©,
Then ngld# = fD/Dogld:u + fDOgld:u = fD/DOgld:u #(DO) =0

Since u(Dy) = 0= fDogld/,t = fDngd/,t = 0 therefore ngld,u = fD/Dngd,u
ng1d.U = fD/Dogzdli + fDogzd.U

ng1dll = fpgzdﬂ

Thus {ngld,u: g1 € Cbl} c {ngzd,u:g2 € dbz}

Supg <r{) pg1du: g1 € ®1} < Supy, < A ,92d0: g2 € P}

[ fidp < [pofodu (i)
Interchanging the roles of functions we arrive [ fodu < [ fidu ............ (ii)
From (i) and (ii) Jpfrdu = [, frdu
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Lemma: Let (X,A,u) be ameasure space and f be a bounded real valued
A — measurable function defined on D € A with u(D) < oo, then for any real

constant ‘¢’ we have then chfdu = chfd,u

Proof: Since ¢ € R then there will be the three cases;
Case—l:Ifc=0thencf =0onD e Aand [ cfdu=0
Also since [ fdu € Rand ¢ = 0thencf, fdu =0

Hence [ jcfdu = cf fdu

Case —Il: If ¢ > 0 then chfdu = Supgscfngd,u = Suplgsfngd,u
1 1
fDCfd‘l.l = Sup%gSfoD ;'gd‘l,l = Csup%gsffp ;gdli = Cfod.u

Hence [ jcfdu = cf fdu
Case—Ill: If c < 0then —c < 0 and so

—c;c<0 .
Jpefdu= [, —|cIfdu where |c| ={C Cia e @)

Now if c = —1then [, — fdu = Supye_rf ,gdi = —Infr<_yf , — gdu
[, fdu=~f fdu ... (if)

(V)= [yefdu= [, —lclfdu=—[lcIfdu

= chfdu = —|c|fod,u *Reseult forc > 0

Hence [ jcfdu =cf fdu

Remember

Sup(D) = —Inf(=D)

Let D = {1,2,3,4} then —D = {—1,—2, -3, —4}

Then Sup(D) = 4 also Inf(—D) = —4

And Sup(D) =4 = —Inf(—D)
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Lemma: Let (X,A,u) be ameasure space and f, f;, f, be bounded real valued
A — measurable functions defined on D € A with u(D) < oo then

fD(f1 + f2)du = fo1d.U + fozd.U

Proof: Let g, g, be simple functionson D € A suchthat g, < f; and g, < f5
then g, + g, be simple functionson D € A and

Jpgrdu+ [ g2dp = [ (g1 + g2)du

nglduu-}_ngZdﬂ = ngdl'l Where Wwe use g =01 +g2

Also f;, f, are bounded therefore their sum f; + f, = f (Say) is bounded and
Grtg:<fitf ie. g<f

= Supg, <, f pgrdu + [ pg,du < Supg<p [ fdu
= foldl'l + SupgzsfszgZdau = fodl’l
=> [ hdu+ [ frdu < [ fdp (i)

Similarly h,, h, be simple functions on D € A such that f; < h; and f, < h, then
h, + h, be simple functions on D € A and

Jp(hy + hy)dp = [ hydp + [ hydp

J hdu = [ hydu+ [ hodu Where we use h = hy + h,
Let f; < h; and f, < h, therefore f; + f, < h, + h, i.e. f < hthen
= [ fdu < infrap [ yhadu + [ hodu

= [pfdu < [ fidu+ infr,<p, [ yhodp

=> [ fau < [ fidu+ [ frdp (ii)

From (i) and (ii) we have [, fdu < [, fidu+ [, fodu

Where f = f; + f5
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Lemma: Let (X,A,u) be ameasure space and f be a bounded real valued
A — measurable function defined on D € A with u(D) < o, Let {D,,}7° be a

disjoint sequence in A such that Uy D, = D then [ fdu = 3% fandy

Proof: Let g be an arbitrary simple function defined on D € A such that

g < fonD € A. Also consider g(x) = ’{cilEi(x) be canonical representation
of g. If we consider g,, be a restriction of g to D,, then its canonical representation
will be g, (x) = X% ¢;1g,np, (). Noting that U¥ (E; n D) = D,, then

Jpgdu = 3% ciu(E) = X c;u(E; N D) “E;ED=END=E
Jpgdu = 3% ciu(E; 0 (U D)) = XX cu[UP (E; 0 Dy)]

Jpgdu = X5y ¢ Yoy u(E; 0 D) = X [ X, copt(E; 0 Dy)]

Jpgdp =Y ] b, Indl @)
vg<f=>g,<f onD

Then [, gndu < Supgerf), gdu = [, gndpu < [, fdu

D= fgdu< Yoy [ p S (ii)

Where the least inequality is from the fact that g,, is simple function on D and
gn < fonD.Sothat [, gndu < Supgsr|, gndp=J, fdu

= fDngndll < fand‘l.l = ngd/.l < Z?Lo=1 fand/.l
= Supgsfngdﬂ < Y=t fandu g Is arbitrary

=> [ fau<ye, [ p SR i (iii)

Similarly by starting with a simple function h such that f < h on D we obtain
Z;;l fand‘U < inffgthhd,u

= Yo fp fau < [pfdu o (iv)

Combining (iii) and (iv) J fdu=3% fandu
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Lemma: Let (X,A,u) be ameasure space and f be a bounded real valued
A — measurable function defined on D € A with u(D) < oo, if f = 0 almost

everywhereon D € A and fodu = 0 then f = 0 almost everywhere on D € A.

Proof: Consider the first casethat f = 0onD € A andlet Dy, = {x € D: f = 0}

We claim that f = 0 almost everywhereon D € A iff u(D;) =0 .......... (1)

Suppose f = 0 almost everywhere on D € A then there exists anull set E € D in
(X,A,u)suchthat f =0onD/E

Then D/E € D, = D/E € D/D, +DyUD, =D =D, =D/D,
= D, €E = u(D,) < u(E) ** by monotonicity of u
=>u(D;) =0 ~ u(E) =0asEisnull

Conversely Suppose that u(D;) = 0 then D; isanull setin (X,A,u) butf =0
onD, =D/D; i.e. f =0 almosteverywhereonD € A

If u(D) = 0 then from D; € D we have u(D;) < u(D) =0= u(D;) =0
= f = 0 almost everywhere on D € A by (i)

Now consider u(D)e(0, o) then we have to show that f = 0 almost everywhere
on D € A. But contrarily suppose that f = 0 almost everywhere on D € A is false
then by (i) we have u(D;) > 0.

Now D, ={x € D:f >0} = D; =U}_, {xeD:fZ%}then

0<u(Dy) < ZZ=1{x ED:f > %} then there exists k, € N such that
1

,u({xED:ka—o})>O

= ;xE{xED:fZL}

0 %o’ then

Define a simple function g on D by g(x) = 1
0 ;xED/{xED:ka—}
0

gx) <f(x)onD

= [, f)du = [,g()du = iu (fxep:f==})>0

0
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= [, f(x)du >0 contradictionto [ f(x)du = 0
Hence f = 0 almost everywhereon D € A

Now considerif f > 0onD € A and fodu = 0 then
f = 0almost everywhereon D € A .................. (i1)

Now consider if f > 0 almost everywhere on D € A and fod,u = 0 then there
exists anull set E in (X, A ,u) suchthat f = 0 on D/E then

0=[pfdu= [, fdu+[pfdu= [, fdu
= [, pfdu=0

Now f > 0 on D /E and fD/Efd,u = 0 implies f = 0 a.e. on D € A by (ii) then
there exists a null set Fin (X,A ,u) suchthat F e D/Eand f =0on (D/E)/F

Impliesf =0onD/EUF
Hence f = 0 almost everywhere on D € A ~ E U F isnull set
Lemma:

Let (X, A ,u) be a measure space and f and g be bounded real valued A —
measurable functions defined on D € A with u(D) < o, if f < g almost
everywhere on D € A and [, fdu = [, gdu then f = g almost everywhere on
D € A.

Proof. If f < g almost everywhere on D € A then g — f = 0 almost everywhere
on D € A and in addition [ fdu = [, gdu then [ (g — f)du = 0 then

By theorem “if f > 0 almost everywhereon D € A and [, fdu = 0 then f = 0
almost everywhere on € A ” we have

g — f = 0 almost everywhere on D € A

Implies f = g almost everywhereon D € A.
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The Simple Approximation Theorem

An extended real-valued function f on a measurable set E is measurable if and only
if there is a sequence {g,,} of simple functions on E which converges pointwise on
E to f and has the property that |g,| < |f]| for all n.

If f is nonnegative, we may choose {g,,} to be increasing.
Theorem

Let f be a bounded measurable function on a set of finite measure E. Then f is
integrable over E.

Proof
Let n be a natural number. By the Simple Approximation Lemma,

“An extended real-valued function f on a measurable set E is measurable if and
only if there is a sequence {g,,} of simple functions on E which converges
pointwise on E to f and has the property that |g,,| < |f| for all n.”

With e= %there are two simple functions g,, and h,, defined on E for which

gnSfShnonE,andOShn—gngionE.

By the monotonicity and linearity of the integral for simple functions,
0 < [ hndp — [ gndp = [ (hn — gn)dp < - u(E)

However,

0 < inf{[ hdu: h simple, h = f} — sup{/ gdu: g simple, g < f}

0 < [ hndp— [ gndp < - p(E)

This inequality holds for every natural number n and u(E) is finite. Therefore the
upper and lower Lebesgue integrals are equal and thus the function f is integrable
over E.
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Proposition:

Let (X, A ,u) be a measure space, and let f be a complex valued function on X
that is measurable with respect to A and B(C).Then f is integrable if and only if

|| is integrable. If these functions are integrable, then | [ fdu| < [ |f|dp

Or Let f be a bounded measurable function on a set of finite measure E. Then

|Jofdu| < [,Ifldu
Proof:

Let R(f) and 3(f) be the real and imaginary parts of f .If f is integrable, then the
integrability of | £ | follows from the inequality | £ | < |R(f)| + [S(f)I,

while if | f | is integrable, then the integrability of f follows from the inequalities

IRCOI=Ifland [S(HI =S|

Now suppose that f is integrable. Write the complex number [ fdu in its polar
form, letting w be a complex number of absolute value 1 i.e. |w| = 1 such that

J fdu=wl|J fdul
= |[ fdu| =w™] fdu
= |[ fdu| = [ w™fdu

= |[ fdu| = [ Rw™du s lwl =1
= |[ fdu| < [ Ifldu S IROOIZ|f
Hence |[ fdu| < [ |f|du

2" Method

The function |f| is measurable and bounded.
Now —|f| < f <|f|onE.

By the linearity and monotonicity of integration,
—JelfI < Jof <|Jpfau| < J4If]
Hence [ fdu| < [ If1du
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Convergence

In this chapter we look in some detail at the convergence of sequences of
functions.

Uniform Convergence

Let (X, A ,u) be a measure space, A sequence of extended real valued functions
{f,,}1° converges uniformly on a set D € A to an extended real valued function f if
for every €> 0 there exists n, € N depending upon € but not on x € D such that

If(x) — f(x)] <€ for all x € D whenevern > ny, € N

Or equivalently for all m € N such that
fu() = f()] < forall x € D whenevern > n € N

Almost Uniform Convergence

Let (X, A ,u) be a measure space, A sequence of extended real valued functions
{f,.}1° converges almost uniformly on a set D € A to an extended real valued
function f if for every n > 0 there exists a A —measurable subset E of D such
that u(E) < n and {f,,}7° converges uniformly on a set D/E

Examples:

We should note that in general convergence in measure neither implies nor is
implied by convergence almost everywhere.

(a) To see that convergence almost everywhere does not imply convergence in
measure, consider the space (R, B(R), 1) and the sequence whose nth term
Is the characteristic function of the interval [n, +00). This sequence clearly
converges to the zero function almost everywhere (in fact, everywhere) but
not in measure.

(b) Consider the interval [0,1), together with the c-algebra of Borel subsets of
[0,1) and Lebesgue measure. Let {f,,} be the sequence whose first term is the
characteristic function of [0,1), whose next two terms are the characteristic
functions of [0,1/2) and [1/2,1), whose next four terms are the characteristic
functions of [0,1/4), [1/4,1/2), [1/2,3/4),and [3/4,1), and so on. Then {f,;}
converges to the zero function in measure, but for each x in [0,1) the
sequence {f,, (x)} contains infinitely many ones and infinitely many zeros
and so is not convergent.
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Remark

= Proposition: Let (X, A , u) be a measure space, and let f and f3, f5, ... be
real valued A4 — measurable functions on X. If u is finite and if {f;,}
converges to f almost everywhere, then {f, }converges to f in measure.

= Proposition: Let (X, A , u) be a measure space, and let f and f3, f5, ... be
real valued A4 —measurable functions on X. If {f;,} converges to f in
measure, then there is a subsequence of {f,, }that converges to f almost
everywhere.

Proposition: (Egoroff’s Theorem)

Let (X, A ,u) be ameasure space, and let f and f;, f5, ... be real valued A —
measurable functions on X. If u is finite and if {f;,} converges to f almost
everywhere, then for each positive number ¢ there is a subset B of X that belongs
to A , satisfies u(B€) < &, and is such that {f;,,} converges to f uniformly on B.

Or Let (X,A,u) beameasure space, and let {f,,};° be a sequence of extended
real valued A4 — measurable functions on D € A with u(D) < co. Let f be a real
valued A — measurable function on D € A. If {f,,}{° converges to f almost
everywhere then if {f,,}7° converges to f almost uniformly on D € A.

Proof: Let € be a positive number, and for each n let g,, = supjsn | f; — f1.

It is easy to check that each g, is finite almost everywhere. The sequence {g,,}
converges to 0 almost everywhere, and so in measure. Hence for each positive
integer k we can choose a positive integer n;, such that

1
u({xeX: In, (X) > E}) < zik
Define sets By, B,, ... by By, = {xeX: In, (X) < %} and let B =N, By,. Then the set
B satisfies u(B€) = u(Uy, B) < ¥ u(BE) < zkzik =¢
Implies u(B¢) < ¢

If 6 is a positive number and if k is a positive integer such that 1/k < &, then,
since B & By then [f,(x) — f(X)]| < gn, (x) < % < 4 holds for all x in B and all
positive integers n such that n > n;; thus {f,,} converges to f uniformly on B.
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Bounded Convergence Theorem

Let (X, A, u) be a measure space, and let {f,,}7° be a bounded sequence of real
valued A — measurable functions on D € A with u(D) < co. Let f be a bounded
real valued A4 — measurable function on D € A. If {f,,}7° converges to f almost

everywhere on D € A then lim,, o, [ ,If, — fldu =0
And in particular  lim,,o, [ fydp = [ lim frydp = [ fdu
n-oo

Proof:

Since {f,}7° is bounded on D € A therefore there exists M > 0 such that
|fn(x)| < M forall x € D and for all n € N. Since f is also bounded on D € A
then we can assume that there exists M > 0 such that |f(x)| < M forall x € D

Now {f,,}1° converges to f almost everywhere on D € A and u(D) < oo therefore
by Egoroff’s Theorem “{f,,}7° converges to f almost uniformly on D € A” then
for all n > 0 there exists a A —measurable subset E of D such that u(E) < n and
{f,}1° converges uniformly on a set D/E. Then for all €> 0 there exists n, € N
depending upon € but not on x such that

|fn(x) — f(x)]| <€ forall x € D/E whenevern > n, € N

Now for n > n, we have

fleTl _fld.u = fD/Elfn _fld;u'l'fglfn_fldlu

Jolfa=flap< [, p€dut [p2Mdp = lfy—fI< Il +IfISM+M
[ plfa = fldu <€ [, du+2M[ ,du =€ u(D/E) + 2Mu(E)
Jplfn = fldu <€ u(D) + 2Mn Hence this holds for all n > n,

We have  ImtSup[,|f, — fldu <€ u(D) + 2Mn

Hence this is true for every €> 0 and n > 0 therefore lmtSuprlfn — fldu=0
Also we have [, |f, — fldu =0 Ay —fl=0

Therefore 0 < lmtlnfflen —fldu < lmtSuprlfn — fldu

Implies ImtInf [ |f, — fldu = 0 and hence lim,_,o [, |f, — fldu =0

MUHAMMAD USMAN HAMID (0323 - 6032785)



121

Now we have to prove lim,_,o, | , fudp = [, lim fydp = [ fdu
n—>0oo

Since [, (fy + f)du = [, frdu + [, fodu

Therefore | , fudi = J , fas] = |f (= Nlk] < S, 1fo = fldu

|[ pfndu = fdul < [ 1fn — fldu

lim [ fudp — [, fdu| < lim [ I, = fldp

lim | [, fodp = [ fdu| =0 iMoo [ lfn = fldu =0

%ggo(fondu — [ fdur) = 0 Hence lim,,,, [, fdu = fDAilgofndu = [, fdu

P Spaces: Let (X, A ,u) be a measure space, and let p satisfy 1 < p < co. Then
PP (X, A, u, R) is the set of all A — measurable functions f: X — R such that |f|?
Is integrable, and #P (X, A , u, €) is the set of all A —measurable functions

f:X — Csuchthat |f|P is integrable.

In discussions that are valid for both real- and complex-valued functions we will
often use #P (X, A , u) to represent either #P (X, A, u, R) or P (X, A , u, C).

€% Spaces: Let (X, A ,u) be a measure space, and let p = oo then £ (X, A , u, R)
be the set of all bounded real valued A —measurable functions on X, and

£ (X, A, u, C) be the set of all bounded complex-valued A —measurable
functions on X.

Remember: (This is already we have done in previous classes)

= Lemma: Let p satisfy 1 < p < oo, let g be defined by% _,_é — 1, and let x
and y be nonnegative real numbers. Then xy < %p + yq_q

= Holder’s Inequality: Let (X, A ,u) be a measure space, and let p and g
satisfy 1 < p < +00,1 < q < 4o, and%+% =1IffefP(X,A,u) and
g € £9(X,A ,n), then fg € £1(X, A, 1) and satisfies

Jlfgldu < Ifllyllgllg
» Minkowski’s Inequality: Let (X, A, u) be a measure space, and let p
satisfy 1 < p < 4oo. If f,g € #P(X,A ,u),then f + g € #P(X,A ,u) and

If +gll, < Iflly + gl
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Product measures

Let (X, A) and (Y, B) be measurable spaces. Consider the Cartesian product
X XY .Asubsetof X XY is said to be a rectangle with measurable sides if it is of
the form A x B for some A € A and B € B.

The o-algebra on X X Y generated by the collection of all rectangles with
measurable sides is called the product of the c-algebras A and B and is denoted
by A X B. That is,

AXB:=c({AXB: A€ A,B € B}).

= Sections  Suppose that X and Y are sets and that E is a subset of X xY.
Then for each x in X and each y in Y the sections E, and E” are the subsets
of Y and X givenby E,={y € Y : (x,y) € E}and EY = {x € X : (x,y) € E}.

= |ff isafunction on X xY, then the sections £, and f¥ are the functions on Y
and X given by f,(v) = f(x,y) and fY(x) = f(x,¥)

.............................................

Theorem

If (X, A) and (Y, B) are measurable spaces, then (X X Y, A X B) is a measurable
space.

The measurable space (X x Y, A X B) is the Cartesian product of the two given
measurable spaces.

Proof:

If (x,y) € X XY, then there exist sets A and B such that
x €AeA and ye BeB

it follows that (x,y) e AXB € A X B
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Lemma: Let (X, A ) and (Y, B) be measurable spaces. If E is a subset of X X Y
that belongs to A x B, then each section E, belongs to B and each section E”
belongs to A . Or  Every section of a measurable set is a measurable set.

1% Proof: Suppose that x belongs to X, and let S = {E:E € X x Y, E, € B}.
Then 3 contains all rectangles AxB for which A € A and B € B.
In particular, X xY € 3.

Furthermore, the identities (E€), = (E,)¢ and (U, E))x = U,, ((E,),) imply that
J is closed under complementation and under the formation of countable unions;
thus J is a c-algebra. It follows that J includes the c-algebra A x B and hence
that E, belongs to B whenever E belongs to A X B.

A similar argument shows that E” belongs to A4 whenever E belongs to A x B.

2" Proof:  Let 3 be the class of all those subsets of X xY which have the
property that each of their sections is measurable. If E = A X B is a measurable
rectangle, then every section of E is either empty or else equal to one of the sides,
(A or B according as the section is a Y-section or an X-section), and therefore

E € 3. Since it is easy to verify that J is a o-ring, it follows that A X B € 3.

..............................................

Lemma: Let (X, A ) and (Y, B) be measurable spaces. If f is an extended real-
valued (or a complex-valued) A X B -measurable function on XxY, then each
section f, is B-measurable and each section f7 is A-measurable.

Or  Every section of a measurable function is a measurable function.

Proof: If £ is a measurable function on XxY if x is a point of X and if M is
any Borel set on the real line, then the measurability of N(f,) n f;~ (M) follows
from previous Theorem and the relations

it ={y:f,(y) e M} ={y: f(x,y) € M}

fitM) ={y: f,(y) e M} ={y: f(x,y) € M}

(Observe that N(f,,) = N(f),.) The proof of the measurability of an arbitrary Y-
section is similar.
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Remember

Proposition: Let (X, A ,u) and (Y, B,v) be o-finite measure spaces. If E

belongs to the c-algebra A xB, then the function x +— v(E,) is A —

measurable and the function y — u(E?) is B -measurable.

Theorem: Let (X, A ,u) and (Y, B,v) be o-finite measure spaces then there

IS a unique measure u X v on the s-algebra A X B such that

(u xv)(AXx B) = u(A)v(B) holds for each A in A and B in B.

Furthermore, the measure under u X v arbitrary set E in A X B is given by
(u X V)(E) = [ v(Eu(dx) = [ u(E)v(dy)

The measure u X v is called the product of p and v.

Tonelli’s Theorem: Let (X, A ,u) and (Y, B,v) be o-finite measure

spaces, and let f: X X Y — [0, 4] be A X B -measurable. Then

(a) the function x — fyfxdv Is A -measurable and the function

y— [ f¥du is B -measurable.

(b) f satisfies
Jaoy FCap)du xv) = [ ([ frav)u(dx) = [, (J o f > dwv(dy)
Fubini’s Theorem: Let (X, A ,u) and (Y, B,v) be o-finite measure

spaces, and let f: X XY — [—o0,+ ] be A X B-measurable and y X v -
integrable. Then

a) for u —almost every x in X the section f,. is v —integrable and for v —almost

everyy in Y the section f” is u —integrable,

b) the functions I and J defined by

I = {fyfxdv ; if £, is v — integrable

f - 0 )
otherwise

foydLl ;if f¥ is u — integrable

and Jr = {
0 otherwise _
belong to L1(X, A, u, R) and L1(Y, B, v, R), respectively

¢) The relation

fXnyd(# X V) = fXIfd,Ll = fy]fdv holds.
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Recommended Books

Roydon H.L. Real Analysis.

Barra G. De. Measure Theory and Integration.

Philip E.R. An introduction to Analysis and Integration Theory.
W.Rudin, Real & Complex Analysis.

Bartle R.G, The Elements of Integration and Lebesgue Measure.
Paul R. Halmos, Measure Theory.

For video lectures
@ You tube visit

Learning with Usman Hamid

visit facebook page “mathwath”
or contact: 0323 - 6032785

MUHAMMAD USMAN HAMID (0323 - 6032785)



126

(27-12-2020) 77257

ST L s 99 & Bl N UEP T #

| . & o ~ { !
(BD-HN I U 7 I il 6 0y /;Lf 321 - b
D4

boss yd (Ub&)ﬁdl"’ 105 /'; Jg/

UNIVERSITY OF SARGODHA

PUNJAB, PAKISTAN

MUHAMMAD USMAN HAMID (0323 - 6032785)



