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PREFACE 

Mechanics is one of the most important course in maximum disciplines of science and engineering. 

No matter what your interest in science or engineering, mechanics will be important for you. 

Mechanics is a branch of physics which deals with the bodies at rest and in motion. During 

the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for 

what is now known as classical mechanics. Hence there is an extensive use of mathematics in its 

foundation. 

Mechanics is  core course for undergraduate Mathematics, Physics and many engineering 

disciplines. It appears under different names as Analytical/Classical Mechanics, Theoretical 

Mechanics, Mechanics I, Mechanics II, Mechanics III, Analytical Dynamics.  

This textbook is designed to support teaching activities in Theoretical Mechanics specially Statics. 

It covers the contents of “Mechanics” for many undergraduate science and engineering programs. 

It presents simply and clearly the main theoretical aspects of mechanics. 

It is assumed that the students have completed their courses in Calculus, Linear Algebra and 

Differential Equations. This book also lay the foundations for further studies in physics, physical 

sciences, and engineering. 

For each concept a number books, documents and lecture notes are consulted. I wish to express 

my gratitude to the authors of such works.  

In Chapter 1, the units and dimension of different physical quantities are given. They are referred 

from The International System of Units (SI), NIST Special Publication 330 2008 Edition, Barry 

N. Taylor and Ambler Thompson, Editors. Chapter 2 is about vector and scalar quantities. In this 

chapter we will learn to represent a vector in one, two and three dimensional coordinate systems. 

We will also learn techniques to add or decompose vectors.  Also we will learn to take their 

products, which may be scalar or vector. 

In Chapter 3, we will learn how forces can be composed into a single force and how a force can 

be resolved into different components. Also couple of forces and moment of a force are presented 

in this chapter. Chapter 4 contains concepts of equilibrium. Friction, its types and laws are 

presented in chapter 5.  

Chapter 6 is about Linear Momentum, Impulse and Collision . It also contains law of conservation 

of linear momentum. In Chapter 7, we discuss Angular Momentum and its law of conservation. 

Chapter 8 contains theoretical aspects of Work, Energy, Power and Conservative Force. Also the 

law of conservation of energy is presented in this chapter. In these three chapters, three laws of 

conservation are presented. 

In chapter 9, the concepts of virtual displacement and virtual work are presented. Center of mass 

and center of gravity of homogeneous objects are discussed in chapter 10. In this chapter, we 

consider discrete and continuous distribution of mass of homogeneous objects only. Non-

homogeneous objects will be considered in next edition. In chapter 11, the concepts of Moments 

of Inertia and Products of Inertia with examples are presented. Some properties of rigid bodies 

like, Radius of Gyration, angular momentum, rotational kinetic energy, Euler dynamical equations 

are also presented in this chapter. 

 

In a book of this concept, level and size, there may be a possibility that some misprint might have 

remained uncorrected. If you find such misprints or want to give some suggestions for its 

improvement, please write me at: babar.sms@gmail.com 

Dr. Babar Ahmad 

Islamabad, Pakistan 

June, 2020 
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https://en.wikipedia.org/wiki/Isaac_Newton
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Chapter 1

Units and Dimensions of Physical

Quantities

In science problems, it is important to know the numerical value of the quantities but it is
also important to understand the units and physical dimensions of the variable(s) involving
in that problem. For units the mostly used system is INTERNATIONAL SYSTEM OF
UNITS (SI).

1.1 International System of Units (SI)

The International System of Units (SI), NIST Special Publication 330, 2008 Edition, B.N.
Taylor, editor. United States Department of Commerce, National Institute of Standards
and Technology Gaithersburg, MD 20899.
There are two classes of SI units.

• base units;

• derived units.

1.1.1 Base Units

From the scientific point of view, the division of SI units into these two classes is to a certain
extent arbitrary, because it is not essential to the physics of the subject. Nevertheless, the
CGPM (General Conference on Weights and Measures), considering the advantages of a
single, practical, world-wide system of units for international relations, for teaching, and
for scientific work, decided to base the International System on a choice of seven well-
defined units which by convention are regarded as dimensionally independent: the meter,

1
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the kilogram, the second, the ampere, the kelvin, the mole, and the candela. These SI units
are called base units and are given in table 1.1.

Table 1.1: SI base units

Physical quantity Name of unit Symbol

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

1.1.2 Derived Units with Special Names

The second class of SI units is that of derived units . These are units that are formed
as products of powers of the base units according to the algebraic relations linking the
quantities concerned. The names and symbols of some units thus formed in terms of base
units may be replaced by special names and symbols which can themselves be used to form
expressions and symbols for other derived units.

a) Units expressed in terms of base units

In table 1.2 lists some examples of derived units expressed directly in terms of base units.
The derived units are obtained by multiplication and division of base units.

Table 1.2: Examples of SI derived units expressed in terms of base units

Derived quantity Name of unit Symbol

area square meter m2

volume cubic meter m3

speed, velocity meter per second m/s
acceleration meter per second squared m/s2

wave number reciprocal meter m−1

density, mass density kilogram per cubic meter kg/m3

specific volume cubic meter per kilogram m3/kg
current density ampere per square meter A/m2

magnetic field strength ampere per meter A/m
concentration (of amount of substance) mole per cubic meter mol/m3

luminance candela per square meter cd/m2

refractive index (the number) one 1(a)
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b) More derived units with special names and symbols

For convenience, certain derived units, which are listed in table 1.3, have been given special
names and symbols. These names and symbols may themselves be used to express other
derived units

Table 1.3: SI derived units with special names and symbols

Physical quantity Name of unit Symbol

plane angle radian rad
solid angle steradian sr
frequency hertz Hz
energy joule J
force newton N
pressure pascal Pa
power watt W
electric charge coulomb C
electric potential volt V
electric resistance ohm Ω
electric conductance siemens S
electric capacitance farad F
magnetic flux weber Wb
inductance henry H
magnetic flux density tesla T
luminous flux lumen lm
illuminance lux lx
celsius temperature degree celsius ◦C
activity (of a radioactive source) becquerel Bq
absorbed dose (of ionizing radiation) gray Gy
dose equivalent sievert Sv

1.1.3 Decimal Multiples and Submultiples of SI Units

The CGPM adopted a series of prefixes for use in forming the decimal multiples and sub-
multiples of SI units. Following CIPM (International Committee for Weights and Measures)
Recommendation 1 (1969) mentioned above, these are designated by the name SI prefixes.

1.2 Units outside the SI

Some non-SI unit systems like British Engineering System, still appear widely in the scien-
tific, technical and commercial literature, and some will probably continue to be used for
many years. Other non-SI units, such as the units of time, are so widely used in everyday
life, and are so deeply embedded in the history and culture of the human race, that they
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Table 1.4: SI prefixes

Factor Name Symbol Factor Name Symbol

1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro µ
1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
10 deca da 10−24 yocto y

will continue to be used for the foreseeable future. For these reasons some of the more
important non-SI units are listed in the tables below.
Table 1.5 lists non-SI units which are accepted for use with the SI. These units are in con-
tinuous everyday use.
Note: The neper and bel are used to express values of such logarithmic quantities as field

Table 1.5: Non-SI units accepted for use with the International System

Name Symbol Value in SI units

minute min 1 min=60 s
hour h 1 h = 60 min = 3600 s
day d 1 d= 24 h= 86 400 s
degree ◦ 1◦ = (π/180) rad

minute
′

1
′

= (1/60)◦ = (π/10800) rad
second ” 1” = (1/60)′ = (π/648000) rad
liter l, L 1 L = 1dm3 = 10−3 m3

metric ton t 1t = 103 kg
neper Np 1Np = 1
bel B 1 B = (1/2) ln 10(Np)(i)

level, power level, sound pressure level, and logarithmic decrement. Natural logarithms are
used to obtain the numerical values of quantities expressed in nepers and logarithms to base
ten are used to obtain the numerical values of quantities expressed in bels.
Table 1.6 lists three non-SI units which are also accepted for use with the SI, whose values
expressed in SI units must be obtained by experiment and are therefore not known exactly.
These units are in common use in certain specialized fields. Table 1.7 lists some other non-
SI units which are currently accepted for use with the SI to satisfy the needs of commercial,
legal, and specialized scientific interests. These units should be defined in relation to the
SI in every document in which they are used. Their use is not encouraged. The barn is a
special unit employed in nuclear physics to express effective cross-sections.
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Table 1.6: Non-SI units accepted for use with the International System, whose values in SI
units are obtained experimentally

Name Symbol Value in SI units

electronvolt eV 1 eV = 1.60217733(49)× 1019J
unified atomic mass unit u 1 u = 1.6605402(10)× 1027 kg
astronomical unit ua 1 ua = 1.49597870(30)× 1011 m

Table 1.7: Other non-SI units currently accepted for use with the International System

Name Symbol Value in SI units

nautical mile 1 nautical mile = 1852 m
knot 1 nautical mile per hour = (1852/3600) m/s
are a 1 a = 1 dam2 = 102m2

hectare ha 1 ha = 1 hm2 = 104m2

bar bar 1 bar=0.1 MPa=100 kPa=1000 hPa=105 Pa
barn b 1 b = 100 fm2 = 10−28m2

curie Ci
roentgen R
rad rad
rem rem

1.3 Dimensions

A quantity can be measured in size, number, weight or amount of something. All physical
quantities on Earth have dimensions that can be expressed in terms and combinations of 5
basic dimensions: mass (M), length (L), time (T ), electrical current (I), and temperature
(θ). These 5 dimensions are considered basic because they are easy to measure in experi-
ments.
Dimensions are not the same as units. Rather, units express the system of measurement
for the various dimensions. For example, speed can measured in units of metres per second
(m/s) or kilometers per hour (km/hr) but the dimensions of speed are always a length (L)
divided by time (T ), or simply LT−1. Similarly, the dimensions of area are L×L or L2 and
the units can be expressed in m2. This is a useful means of working with physical quantities
as it enables to determine the ”dimensions” involved and the appropriate units of the quan-
tity, especially in equations involving many variables and parameters. The dimensions of
some useful quantities are listed in table . Note that the angle and solid angle are included
in this list but are actually dimensionless quantities.
Some examples
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Table 1.8: Different quantities with units and dimensional formula,

Derived quantity Symbol of unit Dimensioin

angle rad 1
area m2 L2

volume m3 L3

speed, velocity m/s LT−1

acceleration m/s2 LT−2

Frequency hertz s−1 T−1

density, mass density kg/m3 ML−3

specific volume m3/kg L3T−1

Force Newton (N = kgms−2) MLT−2

Impulse N.s MLT 1

Work N.m MLT 2

Power Joule or J MLT 2

Unit of Force: Force is measured in Newtons in the SI system:

1N = (1kg)
(
m/s2

)
1 Newton is the force required to give a mass of 1kg an acceleration of 1m/s2.
and in the Non SI or British Engineering system:

1lb = 1slugft/s2 = 4.448N

The value of g in SI system is

g = 9.81m/s2

and in non SI system is

g = 32.2ft/s2

Weight The weight of 1 kg mass in SI system is:

W = mg

= (1kg)(9.81m/s2)

= 9.81N

The mass of an object that weighs 1 pound:

F = ma

1lb = m(1ft/s2)

m = 1lbs2/ft = 1slug
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Exercises

1. A wrist watch gains time at the rate of 5.5 second per day. Calculate the error after
(i) an hour (ii) a month (iii) an year

2. The acceleration of a particle due to gravity is 9.80 m/s2. What is its value in ft/s2?

3. Convert the value of G from SI system to C.G.S.

4. Calculate the dimension of F = mv2

r
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Chapter 2

Scalars and Vectors

In mechanics, we come across various quantities such as mass, length, time, speed, velocity,
area, volume, acceleration and force etc. These quantities are of two types namely scalars
and vectors.

2.1 Scalar Quantities or Scalars

The quantities which possess only magnitude are called scalars. For example, the length of
a bar is 2 m. Other examples of scalars are distance, speed, volume, density, temperature
etc.

2.2 Vector Quantities or Vectors

The quantities which are specified by magnitude as well as direction are called vectors. For
example, winds are usually described by giving their speed and direction, say 20 km/h
northeast. The wind speed and wind direction together form a vector quantity called the
wind velocity. Other examples of vectors are displacement, acceleration, force, weight,
momentum etc.

2.2.1 Geometric Representation of a Vector

Geometrically a vectors can be represented by an arrow in 2 − space or 3 − space; the
direction of the arrow specifies the direction of the vector and the length of the arrow
describes its magnitude. The tail of the arrow is called the initial point and the tip of the
arrow is called the terminal point of the vector.
Physical quantities are also represented by symbols, lowercase or uppercase alphabet. We
denote vectors with overline arrow such as ~a, ~p, ~v, ~F , and ~W . When discussing vectors,
we will refer to real numbers as scalars. Scalars will be denoted by a, m, t, v, and E.

9
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From above we can say that vector quantities are completely specified by the following four
characteristics:

• Magnitude

• Point of application

• Line of action, and

• Direction

First consider vectors whose initial point or reference point is origin.

2.2.2 Position Vector with reference to the Origin

In mechanics, a vector may be one dimensional, two dimensional or three dimensional.

(a) Vector in 1− space

In 1− space, the position vector of P relative to origin O is a vector ~r = ~OP (from point O
to point P ), having magnitude of the length of line OP . A plus or minus sign is enough to
specify its direction. If point P is on right from O, we assign plus sign, and if it is on left
from O, we assign minus sign. The vector ~r is shown in Fig. 2.1, as an arrow from O to P .

Figure 2.1: Position vector w.r.t origin in 1-space

(b) Vector in 2− space

In 2 − space, the origin has coordinates O(0, 0). Take a point P (x, y), then its position
vector relative to O is a vector ~r = ~OP (from point O to point P), having magnitude of the
length of line OP and direction parallel to line OP . The vector ~r is shown in Fig. 2.2, as
an arrow from O to P, and is written as

~r = ~OP = 〈x, y〉 (2.2.1)

It means that if the initial point of a vector is at the origin then the components of a vector
are the coordinates of its terminal point. The position vector of P relative to P is a zero
vector.
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Figure 2.2: Position vector w.r.t origin in 2-space

Example 2.2.1. The position vector of P (2, 1) relative to O is

~r = 〈2, 1〉

(c) Vector in 3− space

In 3− space, the origin has coordinates O(0, 0, 0). Take a point P (x, y, z), then its position
vector relative to O is a vector ~r = ~OP having magnitude of the length of line OP and
direction parallel to line OP . The vector ~r is shown in Fig. 2.3, as an arrow from O to P,
and is written as

~r = ~OP = 〈x, y, z〉 (2.2.2)

Figure 2.3: Position vector w.r.t origin in 3-space

Example 2.2.2. The position vector of P (2, 3, 2) relative to O is

~r = 〈2, 3, 2〉
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2.2.3 Position Vector with reference to a point other than the Origin

(a) Vector in 2− space

The components of a vector whose initial point is not at the origin can be calculated by
two points A(x1, y1) and B(x2, y2) whose position vectors are

~a = ~OA = 〈x1, y1〉
~b = ~OB = 〈x2, y2〉

Then ~AB is

Figure 2.4: Position vector w.r.t a point other than origin in 2− space

~AB = ~OB − ~OA

= 〈x2 − x1, y2 − y1〉 (2.2.3)

(b) Vector in 3− space

For 3− space, consider two points A(x1, y1, z1) and B(x2, y2, z2) whose position vectors are

~a = ~OA = 〈x1, y1, z1〉
~b = ~OB = 〈x2, y2, z2〉

Then ~AB is

~AB = ~OB − ~OA

= 〈x2 − x1, y2 − y1, z2 − z1〉 (2.2.4)

Example 2.2.3. In 2-space the vector from A(1, 2) to B(3,−2) is

~AB = 〈3− 1,−2− 2〉

= 〈2,−4〉
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Figure 2.5: Position vector w.r.t a point other than origin in 3− space

and in 3-space the vector from P (1,−2,−1) to Q(3, 3,−1) is

~PQ = 〈3− 1, 3 + 2,−1 + 1〉

= 〈2, 5, 0〉

2.2.4 Unit Vectors

A vector of magnitude 1 is called a unit vector. In an xy−coordinate (2 − space) system
the unit vectors along the x− and y − axes are denoted by î and ĵ respectively as shown
in left of Fig. 2.6; and in an xyz−coordinate (3− space) system the unit vectors along the
x−, y−, and z−axes are denoted by î, ĵ and k̂ respectively as shown in right of Fig. 2.6.
The unit vectors in 2− space are

Figure 2.6: Unit vectors along coordinate axes

î = 〈1, 0〉
ĵ = 〈0, 1〉
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The ~r with the combination of unit vectors î, ĵ can also be written as

~r = ~OP = xî+ yĵ (2.2.5)

and in 3− space, the unit vectors are

î = 〈1, 0, 0〉
ĵ = 〈0, 1, 0〉
k̂ = 〈0, 0, 1〉

The ~r with the combination of unit vectors î, ĵ, k̂ can also be written as

~r = ~OP = xî+ yĵ + zk̂ (2.2.6)

In example 2.2.2, ~r can also be written as

Figure 2.7: Position vector w.r.t origin.

~r = 2̂i+ 3ĵ + 2k̂

2.2.5 Magnitude of a Vector

The magnitude of ~r = xî+ yĵ in 2− space is

‖~r‖ = r =
√
x2 + y2 (2.2.7)

The magnitude of ~r = xî+ yĵ + zk̂ in 3− space is

‖~r‖ = r =
√
x2 + y2 + z2 (2.2.8)

The magnitude of ~r = 〈2, 1, 2〉 is

r =
√

22 + 12 + 22

=
√

4 + 1 + 4 =
√

9

= 3



2.2 Vector Quantities or Vectors 15

2.2.6 Normalizing a Vector

Normalizing a vector is to find a unit vector r̂ that has the same direction as some given
nonzero vector ~r. This unit vector is obtained by multiplying ~r by the reciprocal of its
magnitude r; If ~r is vector in 2− space, the unit vector is

r̂ =
~r

r

=
x

r
î+

y

r
ĵ (2.2.9)

If ~r is vector in 3− space, the unit vector is

r̂ =
~r

r

=
x

r
î+

y

r
ĵ +

z

r
k̂ (2.2.10)

The unit vector r̂ for the ~r = 〈2, 1, 2〉 is

r̂ =
〈2, 1, 2〉

3

=

〈
2

3
,
1

3
,
2

3

〉

2.2.7 Equal Vectors

Two vectors are equal if and only if their corresponding components are equal. Thus two
vectors ~a = 〈x1, y1, z1〉 and ~b = 〈x2, y2, z2〉 are equal if and only if x1 = x2, y1 = y2 and
z1 = z2

2.2.8 Parallel Vectors

Two vectors ~a and ~b are parallel if there exist a scalar k ∈ R such that

~a = k~b (2.2.11)

If k > 0, vectors ~a and ~b have same direction and if k < 0, vectors ~a and ~b have opposite
direction. In Fig. 2.8, on left side, two parallel vectors ~a and ~b are acting in same direction
and on right side, two parallel vectors ~a and ~b are acting in opposite directions.
Norm of (2.2.11) is

‖~a‖ = |k|‖~b‖

Example Vectors ~a = 〈1,−2, 1〉, ~b = 〈3,−6, 3〉 and ~c = 〈−0.5, 1,−0.5〉 are parallel vectors.
As we can write:

~a =
1

3
~b or ~b = 3~a

~a = −2~c or ~c = −0.5~a

~b = −6~c or ~c = −1

6
~b
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Figure 2.8: Parallel vectors

Vectors ~a and ~b are acting in the same direction while vector ~c acts in opposite direction.

2.3 Free-body diagram

The free-body diagram is a very helpful to find the solution of problems involving vectors.
It is a simplified line sketch of the body, showing position, direction and point of application
of all vectors described in problem. To draw it we can follow the following steps.

1. First fix an appropriate coordinate system.

2. Define the particular body from the statement of the problem.

3. Label each vector with an appropriate name.

4. Mention all vectors described in the problem. We may also consider their rectangular
components. Separate horizontal and vertical vectorss.

2.4 System of Vectors

When several vectors act simultaneously on a body, they constitute a system of vectors.
These system are named, depending on the position of line of action of the vectors as follows:

• Concurrent vectors If the line of action of all the vectors in a system pass through
a single point, the vectors are termed as concurrent vectors as shown in Fig. 2.9.

• Collinear vectors If the line of action of all the vectors lie along a single line, the
vectors are called collinear vector as shown in Fig. 2.9. Example is, forces on a rope
in a tug of war.

• Coplanar vectors If all the vectors in a system lie in a single plane, they are called
coplanar vectors and are shown in Fig. 2.10. In Fig. 2.11 (a) coplanar and concurrent
vectors are shown and in Fig. 2.11 (b) coplanar and non-concurrent vectors are shown.



2.5 Scalar and Vector Products of Two Vectors 17

Figure 2.9: Concurrent and collinear vectors

• Non-Coplanar vectors If all the vectors in a system do not lie in a single plane they
are called non-coplanar vectors or vectors in space.In Fig. 2.12 (a) non-coplanar and
concurrent vectors are shown and in Fig. 2.12 (b) non-coplanar and non-concurrent
vectors are shown.

Figure 2.10: (a) Coplanar like parallel (b) Coplanar parallel vectors

2.5 Scalar and Vector Products of Two Vectors

In this section we will define a new kind of multiplication in which two vectors are multiplied
to produce a scalar or a vector.

2.5.1 Scalar or Dot Products of Two Vectors

If ~a = 〈x1, y1〉 and ~b = 〈x2, y2〉 are vectors in 2− space, then the dot product of ~a and ~b is
written as ~a ·~b and is defined as

~a ·~b = x1x2 + y1y2 (2.5.1)
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Figure 2.11: (a) Coplanar and Concurrent (b) Coplanar and Non-Concurrent vectors

Figure 2.12: (a) Non-Coplanar and Concurrent (b) Non-Concurrent and Non-Coplanar vectors

Similarly if ~a = 〈x1, y1, z1〉 and ~b = 〈x2, y2, z2〉 are vectors in 3−space, then the dot product
of ~a and ~b is written as ~a.~b and is defined as

~a ·~b = x1x2 + y1y2 + z1z2 (2.5.2)

2.5.2 Angle Between Two Vectors

If ~a and ~b are nonzero vectors in 2 − space or 3 − space, and let θ satisfies the condition
0 ≤ θ ≤ π, is the angle between them as shown in Fig. 2.13, then

cos θ =
~a ·~b
ab

(2.5.3)

Hence ~a ·~b can also be written as

~a ·~b = ab cos θ (2.5.4)
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Figure 2.13: angle between two vectors.

Example 2.5.1. Find dot product and angle between ~a and ~b for

(a) 2-space vectors ~a = 〈2,−4〉 and ~b = 〈2, 2〉.

(b) 3-space vectors ~a = î− 7ĵ + 6k̂ and ~b = 2̂i+ 2ĵ + 2k̂.

Solution
(a) The dot product of ~a and ~b is given by using (2.5.1).

~a ·~b = (2)(2) + (−4)(2)

= −4

For angle, we first calculate the magnitudes of ~a and ~b

a =
√

22 + (−4)2 = 2
√

5

b =
√

22 + (2)2 = 2
√

2

Using (2.5.3), the angle between ~a and ~b is

cos θ =
4

(2
√

5)(2
√

2)

=
1√
10

Hence the angle is

θ = arccos

(
1√
10

)
= 71.56◦
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(b) The dot product of ~a and ~b is given by using (2.5.1).

~a ·~b = (1)(2) + (−7)(2) + (6)(2)

= 0

For angle, we first calculate magnitudes of ~a and ~b

a =
√

12 + (−7)2 + (6)2 =
√

86

b =
√

22 + (2)2 + (2)2 = 2
√

3

Using (2.5.3), the angle between ~a and ~b is

cos θ =
0

(
√

86)(2
√

3)

= 0

Hence the angle is

θ = arccos (0)

=
π

2

Note If the dot product of two nonzero vectors is zero, then the vectors are orthogonal.

2.5.3 Direction Angles

In an xy-coordinate system (2 − space), the direction of a nonzero vector ~r is completely
determined by the angles α and β between ~r and the unit vectors î and ĵ respectively (see
Fig. 2.14 (a)), and in an xyz-coordinate system (3 − space) the direction is completely
determined by the angles α, β, and γ between ~r and the unit vectors î, ĵ, and k̂ respectively
(see Fig. 2.14 (b)). In both 2 − space and 3 − space the angles between a nonzero vector
~r and the vectors î, ĵ, and k̂ are called the direction angles of ~r, and the cosines of those
angles are called the direction cosines of ~r. Formulas for the direction cosines of a vector
can be obtained from (2.5.3). The ~r in 2− space is

~r = xî+ yĵ

Since α is the angle between î and ~r, then

cosα =
~r · î
‖~r‖‖̂i‖

=
x

r
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Figure 2.14: Direction angles of ~r.

Similarly

cosβ =
~r · ĵ
‖~r‖‖ĵ‖

=
y

r

Then (2.2.9) can be written as

r̂ =
x

r
î+

y

r
ĵ

= cosαî+ cosβĵ (2.5.5)

The direction cosines of a vector satisfy the equation

cos2 α+ cos2 β = 1 (2.5.6)

The ~r in 3− space is

~r = xî+ yĵ + zk̂

Since α is the angle between î and ~r, then

cosα =
~r · î
‖~r‖‖̂i‖

=
x

r

Similarly

cosβ =
~r · ĵ
‖~r‖‖ĵ‖

=
y

r
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and

cos γ =
~r · k̂
‖~r‖‖k̂‖

=
z

r

Then (2.2.10) can be written as

r̂ =
x

r
î+

y

r
ĵ +

z

r
k̂

= cosαî+ cosβĵ + cos γk̂ (2.5.7)

The direction cosines of a vector satisfy the equation

cos2 α+ cos2 β + cos2 γ = 1 (2.5.8)

Example 2.5.2. Find the direction cosines of the vector ~a = 2̂i−4ĵ+4k̂, and approximate

the direction angles to the nearest degree.

Solution
For direction cosines, we have to normalize ~a, the components of â will give the direction
cosines. First its magnitude is

a =
√

(2)2 + (−4)2 + (4)2 =
√

4 + 16 + 16

= 6

and â is

â =
1

3
î− 2

3
ĵ +

2

3
k̂

Thus

cosα =
1

3

cosβ = −2

3

cos γ =
2

3

Then the direction angles are

α = arccos

(
1

3

)
≈ 71◦

β = arccos

(
−2

3

)
≈ 132◦

γ = arccos

(
2

3

)
≈ 48◦
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2.5.4 Decomposing Vector into Orthogonal Components

In many applications it is desirable to decompose a vector into a sum of two orthogonal
vectors with convenient specified directions. These components are also known as rectan-
gular components of a vector. For example, Figure 2.15 shows a block on an inclined plane.
The weight of the block ~W (the downward force) can be decomposed into the sum

Figure 2.15: Orthogonal components of a vector.

~W = ~W1 + ~W2

Considering O as the origin of a 2-space system. Let ê1 and ê2 be two orthogonal unit
vectors considering ê1 along ~W1 and ê2 along ~W2. Then ~W is

~W = W1ê1 +W2ê2 (2.5.9)

W1 and W2 can be calculated by taking the dot product of ~W with ê1 and ê2 respectively.

~W · ê1 = (W1ê1 +W2ê2) · ê1
= W1 (ê1 · ê1) +W2 (ê2 · ê1)
= W1 (1) +W2 (0)

= W1

Similarly

~W · ê2 = W2

Thus (2.5.9) can be written in another form as

~W =
(
~W · ê1

)
ê1 +

(
~W · ê2

)
ê2 (2.5.10)
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The vector component
(
~W · ê1

)
ê1 of ~W is along ê1 direction and the vector component(

~W · ê2
)
ê2 of ~W is along ê2 direction. Let θ be the angle between ~W and ê1. Then the

orthogonal components of ~W are

W1 = ~W · ê1
= ‖ ~W‖‖ê1‖ cos θ

= W (1) cos θ

= W cos θ

The scalar W is the magnitude of ~W and is obtained as

W =
√
W 2

1 +W 2
2 (2.5.11)

And

W2 = ~W · ê2
= ‖ ~W‖‖ê2‖ cos(90− θ)
= W (1) sin θ

= W sin θ

Then (2.5.9) can also be written in another form as

~W = W cos θî+W sin θĵ

Example 2.5.3. Consider the vectors ~a = 2̂i + 3ĵ, ê1 = 1√
2
î + 1√

2
ĵ and ê2 = 1√

2
î − 1√

2
ĵ.

Find

a) The scalar components of ~a along ê1 and ê2 and

b) The vector components of ~a along ê1 and ê2.

Solution

a) The scalar component of ~a along ê1 is

a1 = ~a · ê1

= 2

(
1√
2

)
+ 3

(
1√
2

)
=

5√
2
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And the scalar component of ~a along ê2 is

a2 = ~a · ê2

= 2

(
1√
2

)
+ 3

(
− 1√

2

)
= − 1√

2

b) The vector components of ~a along ê1 is

a1ê1 =
5√
2

(
1√
2
î+

1√
2
ĵ

)
=

5

2
î+

5

2
ĵ

And the vector components of ~a along ê2 is

a2ê2 = − 1√
2

(
1√
2
î− 1√

2
ĵ

)
= −1

2
î+

1

2
ĵ

Example 2.5.4. Let the vector ~a = 〈2, 2〉,makes an angle θ = π
4 with ê1. Find the scalar

components of ~a along ê1 and ê2.

Solution
We first need the magnitude of ~a, that is

a =
√

(2)2 + (2)2 = 2
√

2

The scalar component of ~a along ê1 is

a1 = a cos θ

= 2
√

2 cos
(π

4

)
= 2

√
2(

1√
2

) = 2

The scalar component of ~a along ê2 is

a2 = a sin θ

= 2
√

2 sin
(π

4

)
= 2

√
2(

1√
2

) = 2
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2.5.5 Orthogonal Components of a Vector with Reference to the Origin

This can be discussed in two steps, a vector in 2 − space and a vector in 3 − space. First
consider a vector in 2− space.

(a) Vector in 2− space
If the initial point of a vector ~r is at origin, in 2 − space the orthogonal/rectangular com-
ponents will be along coordinate axes. The component along x axis is called horizontal
component of ~r and the component along y axis is called vertical component of ~r. If ~r
makes an angle θ with x axis then its orthogonal components are

rX = r cos θ

rY = r sin θ

And ~r can be written as

Figure 2.16: Orthogonal components of a vector in 2 space.

~r = rX î+ rY ĵ

= r cos θî+ r sin θĵ

Example 2.5.5. Let a vector ~a in 2 − space of magnitude 3 makes an angle θ = π
4 with

x axis. Find ~a from its rectangular components.

Solution
The given data is

a = 3

θ =
π

4

The x component of ~a is

a1 = a cos θ

= 3 cos
(π

4

)
= 3(0.707) = 2.12
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The y component of ~a is

a2 = a sin θ

= 3 sin
(π

4

)
= 3(0.707) = 2.12

~a in the combination of its rectangular component is

~a = 2.12̂i+ 2.12ĵ

(b) Vector in 3− space

If the initial point of a vector is at origin, in 3−space the orthogonal/rectangular components
will be along coordinate axes. Let ~r makes an angle φ with z axis then its orthogonal
components are

rZ = r cosφ

rV = r sinφ

~rV is the projection of ~r in xy plane. Let it makes an angle θ with x axis. It will further

Figure 2.17: Vector in 3 space.

decompose into orthogonal components as

rX = r sinφ cos θ

rY = r sinφ sin θ

It provides the idea of spherical coordinates. The rectangular components of ~r are

rX = r sinφ cos θ

rY = r sinφ sin θ

rZ = r cosφ
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Figure 2.18: Orthogonal components of a vector in 3 space.

And ~r can be written as

~r = rX î+ rY ĵ + rZ k̂

= r sinφ cos θî+ r sinφ sin θĵ + r cosφk̂

2.5.6 Vector or Cross Product of Two Vectors

If ~a = 〈x1, y1, z1〉 and ~b = 〈x2, y2, z2〉 are vectors in 3 − space, then the cross product of ~a
and ~b is written as ~a×~b and is defined as

~a×~b =

∣∣∣∣∣∣∣∣
î ĵ k̂

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣ (2.5.12)

= (y1z2 − y2z1) î− (x1z2 − x2z1) ĵ + (x1y2 − x2y1) k̂

If θ is the angle between ~a and ~b as shown in Fig. 2.19, then the magnitude of ~a×~b is∥∥∥~a×~b∥∥∥ = ab sin θ

Also

A =
∥∥∥~a×~b∥∥∥

is the area of the parallelogram that has ~a and ~b as adjacent sides.
Note

• ~a×~b = −
(
~b× ~a

)
• The cross product is defined only for vectors in 3-space, whereas the dot product is

defined for vectors in 2-space and 3-space.
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Figure 2.19: Cross product of two vectors

• The cross product of two vectors is a vector, whereas the dot product of two vectors
is a scalar.

• ~r × ~r = 0 for any vector ~r in 3-space.

• î× ĵ = k̂, ĵ × k̂ = î, k̂ × î = ĵ,
ĵ × î = −k̂, k̂ × ĵ = −î, î× k̂ = −ĵ

Example 2.5.6. Let the vector ~a = 〈2,−2, 1〉, and ~b = 〈3, 0, 1〉 Find

a) ~a× ~a

b) ~a×~b

c) ~b× ~a

d) Find the area of the parallelogram whose adjacent sides are ~a, and ~b

Solution
The vector products can be calculated by using (2.5.12), first

a) ~a× ~a is

~a× ~a =

∣∣∣∣∣∣∣∣
î ĵ k̂

2 −2 1

2 −2 1

∣∣∣∣∣∣∣∣
= (−2 + 2) î− (2− 2) ĵ + (−4 + 4) k̂

= 0
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Hence the vector product of a vector with itself is zero. Next

b) ~a×~b is

~a×~b =

∣∣∣∣∣∣∣∣
î ĵ k̂

2 −2 1

3 0 1

∣∣∣∣∣∣∣∣
= (−2 + 0) î− (2− 3) ĵ + (0 + 6) k̂

= −2̂i+ ĵ + 6k̂

c) For ~b× ~a, we use the concept ~b× ~a = −
(
~a×~b

)
. Hence

~b× ~a = −
(
~a×~b

)
= −

(
−2̂i+ ĵ + 6k̂

)
= 2̂i− ĵ − 6k̂

d) The area of the parallelogram is the magnitude of ~a×~b, that is

‖~a×~b‖ =
√

(−2)2 + (1)2 + (6)2

=
√

4 + 1 + 36 =
√

41

≈ 6.4 units2

Hence the area of the parallelogram whose sides are ~a and ~b, is 6.4 units2

2.6 Scalar or Dot Product of Three Vectors

If ~a = 〈x1, y1, z1〉, ~b = 〈x2, y2, z2〉 and ~c = 〈x3, y3, z3〉 are vectors in 3 − space, then the

scalar product of three vectors is a number written as ~a ·
(
~b× ~c

)
and is defined as

~a ·
(
~b× ~c

)
=

∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣ (2.6.1)

If ~a, ~b and ~c are adjacent edges of the parallelepiped, as shown in Fig. 2.20, then the

magnitude of ~a ·
(
~b× ~c

)
is is volume V of the parallelepiped.

V =
∣∣∣~a · (~b× ~c)∣∣∣

Note
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Figure 2.20: scalar triple product is volume of parallelepiped

• If ~a ·
(
~b× ~c

)
= 0 then the three vectors are coplanar.

• If ~a ·
(
~a×~b

)
= 0 then ~a×~b is orthogonal to ~a.

• ~b ·
(
~a×~b

)
= 0 then ~a×~b is orthogonal to ~b.

Example 2.6.1. Find the triple dot product of the vectors ~a = 〈3, 2, 1〉, ~b = 〈2, 1, 1〉 and

~c = 〈1, 2, 4〉. Also find the volume of the parallelepiped whose edges are ~a, ~b and ~c.

Solution
The triple dot product of vectors is given by using (2.6.1)

~a ·
(
~b× ~c

)
=

∣∣∣∣∣∣∣∣
3 2 1

2 1 1

1 2 4

∣∣∣∣∣∣∣∣
= 3(4− 2)− 2(8− 1) + 1(4− 1)

= 6− 14 + 3 = −5

The volume of the parallelepiped with edges ~a, ~b and ~c is

V =
∣∣∣~a · (~b× ~c)∣∣∣

= 5 units3

2.7 Addition of Vectors

Two or more vectors can be added geometrically (graphically) and analytically. Following
methods can be used to add vectors.
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2.7.1 Head to Tail Rule of Vector Addition

Given two vectors ~P and ~Q. Their resultant ~P + ~Q is obtained by joining the tail of ~Q with
the head of ~P without making any alteration in the direction of vectors. Draw a vector
from the tail of ~P to the head of ~Q. This vector is ~P + ~Q. Also we can obtain ~Q+ ~P , the
same vector, let it be ~R. Hence we can say

~R = ~P + ~Q = ~Q+ ~P

This means vector addition is commutative. Geometrically this sum is illustrated in Fig.

Figure 2.21: Vector addition by head to tail rule

3.1, on left side two vectors are acting in same directions and on right side two vectors are
not acting in same directions. The length of ~P + ~Q is the magnitude and its inclination
with ~P is its direction.
Any number of vectors can be added by this method. For two adjacent vectors we can apply
triangular law and for more than two vectors we can apply polygon law.

2.7.2 Triangle Law of Vector Addition

If two vectors are represented in magnitude and direction by two sides of a triangle taken
in order, then their resultant is the closing side of the triangle taken in the opposite order.
Proof Two vectors ~P and ~Q are represented completely by two sides OA and AB of a

triangle OAB. Then by vector addition (head to tail rule) the resultant vector ~R of two
vectors ~P and ~Q is

~R = ~P + ~Q

Geometrically this sum is illustrated in Fig. 3.4. The length of ~R is the magnitude and its
inclination with ~P is its direction.

2.7.3 Polygon Law of Vector Addition

The triangle rule can be made more general to apply to any geometrical shape - or polygon.
This then becomes the polygon law. It can be stated as:
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Figure 2.22: Vector addition by triangular law

If a number of vectors are represented both in magnitude and direction by the sides of a
polygon taken in the same order, then their resultant is represented both in magnitude and
direction by the closing side of the polygon taken in the opposite order.
Proof Four vectors ~F1, ~F2, ~F3 and ~F4 are represented by four sides OA.AB,BC and CD
of a polygon OABCD. Then by vector addition (head to tail rule) the resultant vector ~R
of four vectors is

~R = ~F1 + ~F2 + ~F3 + ~F4

Geometrically this sum is illustrated in Fig. 3.7. The length of ~R is the magnitude and its

Figure 2.23: Vector addition by polygon law

inclination with ~F1 is its direction.
Since vector addition is associative, the resultant vector obtained by the polygon rule is
independent of the order of composition of vectors.

2.7.4 Subtraction of vectors

The subtraction of a vector from another is a vector obtained by adding one vector to the
negative of the other. It is also called difference of vectors.
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Given two vectors ~P and ~Q. Their difference ~P − ~Q is obtained by joining the tail of − ~Q
with the head of ~P without making any alteration in the direction of vectors. Draw a vector
from the tail of ~P to the head of − ~Q. This vector is ~R = ~P − ~Q.

~R = ~P − ~Q = ~P +
(
− ~Q
)

Geometrically this difference vector is illustrated in Fig. 3.8, on left side the two vectors are
parallel and on right side the two vectors are not parallel. The length of ~R is the magnitude

Figure 2.24: Subtraction of two vectors.

and its inclination with ~P is its direction.

2.7.5 Parallelogram Law of Vector Addition

If two vectors are represented in magnitude and direction by two adjacent sides of a paral-
lelogram, then their resultant is represented in magnitude and direction by the diagonal of
the parallelogram, passing through the point of intersection of the vectors as shown in Fig.
3.13. and is given by (3.4.1)

Figure 2.25: Parallelogram of vectors

~R = ~P + ~Q (2.7.1)
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And by law of sines, the magnitude of the resultant is

R

sin(π − α)
=

P

sinφ
=

Q

sin θ
(2.7.2)

And by law of cosines, the magnitude of the resultant is

R =
√
P 2 +Q2 + 2PQ cosα (2.7.3)

where α is the angle between these two vectors. The resultant makes an angle θ with the
horizontal vector.

tan θ =
Q sinα

P +Q cosα
(2.7.4)

Note: We usually refer (3.4.2) for magnitude of the resultant.
Proof The two vectors ~P and ~Q are represented completely by two adjacent sides OA and
OC of a parallelogram OABC. The vector ~Q can be represented by AB side, then by vector
addition (head to tail rule) the resultant vector ~R of two vectors ~P and ~Q is

~R = ~P + ~Q

In Fig. 3.12, a triangle OAB is formed by three vectors ~P , ~Q, ~R. In this triangle,

Figure 2.26: Triangle of vectors

∠A = π − α, ∠O = θ, and ∠B = φ, then by law of sines we can write

R

sin(π − α)
=

P

sinφ
=

Q

sin θ

Again consider triangle OAB, by law of cosines we can write

cos(∠OAB) =
|OA|2 + |AB|2 − |OB|2

2|OA||AB|

cos(π − α) =
P 2 +Q2 −R2

2PQ

− cosα =
P 2 +Q2 −R2

2PQ

−2PQ cosα = P 2 +Q2 −R2
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Then R can be written as

R =
√
P 2 +Q2 + 2PQ cosα

Draw a perpendicular BD from B on OA, which meets OA at D produced. In right angle
triangle ADB

cosα =
|AD|
|AB|

then

|AD| = |AB| cosα

= Q cosα (2.7.5)

Similarly

|BD| = Q sinα (2.7.6)

Let the resultant ~R makes an angle θ with the vector ~P as shown in Fig. 3.13. In right
angle triangle ODB, ∠BOD = θ, then

tan θ =
|BD|
|OB|

(2.7.7)

Since

|OD| = |OA|+ |AD|

then (3.4.6) becomes

tan θ =
|BD|

|OA|+ |AD|
(2.7.8)

Using (3.4.4) and (3.4.5), (3.4.7) becomes

tan θ =
Q sinα

P +Q cosα

or

θ = arctan

(
Q sinα

P +Q cosα

)
(2.7.9)

If the resultant ~R makes an angle θ with the vector ~Q, the resultant will remain the same,
but in (3.4.8), P and Q will interchange.
Particular Cases Here some particular cases can be discussed for different values of the
angle between the vectors.
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Figure 2.27: Vectors acting in the same direction

Case 1: If the two vectors are acting in the same direction, then the angle between them is
α = 0 rad, as shown in Fig. 3.14 and by (3.4.2), their resultant is

R =
√
P 2 +Q2 + 2PQ cos(0)

=
√
P 2 +Q2 + 2PQ

=

√
(P +Q)2

= P +Q

(3.4.9) gives the magnitude of the resultant. For direction, consider (3.4.3)

tan θ =
Q sin(0)

P +Q cos(0)

= 0 (2.7.10)

(3.4.10) gives the direction of the resultant. In this case the magnitude of the resultant
of the vectors is the sum of the individual magnitudes of the vectors and it acts in the
direction of the vectors resultant is known as resultant of greatest magnitude.

Case 2: If the two vectors are perpendicular, then the angle between them is α = π
2 rad, as

shown in Fig. 3.15 and by (3.4.2), their resultant is

Figure 2.28: Vectors are orthogonal
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R =

√
P 2 +Q2 + 2PQ cos(

π

2
)

=
√
P 2 +Q2 (2.7.11)

(3.4.11) gives the magnitude of the resultant, when the two vectors acting on a body
are perpendicular. For direction, consider (3.4.3)

tan θ =
Q sin(π2 )

P +Q cos(π2 )

=
Q

P
(2.7.12)

(3.4.12) gives the direction of the resultant.

Case 3: If the two vectors are acting in the opposite direction, then the angle between them
is α = π rad, and by (3.4.2), their resultant is

R =
√
P 2 +Q2 + 2PQ cos(π)

=
√
P 2 +Q2 − 2PQ

=

√
(P −Q)2

= |P −Q| (2.7.13)

(3.4.13) gives the magnitude of the resultant, when the vectors are acting in opposite
direction, as shown in Fig. 3.16. For direction, consider (3.4.3)

Figure 2.29: Vectors acting in opposite direction

tan θ =
Q sin(π)

P +Q cos(π)

= 0

and

θ = 0 or π (2.7.14)

(3.4.14) gives the direction of the resultant. In this case the magnitude of the resultant
of the vectors is the difference of the individual magnitudes of the vectors and it acts in
the direction of a forces with greater magnitude. This resultant is known as resultant
of least magnitude.
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2.7.6 Resolved Components of a Vector in Two given Directions

Let ~R be a given vector and ~P and ~Q be its resolved parts making angles θ and φ with
it. Completing parallelogram OACB as shown in Fig. 3.28. In this figure, consider the
triangle OAB, in which the sides OA, AB and OB represents the forces P , Q and R in
magnitude respectively. Then by law of sine’s we have

Figure 2.30: Resolved components of a vector in two given directions

R

sin(π − α)
=

P

sinφ
=

Q

sin θ

and we can write

P =
R sinφ

sin(π − α)
(2.7.15)

and

Q =
R sin θ

sin(π − α)
(2.7.16)

Then P and Q given by (3.5.1) and (3.5.3) respectively gives the magnitudes of resolved
parts of a vector.
If the angle between the forces α = π

2 , then φ = π
2 − θ,

sin(π − α) = sin
(π

2

)
and

sinφ = sin
(π

2
− θ
)

= cos θ

Then the resolved components of a vector are

P = R cos θ (2.7.17)
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Figure 2.31: Resolved components of a vector in orthogonal directions

and

Q = R sin θ (2.7.18)

are known as rectangular components of a vector and are shown in Fig. 3.31.

Example 2.7.1. Consider two vectors with magnitudes 3N and 4N and angle between them

is 60 degrees. Find their resultant vector using parallelogram law of vectors.

Solution: Let

P = 3 N

Q = 4 N

and the angle between them is

α = 60◦

Using (3.4.2), the resultant is

R =
√

32 + 42 + 2 cos 60

=
√

9 + 16 + 1

=
√

26 ≈ 5.099N

Let P is the initial vector and Q is the terminal vector, then using (3.4.3), the angle of
resultant with P is

θ = arctan

(
4 sin(60)

3 + 4 cos(60)

)
= arctan

(
3.4641

5

)
= arctan (0.6928) = 34.72◦ ≈ 35◦

The resultant makes an angle θ = 35◦ with force P .
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Theorem 2.7.1. If A and B are two points having position vectors ~a and ~b in a system

with O as origin. Next C is a point which divides AB in ratio λ : µ, then show that position

vector of C relative to O is

~c =
µ~a+ λ~b

λ+ µ
(2.7.19)

Proof This theorem is also known as λ, µ theorem of vector addition.
Two points A and B having position vectors ~a and ~b relative to O are shown in Fig. 3.27.
If C divides AB in ratio λ : µ, then from Fig. 3.27, we can write

Figure 2.32: λ µ Theorem.

AC =
λ

λ+ µ
AB

Hence

~AC =
λ

λ+ µ
~AB (2.7.20)

Following head to tail rule of vector addition, ~OB can be written as a sum of ~OA and ~AB
(see Fig. 3.27). Then

~AB = ~OB − ~OA (2.7.21)

Using (3.4.23), (3.4.22) can be written as

~AC =
λ

λ+ µ

(
~OB − ~OA

)
(2.7.22)

Again following head to tail rule of vector addition, ~OC can be written as (see Fig. 3.27)

~OC = ~OA+ ~AC (2.7.23)



42 2 Scalars and Vectors

Figure 2.33: Vector addition by head to tail rule.

Since ~OA = ~a, ~OB = ~b and ~OC = ~c is given by (3.4.24). Then (3.4.25) becomes

~c = ~a+
λ

λ+ µ

(
~b− ~a

)
=

(λ+ µ− λ)~a+ λ~b

λ+ µ

=
µ~a+ λ~b

λ+ µ

Hence the result.
Special case: When λ = µ, then C is the mid point of AB and ~c is

~c =
~a+~b

2

Example 2.7.2. In triangle OAB, ~OA = ~a and ~OB = ~b as shown in Fig. 3.25. If C

Figure 2.34: triangle of vectors

divides the line AB in ratio 1 : 2 and D divides the line OB in ratio 1 : 2. Find ~DC and
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hence show that ~DC is parallel to ~OA.

Solution Following λ, µ theorem, the sum of ~OA and ~OB is ~OC as shown in Fig. 3.26
(a) with λ = 1, µ = 2. Hence ~OC is

~OC =
2~a+~b

3

In Fig. 3.26 (b) ~DO is

Figure 2.35: Vector addition by head to tail rule.

~DO = −1

3
~b

following head to tail rule of vector addition, in Fig. 3.26 (b) ~DC can be written as

~DC = ~DO + ~OC

= −1

3
~b+

2

3
~a+

1

3
~b

=
2

3
~a

Since ~DC is a scalar multiple of ~a and is acting in the direction of ~a; that is ~DC is parallel
to ~OA.

2.8 Resultant of Coplanar Vectors

Following subsection 2.5.4, the rectangular components of a vector can be obtained. The
rectangular components of resultant vector of two or more coplanar vectors can be obtained
by summing rectangular components of individual vectors. For two dimensional system, the
horizontal components of resultant vector of two or more vectors is the sum of horizontal
components of individual vectors and the vertical components of resultant vector of two
or more vectors is the sum of vertical components of individual vectors. First consider a
system of two vectors in 2− space.
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2.8.1 Resultant of Two Coplanar Vectors

Consider two coplanar vectors ~P and ~Q as shown in Fig. 3.34. Their representations in

Figure 2.36: Two coplanar vectors.

rectangular components are

~P = PX î+ PY ĵ

and

~Q = QX î+QY ĵ

Then by vector addition (head to tail rule) the resultant vector ~R of two vectors ~P and ~Q
is

~R = ~P + ~Q (2.8.1)

~R in rectangular components is

~R = RX î+RY ĵ

In rectangular components, (3.6.1) can be written as

RX î+RY ĵ =
(
PX î+ PY ĵ

)
+
(
QX î+QY ĵ

)
= (PX +QX) î+ (PY +QY ) ĵ

Comparing components, we have

RX = PX +QX

The horizontal component of resultant is sum of horizontal components of individual vectors.
And

RY = PY +QY
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the vertical component of resultant is sum of vertical components of individual vectors. The
magnitude of resultant is

R =
√
R2
X +R2

Y (2.8.2)

And the direction is

θ = arctan

(
RY
RX

)
(2.8.3)

Geometrically this sum is illustrated in Fig. 3.35. The length of ~R is the magnitude and

Figure 2.37: Addition of two coplanar vectors.

its inclination with horizontal is its direction.

2.8.2 Resultant of n Coplanar Vectors

For n coplanar vectors ~F1, ~F2, ... ~Fn, the rectangular components of resultant vector are

RX = F1X + F2X + ...+ FnX =
n∑
i=1

FiX

And

RY = F1Y + F2Y + ...+ FnY =

n∑
i=1

FiY

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and
(3.6.3) respectively.
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2.8.3 Resultant of n Non-coplanar Vectors

Next consider a system of n vectors ~F1, ~F2, ... ~Fnin 3− space.
The rectangular components of resultant vector are

RX = F1X + F2X + ...+ FnX =
n∑
i=1

FiX

RY = F1Y + F2Y + ...+ FnY =
n∑
i=1

FiY

And

RZ = F1Z + F2Z + ...+ FnZ =
n∑
i=1

FiZ

The magnitude of resultant is

R =
√
R2
X +R2

Y +R2
Z (2.8.4)

If the resultant R makes angles α with x axis, β with y axis and γ with z axis, then
direction cosines are

cosα =
RX
R

cosβ =
RY
R

and

cos γ =
RZ
R

which will help to determine the direction of the resultant.

2.9 Resultant of Concurrent and Coplanar Vectors

Following subsection 2.5.4, the rectangular components of a vector can be obtained. The
rectangular components of resultant vector of two or more concurrent and coplanar vectors
can be obtained by summing rectangular components of individual vectors. For two dimen-
sional system, the horizontal components of resultant vector of two or more vectors is the
sum of horizontal components of individual vectors and the vertical components of resultant
vector of two or more vectors is the sum of vertical components of individual vectors. First
consider a system of two vectors in 2− space.
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2.9.1 Resultant of Two Concurrent and Coplanar Vectors

Consider two concurrent and coplanar vectors ~P and ~Q. Let their point of application
is origin O of cartesian coordinate system. Vector ~P makes an angle α1 and vector ~Q
makes an angle α2 with x axis as shown in Fig. 3.36. Their representations in rectangular

Figure 2.38: Resultant of two concurrent and coplanar vectors

components are

~P = PX î+ PY ĵ

= P cosα1î+ P sinα1ĵ

and

~Q = QX î+QY ĵ

= Q cosα2î+Q sinα2ĵ

If ~R is their resultant making an angle θ with x axis as shown in Fig. 3.36 and is given by
(3.6.1). Its representation in rectangular components is

~R = RX î+RY ĵ

= R cos θî+R sin θĵ

In rectangular components, (3.6.1) can be written as

RX î+RY ĵ =
(
PX î+ PY ĵ

)
+
(
QX î+QY ĵ

)
= (PX +QX) î+ (PY +QY ) ĵ

Comparing components, we have

RX = PX +QX

= P cosα1 +Q cosα2
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The horizontal component of resultant is sum of horizontal components of individual vectors.
And

RY = PY +QY

= P sinα1 +Q sinα2

the vertical component of resultant is sum of vertical components of individual vectors.
The length of ~R is the magnitude and its inclination with x axis is its direction can be
calculated by using (3.6.2) and (3.6.3) respectively.

2.9.2 Resultant of n Concurrent and Coplanar Vectors

For n vectors ~F1, ~F2, ... ~Fn making angles α1, α2, ...αn with x axis as shown in Fig. 3.37.
If ~R is their resultant making an angle θ with x axis as shown in Fig. 3.37. Rectangular

Figure 2.39: Resultant of n concurrent and coplanar vectors

components of resultant vector are

RX = F1X + F2X + ...+ FnX =
n∑
i=1

FiX

R cos θ = F1 cosα1 + F2 cosα2 + ...+ FnX cosαn =
n∑
i=1

Fi cosαi

And

RY = F1Y + F2Y + ...+ FnY =

n∑
i=1

FiY

R sin θ = F1 sinα1 + F2 sinα2 + ...+ FnX sinαn =

n∑
i=1

Fi sinαi

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and
(3.6.3) respectively.
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Example 2.9.1. A boat is rowed at a velocity of 12 km/h across a river. The velocity of

stream is 8 km/h. Determine the resultant velocity of the boat.

Solution: Fix the starting point of boat as origin O. Mark the downstream as horizontal
axis and across the river as vertical axis. Accordingly the boat will move vertically, but
as the velocity of the stream joins, as a result it will move making an angle θ with x axis
as shown in the Fig. 2.40. It means velocity of the boat will be vertical component and

Figure 2.40: Resultant of two concurrent and coplanar velocities

velocity of the river will be the horizontal component of the resultant velocity.

vX = 5 km/h

vY = 12 km/h

The resultant can be obtained by using addition of vectors by rectangular components.
Using (3.6.2) magnitude of resultant velocity is

v =

√
(vX)2 + (vY )2

=
√

(5)2 + (12)2

=
√

169

= 13 km/h

Let the resultant velocity makes an angle θ with x axis. Using (3.6.3) direction of resultant
velocity is

θ = arctan

(
vY
vX

)
= arctan

(
12

5

)
= arctan (2.4)

' 1.17 rad ' 71◦
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2.10 Resultant of Three Concurrent and Non-coplanar Vec-

tors

Consider three concurrent and non-coplanar vectors ~a, ~b and ~c. Let their point of application
is origin O. Complete the parallelepiped OABCDEFG whose edges OA, OB and OC
represents the vectors ~a, ~b and ~c respectively as shown in Fig. 2.41. Consider parallelogram

Figure 2.41: Three concurrent and non-coplanar vectors

OAFB, whose two adjacent sides OA and OB represents the vectors ~a and ~b. Then by
law of parallelogram of vector addition, OF represents the sum of ~a and ~b. Let it be ~u.
Next consider parallelogram OFGC, whose two adjacent sides OF and OC represents the

Figure 2.42: Addition of three concurrent and non-coplanar vectors

vectors ~u and ~c. Then by law of parallelogram of vector addition, OG represents the sum
of ~u and ~c. Let it be ~R.
Hence the resultant of three concurrent and non-coplanar vectors, acting at O, is represented
by the diagonal, drawn through O, of a parallelepiped with the given vectors for its edges.
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Theorem 2.10.1. For any vectors ~a, ~b and ~c and any scalars k and l, the following rela-

tionships hold:

(a) ~a+~b = ~b+ ~a

(b)
(
~a+~b

)
+ ~c = ~a+

(
~b+ ~c

)
(c) ~a+~0 = ~0 + ~a = ~a

(d) ~a+ (−~a) = ~0

(e) k (l~a) = (kl)~a

(f) k
(
~a+~b

)
= k~a+ k~b

(g) (k + l)~a = k~a+ l~a

(h) 1~a = ~a

Proof The results in this theorem can be proved algebraically by using components.
Let ~a = 〈x1, y1〉, ~b = 〈x2, y2〉, ~c = 〈x3, y3〉 and ~0 = 〈0, 0〉 be vectors in 2− space.

(a) ~a+~b = ~b+ ~a

Consider left hand side

~a+~b = 〈x1, y1〉+ 〈x2, y2〉
= 〈x1 + x2, y1 + y2〉

Since commutative law holds in R (set of real numbers), so we can write

~a+~b = 〈x2 + x1, y2 + y1〉
= 〈x2, y2〉+ 〈x1, y1〉
= ~b+ ~a

Geometrically this result is illustrated in Fig. 2.43

(b)
(
~a+~b

)
+ ~c = ~a+

(
~b+ ~c

)
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Figure 2.43: Vector addition is commutative

Consider left hand side(
~a+~b

)
+ ~c = (〈x1, y1〉+ 〈x2, y2〉) + 〈x3, y3〉

= 〈x1 + x2, y1 + y2〉+ 〈x3, y3〉
= 〈(x1 + x2) + x3, (y1 + y2) + y3〉

Since associative law holds in R, so we can write

= 〈x1 + (x2 + x3) , y1 + (y2 + y3)〉
= 〈x1, y1〉+ 〈x2 + x3, y2 + y3〉

= ~a+
(
~b+ ~c

)
(c) ~a+~0 = ~0 + ~a = ~a

Consider left hand side

~a+~0 = 〈x1, y1〉+ 〈0, 0〉
= 〈x1 + 0, y1 + 0〉

Since 0 is identity with respect to addition in R , so we can write

= 〈x1, y1〉
= ~a

Similarly

~0 + ~a = ~a

(d) ~a+ (−~a) = ~0

The vector −~a = 〈−x1,−y1〉. Then

~a+ (−~a) = 〈x1, y1〉+ 〈−x1,−y1〉
= 〈x1 − x1, y1 − y1〉
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Since −x1 is additive inverse of x1 in R , so we can write

〈x1 − x1, y1 − y1〉 = 〈0, 0〉 = ~0

Hence ~a+ (−~a) = ~0

(e) k (l~a) = (kl)~a

Multiplication of a scalar l with a vector ~a is

l~a = l〈x1, y1〉
= 〈lx1, ly1〉

Again multiplication of a scalar k with a vector l~a will give

k (l~a) = k〈lx1, ly1〉
= 〈klx1, kly1〉
= (kl)〈x1, y1〉
= (kl)~a

(f) k
(
~a+~b

)
= k~a+ k~b

Consider left hand side

k
(
~a+~b

)
= k (〈x1, y1〉+ 〈x2, y2〉)

= k (〈x1 + x2, y1 + y2〉)
= 〈k (x1 + x2) , k (y1 + y2)〉
= 〈kx1 + kx2, ky1 + ky2〉
= 〈kx1, ky1〉+ 〈kx2, ky2〉
= (〈kx1, ky1〉) + (〈kx2, ky2〉)
= k~a+ k~b

(g) (k + l)~a = k~a+ l~a

Multiplication of a scalar (k + l) with a vector ~a is

(k + l)~a = (k + l) 〈x1, y1〉
= 〈(k + l)x1, (k + l) y1〉

Since distributive law holds in R, so we can write

= 〈kx1 + lx1, ky1 + ly1〉
= 〈kx1, ky1〉+ 〈lx1, ly1〉
= k〈x1, y1〉+ l〈x1, y1〉
= k~a+ l~a
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(h) 1~a = ~a

Multiplication of a scalar 1 with a vector ~a is

1~a = 1〈x1, y1〉
= 〈1x1, 1y1〉

Since 1 is identity with respect to multiplication in R , so we can write

〈1x1, 1y1〉 = 〈x1, y1〉 = ~a

2.11 Vector Field

A vector field in a plane is a function that associates with each point P in the plane a
unique vector ~F (P ) parallel to the plane.
If ~F (P ) is a vector field in an xy−coordinate system, and P (x, y) is a point in xy plane,
then the associated vector with P will have components that are functions of x and y. Thus,
the vector field ~F (P ) can be expressed as

~F (x, y) = f(x, y)̂i+ g(x, y)ĵ (2.11.1)

Similarly, a vector field in 3−space is a function that associates with each point P in 3−space
a unique vector ~F (P ) in 3−space.
If ~F (P ) is a vector field in an xyz−coordinate system, and P (x, y, z) then the vector field
~F (P ) can be expressed as

~F (x, y, z) = f(x, y, z)̂i+ g(x, y, z)ĵ + h(x, y, z)k̂ (2.11.2)

If ~r is the position vector of P , the vector field of P can also be represented as ~F (P ) = ~F (r).
For example the gravitational field can be written as

~F (~r) = −GmM
r3

~r

2.11.1 Gradient of a Function

The gradient of a function (at a point) is a vector that points in the direction in which the
function increases most rapidly. In 2−space the gradient of a function f(x, y) is denoted by
∇f and is defined as

∇f(x, y) = fx(x, y)̂i+ fy(x, y)ĵ (2.11.3)

The gradient of a 3−space function f(x, y, z) is

∇f(x, y, z) = fx(x, y, z)̂i+ fy(x, y, z)ĵ + fz(x, y, z)k̂ (2.11.4)

Note
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• At (x, y) the surface z = f(x, y) has its maximum slope in the direction of the gradient,
and the maximum slope is ‖f(x, y)‖.

• At (x, y) the surface z = f(x, y) has its minimum slope in the direction that is opposite
to the gradient, and the minimum slope is −‖f(x, y)‖.

Flux
The flux of a vector field is the volume of fluid flowing through an element of surface area
per unit time.
Conservative Fields and Potential functions A vector field ~F (r) in 2−space or 3−space
is said to be conservative in a region if it is the gradient field for some function U in that
region, that is, if

~F = −∇U (2.11.5)

The function U is called a potential function for ~F in the region. This concept will be
discussed in detail in chapter ??.

2.11.2 Divergence and Curl

Divergence and curl are two important operations on vector fields in 3-space. These names
originate in the study of fluid flow, in which case the divergence relates to the way in which
fluid flows toward or away from a point and the curl relates to the rotational properties of
the fluid at a point.
The divergence of a vector field is defined as the flux divergence per unit volume. More
clearly the divergence of a vector field is a number that can be thought of as a measure of
the rate of change of the density of the fluid at a point. Consider the vector field

~F (x, y, z) = f(x, y, z)̂i+ g(x, y, z)ĵ + h(x, y, z)k̂ (2.11.6)

the divergence of ~F , written div ~F , to be the function given by

div ~F =
∂f

∂x
+
∂g

∂y
+
∂h

∂z
(2.11.7)

The curl of a vector field measures the tendency of the vector field to rotate about a point.
The curl of a vector field at a point is a vector that points in the direction of the axis of
rotation and has magnitude represents the speed of the rotation. Mathematically the curl
of ~F , written curl ~F , to be the vector field given by

curl ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣∣∣ (2.11.8)

=

(
∂h

∂y
− ∂g

∂z

)
î−
(
∂f

∂z
− ∂h

∂x

)
ĵ +

(
∂g

∂x
− ∂f

∂y

)
k̂
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The ∇ Operator
The symbol ∇ appearing in the gradient expression ∇U can be viewed as an operator known
as del operator

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ (2.11.9)

which when applied to U(x, y, z) produces the gradient

∇U =
∂f

∂x
î+

∂g

∂y
ĵ +

∂h

∂z
k̂ (2.11.10)

The del operator allows us to express the divergence of a vector field

~F (x, y, z) = f(x, y, z)̂i+ g(x, y, z)ĵ + h(x, y, z)k̂ (2.11.11)

in dot product notation as

div ~F = ∇ · ~F =
∂f

∂x
+
∂g

∂y
+
∂h

∂z
(2.11.12)

and the curl of this field in cross-product notation as

curl ~F = ∇× ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣∣∣ (2.11.13)

Example 2.11.1. Find divergence and curl for a vector field

~F = x2e−z î+ 2yz2ĵ + 3yezk̂

Solution

div ~F = ∇ · ~F

= 〈 ∂
∂x
,
∂

∂y
,
∂

∂z
〉 · 〈x2e−z, 2yz2, 3yez〉

=
∂x2e−z

∂x
+
∂2yz2

∂y
+
∂3yez

∂z

= 2xe−z + 2z2 + 3yez

and the curl of this field is

curl ~F = ∇× ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

x2e−z 2yz2 3yez

∣∣∣∣∣∣∣∣
= (3ez − 4yz) î− x2e−z ĵ
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Exercises

1. Find the vector
−−→
AB and its unit vector from the following pair of points. Also find a

vector with magnitude 4 having same direction of
−−→
AB vector.

a) A(1, 5), B(2, 5)

b) A(5, 2), B(0, 0)

c) A(4, 2), B(4, 4)

d) A(4, 2, 0), B(2, 2, 2)

e) A(0, 0, 0), B(1, 4, 1)

f) A(3, 1, 3), B(9, 4, 3)

2. Find the terminal point of ~a = 3̂i+ 2ĵ if the initial point is (2,2).

3. Find the initial point of ~a = 〈3, 1,−2〉 if the terminal point is (3, 0,3).

4. Consider the vectors ~a = 〈2,−1, 3〉 and ~b = 〈−7, 2,−1〉. Find

a) ~a · ~a
b) ~a ·~b
c) â and b̂

d) the angle between ~a and ~b.

e) ~a× ~a
f) ~a×~b and check that it is orthogonal to both ~a and ~b.

g) ~b× ~a
h) the orthogonal components of ~a, ~b and ~a×~b
i) the direction cosines of ~a, ~b and ~a ×~b and approximate the direction angles to

the nearest degree.

j) the area of the parallelogram whose adjacent sides are ~a and ~b

5. Whether the points A(2, 2, 0), B(1, 0, 2), and C(0, 4, 3) are collinear or non-collinear.
If non-collinear find the area of the triangle determined by these points.

6. Find ~a ·
(
~b× ~c

)
. Also find the volume V of the parallelepiped whose adjacent edges

are ~a, ~b and ~c given as follow:

a) ~a = 〈2,−3, 1〉, ~b = 〈4, 1,−3〉 and ~c = 〈0, 1, 5〉
b) ~a = 〈1,−2, 2〉, ~b = 〈0, 3, 2〉 and ~c = 〈−4, 1,−3〉
c) ~a = î, ~b = î+ ĵ and ~c = î+ ĵ + k̂

d) ~a = 2̂i+ ĵ, ~b = î− 3ĵ + k̂ and ~c = 4̂i+ k̂
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7. Check whether the vectors ~a = 〈3,−2, 5〉, ~b = 〈0, 3, 2〉 and ~c = 〈1, 4,−4〉 are co-planer,
if not find the volume V of the parallelepiped that has ~a, ~b and ~c as adjacent edges.

8. Find the resultant of two vectors with magnitudes 2N and 4N if the angle between
them is (a) 0◦, (b) 30◦ (c) 45◦ (d) 60◦ (e) 90◦, (f) 120◦ and (g) 180◦.

9. A block of weight 400 N rests on a smooth ramp that is inclined at an angle of 30◦

with the ground (Figure 8.12). Let there are no frictional forces, then how much force
does the block exert against the ramp, and how much force must be applied to the
rope in a direction parallel to the ramp to prevent the block from sliding down the
ramp?

Figure 2.44: Block on inclined plane

10. A wagon is pulled horizontally by exerting a constant force of 50N on the handle at
an angle of 60◦ with the horizontal. How much work is done in moving the wagon
10 m?

11. A force of ~F = 〈3,−1, 2〉 N is applied to a point that moves on a line from A(0, 1,−1)
to B(4, 1, 2). If distance is measured in feet, how much work is done?

12. If ~OA = ~a and ~OB = ~b be two vectors and ~OC = ~c be their resultant as shown in
Fig. 2.45. If any transversal cuts their lines of actions in the points D, E and F as
shown in Fig. 2.45, prove that

a

OD
+

b

OE
=

c

OF

13. Find divergence and curl for the following vector fields
(a) ~F = x2yz3î+ 2xy2 sin zĵ + 3zeyk̂
(b) ~F = x2ey î+ 2xey ĵ + 3 cos yexk̂
(c) ~F = x2yî+ 2xy2z3ĵ + 3zexk̂
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Figure 2.45: triangle of vectors
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Chapter 3

Composition and Resolution of

Forces

In mechanics, the term force is very common as it is an important factor of this subject.
We define it as:
an agent which produces or tends to produce motion, equivalently destroys or tends to destroy
motion.
For example, a street hawker push the cart to set it in motion and pull it to make it at rest.
Hence force is applied to move or to stop the cart.

3.1 Force

Newton’s fundamental laws and gravitational law are about force. Newton defined force as:
Force is the external agency applied on a body to change its state of rest and motion.
It means a force can cause the acceleration of the body. It is a vector quantity and is usually
denoted by ~F . Newton’s second law of motion provides mathematical concept of force. If
a force F acts on a body of mass m and produces an acceleration a, then the magnitude of
the force F is

F = ma

In SI, its unit of measure is N (Newton). A force in action may be constant force of
variable force.
Since force is a vector quantity, so it is completely specified by the following four charac-
teristics:

• Magnitude

61
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• Point of application

• Line of action and

• Direction

3.1.1 Effect of Force

When a force acts on a body, it may have the following effects:

(a) It may bring a moving body at rest.

(b) It may bring a body at rest in motion.

(c) It may change the size or shape of the body.

3.1.2 Fundamental Natural Forces

The following four forces exist naturally may be regarded as fundamental forces.

1. Gravitational force

2. Electromagnetic force

3. Strong nuclear force and

4. Weak nuclear force

The above forces are defined as:

1. Gravitational Force

A force with which the earth attracts every body towards its center is called gravitational
force. It is an external force and always acts downward. Remember that gravity is a
non-contact force. For a body of mass m, the magnitude of this force is

W = mg

Gravitational force is the weakest force among the fundamental forces of nature but has the
greatest largescale impact on the universe. Unlike the other forces, gravity works universally
on all matter and energy, and is universally attractive.

2. Electromagnetic Force

This force exist between charged particles such as the force between two electrons, or the
force between two current carrying wires. It is attractive for unlike charges and repulsive for
like charges. The electromagnetic force obeys inverse square law. It is very strong compared
to the gravitational force. It is the combination of electrostatic and magnetic forces.
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3. Strong Nuclear Force

It is the strongest of all the basic forces of nature. It, however, has the shortest range, of
the order of 10−15m. This force holds the protons and neutrons together in the nucleus of
an atom.

4. Weak Nuclear Force

Weak nuclear force is important in certain types of nuclear process such as −decay. This
force is not as weak as the gravitational force.

3.1.3 System of Forces

Like vectors, when several forces act simultaneously on a body, they constitute a system of
forces. These system are named, depending on the position of line of action of the forces as
following:

• Concurrent forces If the lines of action of all the forces acting on a body pass
through a single point, the forces are termed as concurrent forces.

• Collinear forces If the line of action of all the forces acting on a body lie along a
single line, the forces are called collinear forces. Example is, forces on a rope in a tug
of war.

• Coplanar forces If all the forces acting on a body lie in a single plane, they are
called coplanar forces. They may be:

(a) coplanar and concurrent forces.

(b) coplanar and non-concurrent forces.

• Non-Coplanar forces If all the forces acting on a body do not lie in a single plane
they are called non-coplanar forces or forces in space. They may be:

(a) non-coplanar and concurrent forces.

(b) non-coplanar and non-concurrent forces.

3.1.4 Classification of Forces

Forces acting on a rigid body can be classified as:

(a) External forces

(b) Internal forces
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External force

A force acting on a body from some external agency is called external force. External Forces
are further classified into two types

1. Applied or Active Force

Applied forces, or contact forces, are also external forces.
We apply external forces when we push a swing, pull an elastic, or throw a ball.

2. Reactive Force or Force of Constraint When a particle or body is made to move
along or rest on a curve or surface, the force exerted by such curve or surface is called
a force of constraint or reactive force.

If a particle rests on or moves along an inclined plane, the reaction of the plane is a reactive
force but the weight of the particle is an active force.

Internal force

Internal forces are those forces which the different parts of a system exert on each other
and such forces obey Newtons Third Law of Motion.
If we regard the earth and the moon as a system, then mutual attraction will be internal
force but the attraction of the sun exerted on each of them will be am external force.
Examples of Internal Forces There are four types of internal forces:

1. Tension

2. Compression

3. Torsion

4. Shear

1. Tension

Tension is an internal force that pulls the particles of a stretched object apart. The example
is an elastic band. When it is stretched by fingers (the external force), the internal force of
tension causes all of the particles of the band to pull apart. Tension acts on many objects,
such as a trampoline or guitar strings.
If an elastic band is stretched too far, it breaks. The particles in an elastic material can
stretch only to a certain point. This point is called the breaking point.

2. Compression

An object that is pressed or squeezed experiences compression.
Compression is an internal force that presses the particles of an object together. Compres-
sion happens when you kick a soccer ball or lay your head on a pillow. The springs inside
a mattress compress when you lie on a bed.
Compressed objects usually return to their original shape when the external force is re-
moved.
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3. Torsion

Torsion acts in an object when the object is twisted. It can be created by twisting one or
both ends of the object.
Torsion happens when we turn a doorknob or when a skater twists in a jump

4. Shear

Shear forces happen when two forces in an object push or pull in opposite directions. Shear
forces can bend, tear, and cut objects.
A strong wind can cause shear forces within a tree. The forces can bend or break the tree.

3.1.5 Some other Well known Forces

• Action and Reaction

When two bodies are in contact, each exerts a force on the other, known as action and
reaction. They are equal in magnitude and opposite in direction.

• Friction

When a body moves or tends to move upon another body, an opposing force (opposite to
the direction of motion) appears between their surfaces, known as the force of friction. It
will be discussed in detail in chapter 5.

3.2 Composition and Resolution of Forces

As force is a vector quantity, so its composition and resolution will be dealt by vector laws,
hence all properties of vectors should be in your mind.
Resultant Force If a number of forces act simultaneously on a particle, then it is possible
to find out a single force which can replace them. This single force has the same effect as
produced by all the given forces. This single force is called resultant force. It is generally
denoted by ~R.
Composition Of Forces The process by which the resultant force of a number of given
forces is obtained, is known as composition of forces.
Component of a Force A force can be resolved into two or more parts, without changing
its effect on the body. These parts are called components of a force. Each component has
shared effect on the body in some direction.
Resolution Of Forces The process of dividing a given force into a number of components,
is called resolution of a force. It is opposite process of composition of forces.
In this chapter, first we will discuss resultant force, for this recall addition of vectors.
Two or more forces can be added geometrically (graphically) and analytically to obtain
their resultant. A number of methods are available to add forces. A few of them are listed
below.
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3.3 Resultant of Coplanar and non-Concurrent Forces

The resultant of two or more coplanar and non-concurrent forces can be calculated by head
to tail method.

3.3.1 Head to Tail Method

Head to tail method or graphical method is one of the easiest method used to find the
resultant force of two or more than two forces. Given two forces ~P and ~Q. Their resultant
~P + ~Q is obtained by joining the tail of ~Q with the head of ~P without making any alteration
in the direction of vectors. Draw a vector from the tail of ~P to the head of ~Q. This vector
is ~P + ~Q. Also we can obtain ~Q+ ~P , the same vector, let it be ~R. Hence we can say

~R = ~P + ~Q = ~Q+ ~P

This means vector addition is commutative. Geometrically this sum is illustrated in Fig.

Figure 3.1: Resultant force by head to tail method

3.1, on left side two forces are acting in same directions and on right side two vectors are
not acting in same directions. The length of ~P + ~Q is the magnitude and its inclination
with ~P is its direction relative to P .
Any number of forces can be added by this method.

Example 3.3.1. Consider two forces with magnitudes 3N and 4N are acting on a body.

Find their resultant vector using head to tail rule.

Solution: We label the forces as

P = 3 N

Q = 4 N

Extending the forces in backward direction, we find the angle between them is 60◦. Consider
2-dimensional rectangular coordinate system. Select a suitable scale to represent the forces.
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Figure 3.2: Two force acting on body

Let 1N = 1cm. Draw a line of length of 3cm in the direction of P . Draw a line of length
of 4cm starting from the tip of P in the direction of Q. Draw a line starting from the tail
of P and ends at the tip of Q. This is the resultant of the given forces. By measuring, we
find its length is 5.1cm, hence the magnitude of the resultant is 5.1N . By using protector

Figure 3.3: Resultant by head to tail rule.

we find the resultant makes an angle θ = 35◦ with force P .
When the two forces are not acting in same direction, the Head to tail method is known as
triangle method and is defined as following.

Triangle Method

If two forces are represented in magnitude and direction by two sides of a triangle taken in
order, then their resultant is the closing side of the triangle taken in the opposite order.
Proof Two forces ~P and ~Q are represented completely by two sides OA and AB of a

triangle OAB. Then by vector addition (head to tail rule) the resultant vector ~R of two
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Figure 3.4: triangular Method

vectors ~P and ~Q is

~R = ~P + ~Q

Geometrically this sum is illustrated in Fig. 3.4. The length of ~R is the magnitude and its
inclination with ~P is its direction.

Example 3.3.2. Consider two concurrent and coplanar forces ~P = 〈2, 3〉 and ~Q = 〈2,−3〉

are acting on a body. Find their resultant force.

Solution:The system is shown in Fig. 3.5. Here

~P = 〈2, 3〉
~Q = 〈2,−3〉

Their resultant is

~R = ~P + ~Q

= 〈2, 3〉+ 〈2,−3〉
= 〈4, 0〉

Geometrically the resultant is shown in Fig. 3.6.

Polygon Method

The triangle rule can be made more general to apply to any geometrical shape or polygon.
This then becomes the polygon law. It can be stated as:
If a number of forces are represented both in magnitude and direction by the sides of a
polygon taken in the same order, then their resultant is represented both in magnitude and
direction by the closing side of the polygon taken in the opposite order.
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Figure 3.5: Forces ~P and ~Q.

Proof We consider four forces ~F1, ~F2, ~F3 and ~F4, that are represented by four sidesOA.AB,BC
and CD of a polygon OABCD. Then by vector addition (head to tail rule) the resultant
force ~R of four forces is

~R = ~F1 + ~F2 + ~F3 + ~F4

Geometrically this sum is illustrated in Fig. 3.7. The length of ~R is the magnitude and its
inclination with ~F1 is its direction relative to ~F1.
Since vector addition is associative, the resultant force obtained by the polygon rule is
independent of the order of composition of forces.

3.3.2 Subtraction of forces

The subtraction of a force from another is a force obtained by adding one force to the
negative of the other. It is also called difference of forces.
Given two forces ~P and ~Q. Their difference ~P − ~Q is obtained by joining the tail of − ~Q
with the head of ~P without making any alteration in the direction of forces. Draw a vector
from the tail of ~P to the head of − ~Q. This vector is ~R = ~P − ~Q.

~R = ~P − ~Q = ~P +
(
− ~Q
)

Geometrically this difference force is illustrated in Fig. 3.8, on left side the two forces are
parallel and on right side the two forces are not parallel. The length of ~R is the magnitude
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Figure 3.6: Resultant of ~P and ~Q

Figure 3.7: Polygon method

and its inclination with ~P is its direction relative to ~P .

Example 3.3.3. Consider two concurrent and coplanar forces ~P = 〈2, 3〉 and ~Q = 〈2,−3〉

are acting on a body. Find their difference force P −Q.

Solution:The system is shown in Fig. 3.9. Here

~P = 〈2, 3〉
~Q = 〈2,−3〉

and

− ~Q = 〈−2, 3〉
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Figure 3.8: Subtraction of two forces.

Their difference P −Q is

~R = ~P − ~Q

= 〈2, 3〉+ 〈−2, 3〉
= 〈0, 6〉

Geometrically the difference force is shown in Fig. 3.10.

3.4 Resultant of Concurrent and Coplanar Forces

Here the forces acting on a particle are concurrent and coplanar. We will find the resultant
of two concurrent and coplanar forces acting on the body, first by parallelogram law and
next by ratio theorem.

3.4.1 Parallelogram Law

If two forces acting simultaneously on a particle, are represented in magnitude and direction
by two adjacent sides of a parallelogram, then their resultant is represented in magnitude
and direction by the diagonal of the parallelogram, passing through the point of intersection
of the forces as shown in Fig. 3.11. and is given by (3.4.1)

~R = ~P + ~Q (3.4.1)

If α is the angle between these two forces then the magnitude of the resultant is

R =
√
P 2 +Q2 + 2PQ cosα (3.4.2)

and if the resultant makes an angle θ with the force ~P , then

tan θ =
Q sinα

P +Q cosα



72 3 Composition and Resolution of Forces

Figure 3.9: Forces ~P and ~Q.

or

θ = arctan

(
Q sinα

P +Q cosα

)
(3.4.3)

Note: We usually refer (3.4.2) for magnitude and (3.4.3) for direction of the resultant.
Proof The two forces ~P and ~Q are represented completely by two adjacent sides OA and
OC of a parallelogram OABC. The vector ~Q can be represented by AB side, then by vector
addition (head to tail rule) the resultant vector ~R of two vectors ~P and ~Q is

~R = ~P + ~Q

In Fig. 3.12, a triangle OAB is formed by three vectors ~P , ~Q, ~R. In this triangle,
∠A = π − α, ∠O = θ, and let ∠B = φ, then by law of sines we can write

R

sin(π − α)
=

P

sinφ
=

Q

sin θ
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Figure 3.10: Difference ~P − ~Q force.

Again consider triangle OAB, by law of cosines we can write

cos(∠OAB) =
|OA|2 + |AB|2 − |OB|2

2|OA||AB|

cos(π − α) =
P 2 +Q2 −R2

2PQ

− cosα =
P 2 +Q2 −R2

2PQ

−2PQ cosα = P 2 +Q2 −R2

Then R can be written as

R =
√
P 2 +Q2 + 2PQ cosα

Draw a perpendicular BD from B on OA, which meets OA at D produced as shown in Fig.
3.13. In right angle triangle ADB

cosα =
|AD|
|AB|

then

|AD| = |AB| cosα

= Q cosα (3.4.4)
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Figure 3.11: Parallelogram of vectors

Figure 3.12: Resultant by head to tail rule.

Similarly

|BD| = Q sinα (3.4.5)

Let the resultant ~R makes an angle θ with the vector ~P as shown in Fig. 3.13. In right
angle triangle ODB, ∠BOD = θ, then

tan θ =
|BD|
|OB|

(3.4.6)

Since

|OD| = |OA|+ |AD|

then (3.4.6) becomes

tan θ =
|BD|

|OA|+ |AD|
(3.4.7)
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Figure 3.13: Parallelogram law

Using (3.4.4) and (3.4.5), (3.4.7) becomes

tan θ =
Q sinα

P +Q cosα

or

θ = arctan

(
Q sinα

P +Q cosα

)
(3.4.8)

If the resultant ~R makes an angle θ with the force ~Q, the resultant will remain the same,
but in (3.4.8), P and Q will interchange.
Particular Cases Here some particular cases can be discussed for different values of the
angle between the forces.

Case 1: If the two forces are acting in the same direction, then the angle between them is
α = 0 rad, as shown in Fig. 3.14 and by (3.4.2), their resultant is

Figure 3.14: Vectors acting in the same direction

R =
√
P 2 +Q2 + 2PQ cos(0)

=
√
P 2 +Q2 + 2PQ

=

√
(P +Q)2

= P +Q (3.4.9)
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(3.4.9) gives the magnitude of the resultant. For direction, consider (3.4.3) with α = 0

tan θ =
Q sin(0)

P +Q cos(0)

= 0 (3.4.10)

(3.4.10) gives the direction of the resultant. In this case the magnitude of the resultant
of the forces is the sum of the individual magnitudes of the forces and it acts in the
direction of the forces. Such resultant is known as resultant of greatest magnitude.

Case 2: If the two forces are perpendicular, then the angle between them is α = π
2 rad, as

shown in Fig. 3.15 and by (3.4.2), their resultant is

Figure 3.15: Vectors are orthogonal

R =

√
P 2 +Q2 + 2PQ cos(

π

2
)

=
√
P 2 +Q2 (3.4.11)

(3.4.11) gives the magnitude of the resultant. For direction, consider (3.4.3) with
α = π

2

tan θ =
Q sin(π2 )

P +Q cos(π2 )

=
Q

P

or

θ = arctan

(
Q

P

)
(3.4.12)

(3.4.12) gives the direction of the resultant.
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Case 3: If the two vectors are acting in the opposite direction, then the angle between them
is α = π rad, and by (3.4.2), their resultant is

R =
√
P 2 +Q2 + 2PQ cos(π)

=
√
P 2 +Q2 − 2PQ

=

√
(P −Q)2

= |P −Q| (3.4.13)

(3.4.13) gives the magnitude of the resultant, when the vectors are acting in opposite
direction, as shown in Fig. 3.16. For direction, consider (3.4.3) with α = π

Figure 3.16: Vectors acting in opposite direction

tan θ =
Q sin(π)

P +Q cos(π)

= 0

and

θ = 0 or π (3.4.14)

(3.4.14) gives the direction of the resultant. In this case the magnitude of the resultant
of the vectors is the difference of the individual magnitudes of the vectors and it acts in
the direction of a forces with greater magnitude. This resultant is known as resultant
of least magnitude.

Example 3.4.1. Consider two concurrent and coplanar forces with magnitudes 3N and

4N are acting on a body. The angle between them is 60 degrees. Find their resultant vector

using parallelogram law of vectors.

Solution: We can label the forces as

P = 3 N

Q = 4 N
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Figure 3.17: Two concurrent forces acting on a body.

Figure 3.18: Resultant by parallelogram method.

and the angle between them is

α = 60◦

Using (3.4.2), the resultant is

R =
√

32 + 42 + 2(3)(4) cos 60

=
√

9 + 16 + 12

=
√

37 = 6.0828 ≈ 6N

Let P is the initial vector and Q is the terminal vector, then using (3.4.3), the angle of
resultant with P is

θ = arctan

(
4 sin(60)

3 + 4 cos(60)

)
= arctan

(
3.4641

5

)
= arctan (0.6928) = 34.72◦ ≈ 35◦
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The resultant makes an angle θ = 35◦ with force P .

Corollary 3.4.1. If two concurrent and coplanar forces P and Q act at such an angle

that their resultant R = P , show that if P is doubled and Q remained same then the new

resultant is at right angle to Q.

Proof Let two concurrent and coplanar forces P and Q act at O and α is the angle
between them as shown in Fig. 3.19. Following the law of parallelogram of vector addition,

Figure 3.19: R = P is resultant of P and Q

their resultant is given by

R =
√
P 2 +Q2 + 2PQ cosα (3.4.15)

But from given condition R = P , (3.4.15) becomes

P =
√
P 2 +Q2 + 2PQ cosα (3.4.16)

Squaring both sides, we get

P 2 = P 2 +Q2 + 2PQ cosα

or

Q (Q+ 2P cosα) = 0

Since Q 6= 0, so we have

Q+ 2P cosα = 0 (3.4.17)

Next the other given condition implies that we have to find the sum of 2P and Q. Let it
be R1 which makes an angle θ with Q that can be calculated by using (3.4.8).

θ = arctan

(
2P sinα

Q+ 2P cosα

)
(3.4.18)
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Using (3.4.17) in (3.4.18), the angle is

θ = arctan (∞) =
π

2
(3.4.19)

(3.4.19) shows that new resultant is at right angle to Q as shown in Fig. 3.20.

Figure 3.20: Resultant of 2P and Q is orthogonal with Q

Example 3.4.2. Consider two concurrent and coplanar forces with magnitude 5N each are

acting on a body. The angle between them is 120 degrees. The magnitude of their resultant

is also 5N . The system is shown in Fig. 3.21. Its angle with one of the force is 60 degrees.

Next the magnitude of this force is doubled then show that the new resultant is at right angle

to the force whose magnitude is fixed.

Solution: After doubling the magnitude of a force, we can label them as

P = 10 N

Q = 5 N

and the angle between them is

α = 120◦

Then we have to show that the new resultant is at right angle to force Q. Its angle with
force Q can be calculated by using (3.4.3)

θ = arctan

(
10 sin(120)

5 + 10 cos(120)

)
= arctan

(
5
√

3

5− 5

)
= arctan (∞) = 90◦



3.4 Resultant of Concurrent and Coplanar Forces 81

Figure 3.21: Forces and their resultant.

The resultant is at right angle to force Q and is shown in Fig. 3.22.

3.4.2 Ratio Theorem

As the ratio is chosen as λ, µ, so this theorem is also known as λ, µ theorem. In this theorem,
the two forces are concurrent and coplanar. Their resultant force also acts at the point of
action of these forces. A line lies on the lines of action of these forces that helps to determine
the resultant.

Theorem 3.4.2. If A and B are two terminal points of forces ~a and ~b in a system with

O as point of application. Next C is a point which divides AB in ratio λ : µ, then their

resultant ~c with terminal point C relative to O is

~c =
µ~a+ λ~b

λ+ µ
(3.4.20)

equivalently

(λ+ µ) ~OC = µ ~OA+ λ ~OB (3.4.21)

Proof Two points A and B having position vectors ~a and ~b relative to O are shown in
Fig. 3.27. If C divides AB in ratio λ : µ, then from Fig. 3.27, we can write

AC =
λ

λ+ µ
AB
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Figure 3.22: Resultant of 2P and Q is orthogonal with Q

Hence

~AC =
λ

λ+ µ
~AB (3.4.22)

Following head to tail rule of vector addition, ~OB can be written as a sum of ~OA and ~AB
(see Fig. 3.27). Then

~AB = ~OB − ~OA (3.4.23)

Using (3.4.23), (3.4.22) can be written as

~AC =
λ

λ+ µ

(
~OB − ~OA

)
(3.4.24)

Again following head to tail rule of vector addition, ~OC can be written as (see Fig. 3.27)

~OC = ~OA+ ~AC (3.4.25)

Since ~OA = ~a, ~OB = ~b and ~OC = ~c is given by (3.4.24). Then (3.4.25) becomes

~c = ~a+
λ

λ+ µ

(
~b− ~a

)
=

(λ+ µ− λ)~a+ λ~b

λ+ µ

=
µ~a+ λ~b

λ+ µ
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Figure 3.23: λ µ Theorem.

Figure 3.24: Vector addition by head to tail rule.

Hence the result.
Special case: When λ = µ, then C is the mid point of AB and ~c is

~c =
~a+~b

2

Example 3.4.3. Let the force along OA is ~a = −î+ 3ĵ + k̂ and along OB is ~b = 2̂i− 2k̂.

If C divides the line AB in ratio 2 : 1 find their resultant ~c.

Solution Here λ = 2 and µ = 1 and λ+ µ = 3,
the vectors µ~a = −î+ 3ĵ + k̂ and λ~b = 2~b = 4̂i− 4k̂
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then the resultant is

~c =

(
−î+ 3ĵ + k̂

)
+
(

4̂i− 4k̂
)

3

=
3̂i+ 3ĵ − 3k̂

3

= î+ ĵ − k̂

Example 3.4.4. In triangle OAB, ~OA = ~a and ~OB = ~b as shown in Fig. 3.25. If C

Figure 3.25: triangle of vectors

divides the line AB in ratio 1 : 2 and D divides the line OB in ratio 1 : 2. Find ~DC and

hence show that ~DC is parallel to ~OA.

Solution Following λ, µ theorem, the sum of ~OA and ~OB is ~OC as shown in Fig. 3.26
(a) with λ = 1, µ = 2. Hence ~OC is

~OC =
2~a+~b

3

In Fig. 3.26 (b) ~DO is

~DO = −1

3
~b

following head to tail rule of vector addition, in Fig. 3.26 (b) ~DC can be written as

~DC = ~DO + ~OC

= −1

3
~b+

2

3
~a+

1

3
~b

=
2

3
~a

Since ~DC is a scalar multiple of ~a and is acting in the direction of ~a; that is ~DC is parallel
to ~OA.
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Figure 3.26: Vector addition by head to tail rule.

Corollary 3.4.3. Two concurrent and coplanar forces ~P and ~Q act at point O and their

resultant is ~R. If any transversal cuts the lines of action of the forces in points A, B, C

respectively, prove that

R

OC
=

P

OA
+

Q

OB
(3.4.26)

Figure 3.27: A line cuts lines of action of forces.

Proof First we will calculate directions of these forces, that will be the unit vectors.
As ~P acts along ~OA, unit vector in this direction is

e1 =
~OA

OA

Then ~P is

~P = Pe1 = P
~OA

OA

=
P

OA
~OA (3.4.27)
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Similarly ~Q is

~Q = Qe2 = Q
~OB

OB

=
Q

OB
~OB (3.4.28)

and ~R is

~R = Re3 = R
~OC

OC

=
R

OC
~OC (3.4.29)

Using (3.4.21) from ratio theorem, we can write

P

OA
~OA+

Q

OB
~OB =

(
P

OA
+

Q

OB

)
~OC

Using (3.4.27) and (3.4.28), we can write

~P + ~Q =

(
P

OA
+

Q

OB

)
~OC (3.4.30)

As ~R is resultant of ~P and ~Q, so

~P + ~Q = ~R

Using (3.4.29), we can write

~P + ~Q =
R

OC
~OC (3.4.31)

From (3.4.32) and (3.4.31), we can write

R

OC
~OC =

(
P

OA
+

Q

OB

)
~OC

As both vectors are equal, it means

R

OC
=

P

OA
+

Q

OB

Hence the result.

3.5 Resolution Of Forces

A force ~F can be resolved into an infinite number of pairs of possible components. For
this, a parallelogram is constructed with ~F as diagonal and whose sides are along any two
distinct lines which are coplanar with the force ~F and pass through its line of action. If
the directions of the components are specified, the resolution of force into components is
unique. The two directions in which we resolve a given force may or may not be mutually
perpendicular. First we consider arbitrary directions.
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3.5.1 Resolved Components of a Force in Two given Directions

Let ~R be a given force and ~P and ~Q be its resolved parts making angles θ and φ with it.
Completing parallelogram OACB as shown in Fig. 3.28. In this figure, consider the triangle
OAB, in which the sides OA, AB and OB represents the forces P , Q and R in magnitude
respectively. Then by law of sine’s we have

Figure 3.28: Resolved components of a vector in two given directions

R

sin(π − α)
=

P

sinφ
=

Q

sin θ

and we can write

P =
R sinφ

sin(π − α)
(3.5.1)

and

Q =
R sin θ

sin(π − α)
(3.5.2)

Then P and Q given by (3.5.1) and (3.5.3) respectively gives the magnitudes of resolved
parts of a force.

Example 3.5.1. Consider a force of magnitude 50N acts on a body. Let this force has two

components, one on its right making an angle 30◦ with it and second on its left making an

angle 45◦ with it. The system is shown in Fig. 3.29. Find their magnitudes.

Solution: Let R be the force acting on the body. Let P be its component acting on
its right making an angle 30◦ with it and Q be its component acting on its left making an
angle 45◦ with it. The system is shown in Fig. 3.30. We can say
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Figure 3.29: Resolved components of a force

Figure 3.30: Resolved components of a force

θ = 30◦

φ = 45◦

α = 75◦

then

π − α = 180− 75 = 105

Using (3.5.1), the magnitude of P is

P =
50 sin(45)

sin(105)

=
50(0.707)

0.966
= 36.6N

and (3.5.3), the magnitude of Q is

Q =
50 sin(30)

sin(105)

=
50(0.5)

0.966
= 25.9N
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3.5.2 Rectangular Components of a Force

If the resolved parts of a force are at right angle with each other, then these are known as
rectangular components of a force. In this case the angle between the forces
α = π

2 , then φ = π
2 − θ, then

Figure 3.31: Resolved components of a vector in orthogonal directions

sin(π − α) = sin
(π

2

)
= 1

and

sinφ = sin
(π

2
− θ
)

= cos θ

Then the resolved components of a force are

P = R cos θ (3.5.3)

and

Q = R sin θ (3.5.4)

(3.5.3) and (3.5.4) are known as rectangular components of a force and are shown in Fig.
3.31.

Example 3.5.2. Consider a force of magnitude 4N acts on a body. Let this force has two

components, each making an angle 45◦ with it. Find their magnitudes.

Solution: Let R be the force acting on the body. Let its component P acts on its right
side and its component Q acts on its left side. The system is shown in Fig. 3.33. We can
say that the resultant makes an angle θ = 45◦ with its component P . Then the magnitude
of P is

P = R cos θ

= 4 cos(45◦)

= 2
√

2 ≈ 2.828N
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Figure 3.32: Resolved components of a force

and the magnitude of Q is

Q = R sin θ

= 4 sin(45◦)

= 2
√

2 ≈ 2.828N

Here the magnitude of each rectangular components is 2.828N

3.5.3 Resolved Components of a Force in Rectangular Coordinate System

A force is, generally, resolved along two mutually perpendicular directions. If we consider
rectangular coordinate system, the component along x axis is called horizontal component
and the component along y axis is called vertical component.
We can consider a force in rectangular coordinate system.

Resolved Components of a Force in Two Dimensional Space

If we consider two dimensional rectangular coordinate system, the component along x axis
is called horizontal component and the component along y axis is called vertical component.
A force in 2− space is

~F = 〈F1, F2〉
= F1î+ F2ĵ (3.5.5)
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If a force ~F is applied at origin making an angle θ with x − axis, then the force with the
combination of its orthogonal components can be written as

~F = F cos θî+ F sin θĵ (3.5.6)

Example 3.5.3. Consider a force of magnitude 4N acts on a body along positive x− axis.

Let this force has two rectangular components, each making an angle 45◦ with it. Find these

components.

Solution: Let R be the force acting on the body. Let its component P lies in first
quadrant and its component Q in fourth quadrant. The system is shown in Fig. 3.33.
We can say that the resultant makes an angle θ = 45◦ with its component P . Then the

Figure 3.33: Resolved components of a force

magnitude of P is

P = R cos θ

= 4 cos(45◦)

= 2
√

2 ≈ 2.828N

As P lies in first quadrant and it makes an angle φ = 45◦ with x− axis. By using (3.5.6),
its x− component Px is

Px = P cosφ

= 2
√

2 cos(45◦)

= 2
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and its y − component Py is

Py = P sinφ

= 2
√

2 sin(45◦)

= 2

Hence the component of given force in first quadrant is

~P = 〈2, 2〉

Next the magnitude of Q is

Q = R sin θ

= 4 sin(45◦)

= 2
√

2 ≈ 2.828N

As Q lies in fourth quadrant and it makes an angle ψ = −45◦ with x − axis. By using
(3.5.6), its x− component Qx is

Qx = Q cosψ

= 2
√

2 cos(−45◦)

= 2

and its y − component Qy is

Qy = Q sinψ

= 2
√

2 sin(−45◦)

= −2

Hence the component of given force in fourth quadrant is

~Q = 〈2,−2〉

Resolved Components of a Force in Three Dimensional Space

A force in three dimensional rectangular coordinate system is

~F = 〈F1, F2, F3〉
= F1î+ F2ĵ + F3k̂ (3.5.7)

If force ~F makes angle α with x−axis, β with y−axis and γ with z−axis and taking dot
product of (3.5.7) with î, ĵ and k̂, we have

F1 = F cosα

F2 = F cosβ

F3 = F cos γ
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then (3.5.7) can be written as

~F = F cosαî+ F cosβĵ + F cos γk̂

= F
(

cosαî+ cosβĵ + cos γk̂
)

(3.5.8)

= FF̂ F̂ (3.5.9)

Here

F̂ = cosαî+ cosβĵ + cos γk̂ (3.5.10)

is unit vector which determines the direction of the force.

Example 3.5.4. Find the rectangular components of a force ~F = 〈1, 1, 1〉.

The magnitude of the given force is

F =
√

12 + 12 + 12

=
√

3

and a unit vector in this direction is

F̂ =

〈
1√
3
,

1√
3
,

1√
3

〉
Comparing it with (3.5.10), we find

cosα =
1√
3

and

α = arccos

(
1√
3

)
= β = γ

= 0.955 radian = 54.7◦

The force makes an angle of 54.7◦ with all its components.

3.6 Resultant of Coplanar Forces Using Rectangular Com-

ponents

The rectangular components of resultant force of two or more coplanar forces can be ob-
tained by summing rectangular components of individual forces. For two dimensional sys-
tem, the horizontal components of resultant vector of two or more vectors is the sum of
horizontal components of individual vectors and the vertical components of resultant vec-
tor of two or more vectors is the sum of vertical components of individual vectors. First
consider a system of two vectors in 2− space.
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3.6.1 Resultant of Two Coplanar Vectors

Consider two coplanar vectors ~P and ~Q as shown in Fig. 3.34. Their representations in

Figure 3.34: Two coplanar vectors.

rectangular components are

~P = PX î+ PY ĵ

and

~Q = QX î+QY ĵ

Then by vector addition (head to tail rule) the resultant vector ~R of two vectors ~P and ~Q
is

~R = ~P + ~Q (3.6.1)

~R in rectangular components is

~R = RX î+RY ĵ

In rectangular components, (3.6.1) can be written as

RX î+RY ĵ =
(
PX î+ PY ĵ

)
+
(
QX î+QY ĵ

)
= (PX +QX) î+ (PY +QY ) ĵ

Comparing components, we have

RX = PX +QX

The horizontal component of resultant is sum of horizontal components of individual vectors.
And

RY = PY +QY
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the vertical component of resultant is sum of vertical components of individual vectors. The
magnitude of resultant is

R =
√
R2
X +R2

Y (3.6.2)

And the direction is

θ = arctan

(
RY
RX

)
(3.6.3)

Geometrically this sum is illustrated in Fig. 3.35. The length of ~R is the magnitude and

Figure 3.35: Addition of two coplanar vectors.

its inclination with horizontal is its direction.

3.6.2 Resultant of n Coplanar Vectors

For n coplanar vectors ~F1, ~F2, ... ~Fn, the rectangular components of resultant vector are

RX = F1X + F2X + ...+ FnX =
n∑
i=1

FiX

And

RY = F1Y + F2Y + ...+ FnY =

n∑
i=1

FiY

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and
(3.6.3) respectively.
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3.6.3 Resultant of n Non-coplanar Vectors

Next consider a system of n vectors ~F1, ~F2, ... ~Fnin 3− space.
The rectangular components of resultant vector are

RX = F1X + F2X + ...+ FnX =
n∑
i=1

FiX

RY = F1Y + F2Y + ...+ FnY =
n∑
i=1

FiY

And

RZ = F1Z + F2Z + ...+ FnZ =
n∑
i=1

FiZ

The magnitude of resultant is

R =
√
R2
X +R2

Y +R2
Z (3.6.4)

If the resultant R makes angles α with x axis, β with y axis and γ with z axis, then
direction cosines are

cosα =
RX
R

cosβ =
RY
R

and

cos γ =
RZ
R

which will help to determine the direction of the resultant.

3.7 Resultant of Concurrent and Coplanar Vectors

Following subsection 2.5.4, the rectangular components of a vector can be obtained. The
rectangular components of resultant vector of two or more concurrent and coplanar vectors
can be obtained by summing rectangular components of individual vectors. For two dimen-
sional system, the horizontal components of resultant vector of two or more vectors is the
sum of horizontal components of individual vectors and the vertical components of resultant
vector of two or more vectors is the sum of vertical components of individual vectors. First
consider a system of two vectors in 2− space.
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3.7.1 Resultant of Two Concurrent and Coplanar Vectors

Consider two concurrent and coplanar vectors ~P and ~Q. Let their point of application
is origin O of cartesian coordinate system. Vector ~P makes an angle α1 and vector ~Q
makes an angle α2 with x axis as shown in Fig. 3.36. Their representations in rectangular

Figure 3.36: Resultant of two concurrent and coplanar vectors

components are

~P = PX î+ PY ĵ

= P cosα1î+ P sinα1ĵ

and

~Q = QX î+QY ĵ

= Q cosα2î+Q sinα2ĵ

If ~R is their resultant making an angle θ with x axis as shown in Fig. 3.36 and is given by
(3.6.1). Its representation in rectangular components is

~R = RX î+RY ĵ

= R cos θî+R sin θĵ

In rectangular components, (3.6.1) can be written as

RX î+RY ĵ =
(
PX î+ PY ĵ

)
+
(
QX î+QY ĵ

)
= (PX +QX) î+ (PY +QY ) ĵ

Comparing components, we have

RX = PX +QX

= P cosα1 +Q cosα2
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The horizontal component of resultant is sum of horizontal components of individual vectors.
And

RY = PY +QY

= P sinα1 +Q sinα2

the vertical component of resultant is sum of vertical components of individual vectors.
The length of ~R is the magnitude and its inclination with x axis is its direction can be
calculated by using (3.6.2) and (3.6.3) respectively.

Example 3.7.1. Consider two forces magnitudes 5N and 8N are acting on a body. Let

the first force makes an angle 15◦ with horizontal and second force makes an angle 45◦ with

horizontal. Find their resultant force.

Solution: The given data is

F1 = 5N

F2 = 8N

θ1 = 15◦

θ2 = 45◦

The resultant can be obtained by using addition of vectors by rectangular components. The
x components of first force is

F1X = F1 cos 15◦

= 5(0.9659) = 4.8296N

The x components of second force is

F2X = F2 cos 45◦

= 8(0.7071) = 5.6568N

The y components of first force is

F1Y = F1 sin 15◦

= 5(0.2588) = 1.294N

The y components of second force is

F2Y = F2 sin 45◦

= 8(0.7071) = 5.6568N
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Let F be the resultant of two forces. Its x components is

FX = F1X + F2X

= 4.8296 + 5.6568 = 10.4864N

and y components is

FY = F1Y + F2Y

= 1.294 + 5.6568 = 6.9508N

Using (3.6.2) magnitude of resultant force is

F =

√
(FX)2 + (FY )2

=
√

(10.4864)2 + (6.9508)2

=
√

158.2781 = 12.5808

' 12.6N

Let the resultant force makes an angle θ with x axis. Using (3.6.3) direction of resultant
force is

θ = arctan

(
FY
FX

)
= arctan

(
6.9508

10.4864

)
= arctan (0.6628)

= 33.5379 ' 36◦

3.7.2 Resultant of n Concurrent and Coplanar Vectors

For n vectors ~F1, ~F2, ... ~Fn making angles α1, α2, ...αn with x axis as shown in Fig. 3.37.
If ~R is their resultant making an angle θ with x axis as shown in Fig. 3.37. Rectangular

Figure 3.37: Resultant of n concurrent and coplanar vectors
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components of resultant vector are

RX = F1X + F2X + ...+ FnX =

n∑
i=1

FiX

R cos θ = F1 cosα1 + F2 cosα2 + ...+ FnX cosαn =

n∑
i=1

Fi cosαi

And

RY = F1Y + F2Y + ...+ FnY =

n∑
i=1

FiY

R sin θ = F1 sinα1 + F2 sinα2 + ...+ FnX sinαn =

n∑
i=1

Fi sinαi

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and
(3.6.3) respectively.

Corollary 3.7.1. Three forces ~F1, ~F2 and ~F3 act at a point parallel to the sides of a

triangleABC taken in the same order. Show that the magnitude of the resultant is

√
F 2
1 + F 2

2 + F 2
3 − 2F2F3 cosA− 2F1F3 cosB − 2F1F2 cosC (3.7.1)

where A is angle between forces F1 and F3, B is angle between forces F1 and F2 and C is

angle between forces F2 and F3. The system is shown in the Fig. 3.38.

Figure 3.38: Forces acting at a point along sides of a triangle
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Figure 3.39: Forces acting at a point along sides of a triangle

Proof : Take 2−dimensional rectangular coordinate system with O (origin) as the point
of application of the forces. For simplicity consider side AB parallel to x axis as shown in
the Fig. 3.39. The resultant can be calculated by finding its rectangular components. First
we find rectangular components of these forces. The force F1 makes 0 degree with x axis,
then its rectangular components are

F1x = F1

F1y = 0

The force F2 makes 180 − B degree with x axis hence lying in II quadrant, then its
rectangular components are

F2x = F2 cos(180−B) = −F2 cosB

F2y = F2 sin(180−B) = F2 sinB

The force F3 makes π+A radian with x axis hence lying in III quadrant, then its rectan-
gular components are

F3x = F3 cos(π +A) = −F3 cosA

F3y = F3 sin(π +A) = −F3 sinA

The xcomponent of resultant is

Rx = F1x + F2x + F3x

= F1 − F2 cosB − F3 cosA
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The ycomponent of resultant is

Ry = F1y + F2y + F3y

= F2 sinB − F3 sinA

Using (3.6.2) magnitude of resultant force is

R =

√
(RX)2 + (RY )2 (3.7.2)

The square of x component is

(RX)2 = (F1 − F2 cosB − F3 cosA)2

= F 2
1 + F 2

2 cos2B + F 2
3 cos2A− 2F1F2 cosB − 2F1F3 cosA+ 2F2F3 cosB cosA

and the square of y component is

(RY )2 = (F2 sinB − F3 sinA)2

= F 2
2 sin2B + F 2

3 sin2A− 2F2F3 sinB sinA

The sum of these squared component is

(RX)2 + (RY )2 = F 2
1 + F 2

2 cos2B + F 2
3 cos2A− 2F1F2 cosB

− 2F1F3 cosA+ 2F2F3 cosB cosA

+ F 2
2 sin2B + F 2

3 sin2A− 2F2F3 sinB sinA

= F 2
1 + F 2

2

(
cos2B + sin2B

)
+ F 2

3

(
cos2A+ sin2A

)
− 2F1F2 cosB − 2F1F3 cosA+ 2F2F3 (cosA cosB − sinA sinB)

Using trigonometric identities, we can write

(RX)2 + (RY )2 = F 2
1 + F 2

2 + F 2
3 − 2F1F2 cosB − 2F1F3 cosA

+ 2F2F3 cos (A+B) (3.7.3)

In triangle ABC, angle A + B = (180 − C), and cos(180 − C) = − cosC, then (3.7.3)
becomes

(RX)2 + (RY )2 = F 2
1 + F 2

2 + F 2
3 − 2F1F2 cosB − 2F1F3 cosA

− 2F2F3 cosC (3.7.4)

Using (3.7.4), the magnitude of the resultant is

R =
√
F 2
1 + F 2

2 + F 2
3 − 2F2F3 cosA− 2F1F3 cosB − 2F1F2 cosC
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Figure 3.40: Three concurrent and non-coplanar vectors

Figure 3.41: Three concurrent and non-coplanar vectors

3.8 Resultant of Three Concurrent and Non-coplanar Forces

Consider three concurrent and non-coplanar forces ~F1, ~F2 and ~F3 are acting at point O, are
represented by the vectors ~OA = ~a, ~OB = ~b and ~OC = ~c respectively as shown in Fig 3.40.
Complete the parallelepiped OABCDEFG whose edges OA, OB and OC represents the
vectors ~F1, ~F2 and ~F3 respectively as shown in Fig. 3.41. Consider parallelogram OAFB,
whose two adjacent sides OA and OB represents the vectors ~F1 and ~F2. Then by law of
parallelogram of vector addition, OF represents the sum of ~F1 and ~F2. Let it be ~u.

~OA+ ~OB = ~OF

or

~F1 + ~F2 = ~u
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Figure 3.42: Addition of three concurrent and non-coplanar vectors

Next consider parallelogram OFGC, whose two adjacent sides OF and OC represents the
vectors ~u and ~F3. Then by law of parallelogram of vector addition, OG represents the sum
of ~u and ~c. Let it be ~R.

~OF + ~OC = ~OG

or

~u+ ~F3 = ~R

so that

~OA+ ~OB + ~OC = ~OG

or

~F1 + ~F2 + ~F3 = ~R

Hence the resultant of three concurrent and non-coplanar forces, acting at O, is represented
by the diagonal, drawn through O, of a parallelepiped with the given forces for its edges.
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3.9 Moment of a Force or Torque

The tendency of a force to produce rotation of a body about some reference axis or point
is called the moment of a force. It is also known as torque or turning effect of a force. For
example turning pencil in a sharpener, turning stopcock of a water tap, turning doorknob
and so on. The moment of a force is positive if the rotation is in anti clock wise sense
and is negative if the rotation is in clock wise sense. In SI system its unit of measure is
Newton-meter (N −m).

3.9.1 Moment of a Force About a Point

Consider a rigid body. Let a force ~F is acting on it which tends to rotate it about a fixed
point O as shown in Fig. 3.45. The line along which the force acts is called the line of
action of the force and the line OC is known as the axis of rotation. Take a point A on

Figure 3.43: Moment of a force

the line of action of the force having position vector ~r with respect to O. Moment of a force
~F about O is a vector quantity and is defined as

~τ = ~r × ~F (3.9.1)

Hence ~τ is a vector perpendicular to the plane containing ~r and ~F . If θ is the angle between
~r and ~F , then

~r × ~F = rF sin θn̂ (3.9.2)
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Where n̂ is a unit vector perpendicular to the plane containing ~r and ~F . The magnitude of
the moment of force ~F about O is

τ = |~r × ~F |
= rF sin θ (3.9.3)

The perpendicular distance from O to the line of action of the force is called the moment
arm of the force. To calculate it, consider the right angle triangle ABO

d = r sin(π − θ)
= r sin θ (3.9.4)

Using (4.1.13) in (4.1.12), we have

τ = Fd

(4.1.14) gives the magnitude of the moment of a force ~F about O. From (4.1.14), it is clear
greater the force, greater is the moment of the force and longer the moment arm, greater is
the moment of the force. It is more understandable by the following examples.
Examples To open or close a door, it is more easy to apply a force at the outer edge of a
door rather than near the hinge.
It is more easy to open or tighten a nut or a bolt with a spanner having long arm rather
than a spanner having short arm with same applied force.

3.9.2 Moment of a Force About a Point Lying on the Line of Action of

the Force

If the fixed point O lies on the line of action of the force, see Fig. 3.45. Take an other point

Figure 3.44: Moment of a force

A on the line of action of the force having position vector ~r with respect to O. In this case



3.9 Moment of a Force or Torque 107

~r and ~F have the same direction (or have opposite direction), so θ = 0 or (θ = π), then
moment of a force ~F about O is

~τ = ~r × ~F

= rF sin θn̂

= 0n̂ (3.9.5)

And the magnitude of the moment of force ~F about O is also zero.

Corollary 3.9.1. The moment of a force is independent of the choice of the point of ap-

plication of the force.

Proof Consider a rigid body. Let a force ~F is acting it on at point A whose position
vector is ~r with respect to O.. Due to this force the body tends to rotate about a fixed
point O, then moment of a force ~F about O is

~τ = ~r × ~F

If B is another point on the line of action of the force having position vector ~r1 with respect

Figure 3.45: Moment of a force

to O. By head to tail rule ~r1 can be written as

~r1 = ~r + ~AB
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then moment of a force ~F about O is

~τ = ~r1 × ~F

=
(
~r + ~AB

)
× ~F

= ~r × ~F + ~AB × ~F

As A lies on the line of action of the force hence the moment ~AB × ~F is zero and we are
left with

~τ = ~r × ~F

Hence the moment of a force is independent of the choice of the point of application of the
force.

Theorem 3.9.2. The moment about a point of the resultant of a system of concurrent

forces is equal to the sum moments of all forces of the system about the same point. This

theorem is known as Varignon’s theorem, due to the French mathematician P. Varignon

(1654-1722)

Proof Let ~F1, ~F2, ~F3, . . . ~Fn be forces acting at A. Let ~r be the position vector of A
relative to origin O of a reference system. Let ~R be the resultant of these forces as shown
in Fig. 3.46, then ~R is

~R = ~F1 + ~F2 + ~F3 + . . . + ~Fn

Next moment of ~R about A is

Figure 3.46: Sum of moments of n forces

~τ = ~r × ~R = ~r ×
(
~F1 + ~F2 + ~F3 + . . . + ~Fn

)
= ~r × ~F1 + ~r × ~F2 + ~r × ~F3 + . . . + ~r × ~Fn
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Note: If these forces have distinct position vector, then the sum of moments of all the
forces is

~τ = ~τ1 + ~τ2 + ~τ3 + . . . + ~τn

= ~r1 × ~F1 + ~r2 × ~F2 + ~r3 × ~F3 + . . . + ~rn × ~Fn

These concepts are illustrated in the following examples.

Example 3.9.1. The forces ~F1 = −î+ ĵ, ~F2 = ĵ, ~F3 = −2̂i− 4ĵ and ~F4 = 2̂i are acting at

O(0, 0), A(2, 0), B(0,−2) and C(3, 2) respectively as shown in the Fig. 3.47. Find

a) moments of all forces about O.

b) sum of moments of all forces about O.

c) moments of all forces about A, when no force is acting at A.

Figure 3.47: Moment of a force

Solution The given data is

~F1 = −î+ ĵ

~F2 = ĵ

~F3 = −2̂i− 4ĵ

~F4 = 2̂i

a) moments of all forces about O.
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Considering O as the reference point, the position vectors of all these forces are

~r1 = 0̂i+ 0ĵ

~r2 = 2̂i

~r3 = −2ĵ

~44 = 3̂i+ 2ĵ

respectively and are shown in Fig. 3.48. Using 4.1.10, the moment of force ~F1 = −î + ĵ

Figure 3.48: Moment of a force

about O is

~τ1 = ~r1 × ~F1

= (0̂i+ 0ĵ)× (−î+ ĵ)

= 0k̂ N −m

The magnitude of the moment of force ~F1 about O is 0 N−m. The moment of force ~F2 = ĵ
about O is

~τ2 = ~r2 × ~F2

= (2̂i+ 0ĵ)× (0̂i+ ĵ) = 2(̂i× ĵ)
= 2k̂ N −m

The moment of force ~F3 = −2̂i− 4ĵ about O is

~τ3 = ~r3 × ~F3

= (0̂i− 2ĵ)× (−2̂i− 4ĵ) = 4(ĵ × î)
= −4k̂ N −m
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The moment of force ~F4 = 2̂i about O is

~τ4 = ~r4 × ~F4

= (3̂i+ 2ĵ)× (2̂i) = 4(ĵ × î)
= −4k̂ N −m

b) sum of moments of all forces about O.

Let ~τ be the moment of all forces about O, then it is the sum of all moments

~τ = ~τ1 + ~τ2 + ~τ3 + ~τ4

= (0 + 2− 4− 4)k̂

= −6k̂ N −m

c) moments of all forces about A, when no force is acting at A.

Considering A as the reference point, the position vectors of all these forces are

~r1 = −2̂i

~r2 = î+ 2ĵ

~r3 = −2ĵ − 2ĵ

respectively and are shown in Fig. 3.49.
Using 4.1.10, the moment of force ~F1 = −î+ ĵ about A is

Figure 3.49: Moment of a force

~τ1 = ~r1 × ~F1

= 2̂i× (−î+ ĵ)

= 2k̂ N −m
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The moment of force ~F4 = 2̂i about A is

~τ2 = ~r2 × ~F2

= (̂i+ 2ĵ)× (2̂i)

= −4k̂ N −m

The moment of force ~F3 = −2̂i− 4ĵ about A is

~τ3 = ~r3 × ~F3

= (−2̂i− 2ĵ)× (−2̂i− 4ĵ)

= 4k̂ N −m

Example 3.9.2. A mechanic tightens the nut of a bicycle by exerting a force of 100N at

the outer edge of a 0.1 m long spanner. Find the moment of a force that has tightened it.

Solution The given data is

F = 100 N

d = 0.1 m

Let position of the nut be the fixed point O, using (4.1.14), the moment of a force about O
is

τ = 100(0.1)

= 10 N −m

3.10 Couples

The concept of couple arise, when the lines of action of forces acting on a body do not
intersect. Example is, a system of two parallel forces. The magnitude and direction of the
resultant of two such forces can be found by vector addition, but the line of action of the
resultant can not be determined by parallelogram law of vector addition. Couple can be
defined as:
A system of two parallel forces equal in magnitude and opposite in direction is said to form a
couple. If the magnitude of a force is F , then the couple is written as (F,−F ) and is shown
in Fig. 3.50. The plane through the line of action of the forces ~F and −~F is called plane of
the couple and the perpendicular distance between them is called arm of the couple. (See
Fig. 3.51)
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Figure 3.50: Couple of forces

Figure 3.51: Plane and arm of a Couple of forces

3.10.1 Moment of a Couple

Consider a rigid body in 3 space system with O as origin and a couple (~F ,−~F ) is acting
on it. Let ~F acts at A whose position vector is ~r1 relative to O and −~F acts at B whose
position vector is ~r2 relative to O as shown in Fig. 3.52. Then the sum of moments of the
two forces about O is

~τ = ~τ1 + ~τ2

= ~r1 × ~F + ~r2 ×−~F
= (~r1 − ~r2)× ~F

If

~AB = ~r = ~r1 − ~r2

then the sum of moments of the two forces ~F and −~F about O is

~τ = ~r × ~F
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Figure 3.52: Moment of a couple

If d is the perpendicular distance between the forces and θ is an angle at the point of
application of a force (see Fig. 3.52), then the magnitude of this moment is

τ = rF sin θ

= Fd

The moment of a couple is determined by the product of the magnitude of one of the force
of the couple and the length of its arm taken with appropriate sign.

Theorem 3.10.1. The effect of a couple upon a rigid body is unaltered if is replaced by any

other couple of the same moment lying in the same plane.

Proof Consider a rigid body in 3 space system with O as origin and a couple (~F ,−~F )
of arm length d1 is acting on it. Let ~F acts at A and −~F acts at B as shown in Fig. ??.
From A and B draw two arbitrary parallel lines AC and BD with d2 is the distance between
them. Resolve the force Let ~F at A into two components, ~P along AC and ~Q along AB.
Similarly resolve the force −~F at B into two components, −~P along DB and − ~Q along
BA. These components of these forces are as shown in Fig. 3.53.
The forces ~Q and − ~Q acting along the line AB, are in equilibrium and can be removed.
The forces ~P and −~P acting at A and B form a couple. Thus the couple of forces ~P and
−~P and arm length d1 is replaced by another couple of forces ~P and −~P and arm length
d2.
Next we show that moments of the couple ~F and −~F and ~P and −~P are equal. We consider
force ~P acting at A with components, ~P along AC and ~Q along AB. Then by Varignon’s
theorem the moment of ~F about B is equal to the sum of moments of ~P and ~Q about B.

~τ = ~τ1 + ~τ2
~AB × ~F = ~AB × ~P + ~AB × ~Q
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Figure 3.53: Equivalent couples

As B lies on the line of action of the force ~Q hence the moment ~AB × ~Q is zero and we are
left with

~AB × ~F = ~AB × ~P

In magnitude we can write

Fd1 = Pd2

Location of a Couple Let the points of application of forces ~P and −~P be transferred
from A and B to any points C and D in their lines of action. Since the location of the
points A and B and the directions of AC and BD are arbitrary, the location of couple of
forces ~P and −~P in the plane is also arbitrary (see Fig. 3.58).

Figure 3.54: Location of these couples is arbitrary
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3.11 Composition of Couples

n Coplanar couples of moments ~τ1, ~τ2, ... ~τn are equivalent to a single couple lying in the
same plane, whose momentum ~τ is given by

~τ = ~τ1 + ~τ2 + ...+ ~τn

By the theorem of equivalent couples we can replace the couples of moments ~τ1, ~τ2, ... ~τn
by the couples ( ~F1,− ~F1), ( ~F2,− ~F2), . . .( ~Fn,− ~Fn) with a common arm d provided the
magnitudes of the forces ~F1, ~F2, ~F3, . . . ~Fn are given by

F1d = τ1

F2d = τ2

.

.

.

Fnd = τn

The forces ~F1, ~F2, . . . ~Fn act in one straight line and − ~F1,− ~F2, . . .− ~Fn in a parallel line.
Let ~R be the sum of these forces, then

~R = ~F1 + ~F2 + ~F3 + . . .+ ~Fn

and their magnitude is

R = F1 + F2 + F3 + . . .+ Fn

Thus we get a couple of forces (~R,−~R) whose arm is of length d and its magnitude is

τ = Rd

= (F1 + F2 + F3 + . . .+ Fn) d

= F1d+ F2d+ F3d+ . . .+ Fnd

= τ1 + τ2 + ...+ τn

3.12 A Force and a Couple

Theorem 3.12.1. A force ~F acting on a rigid body can be moved to any point O of the

rigid body provided a couple is added, whose moment is equal to the moment of ~F about O.

Proof Let the given force ~F acts at a point A of the rigid body. At the point O of the
body we introduce two forces ~F and −~F without altering the effect of the original force ~F



3.12 A Force and a Couple 117

Figure 3.55: A couple and a force

on the body. The force ~F at A and −~F at O form a couple (~F ,−~F ). Hence the given force
~F at A is equivalent to a force ~F at O together with a couple (~F ,−~F ) whose moment is
equal to the moment about O of the force ~F at A.
Converse of theorem 3.12.1 is as under

Theorem 3.12.2. A single force and a couple acting in the same plane upon a rigid body

are equivalent to a single force acting in a direction parallel to its original direction.

Proof Let the given system consists of a force ~P and a couple ( ~Q,− ~Q). First suppose
that the force ~P is not parallel to force ~Q. The force ~P acts at O, ~Q at A and − ~Q at B.
Shift ~P at A, to calculate the resultant of ~P and ~Q, let it be ~R

Figure 3.56: A force and a couple.
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Figure 3.57: Resultant of P and Q at A.

~R = ~P + ~Q

It acts at A along the line AC. We can move ~R with its components at D as shown in the
Fig. Now the forces ~Q and − ~Q acting along BD balance each other. Therefore the given
system is equivalent to a single force ~P acting at D.

Figure 3.58: Resultant of P and Q at B.
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3.13 Reduction of a System of Coplanar Forces to one Force

and one Couple

Consider the forces ~F1, ~F2, ~F3, . . . ~Fn acting in one plane upon a rigid body at the points
the forces A1, A2, A3, . . .An. Let O be any point coplanar with the forces. According to

Figure 3.59: n forces are acting on a rigid body.

theorem 3.12.1 any force ~Fi acting at Ai is equivalent to a force ~Fi acting at O together
with a couple whose moment τi is equal to the moment of ~Fi about O. Transforming all the
forces to act at O we obtain a system of forces ~F1, ~F2, ~F3, . . . ~Fn acting at O and a system
of couples of moments ~τ1, ~τ2, ... ~τn.
The concurrent forces applied at O can by replaced by their resultant ~R acting at the same

Figure 3.60: A couple and a force.
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point. Similarly , by the theorem of the composition of couples, all the coplanar couples
can be replaced by a single couple of moment τ .
The force ~R and the couple of moment ~τ are given by

~R =
n∑
i=1

~Fi

~τ =

n∑
i=1

~τi
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Exercises

1. Two concurrent and coplanar forces of magnitudes 10 N and 15 N are acting on a
body. Find their resultant if the angle between them is

a) 30◦.

b) 45◦.

c) 60◦.

d) 75◦.

e) 90◦.

f) 180◦.

2. Two concurrent and coplanar forces ~F1 and ~F2 are acting on a body. If ~F1 makes
an angle of 30◦ and ~F2 makes an angle of 40◦ with the resultant of magnitude 75 N .
Find F1 and F2.

3. Consider two forces of equal magnitude are acting on a body. If the forces are acting
at such an angle that their resultant also has same magnitude.

a) Find the angle between the forces.

b) Find the angle between each force and the resultant force.

4. The forces ~F1 = 2̂i, ~F2 = î + ĵ, ~F3 = 2̂i − 4ĵ and ~F4 = 2̂i + ĵ are acting on a body.
Determine their resultant.

5. Two concurrent and coplanar forces are acting on a body. If the magnitude of one force
is double of the other, then their resultant is 160 N . If the direction of larger force is
reversed and the other remained unaltered, then the magnitude of their resultant is
120 N . Determine the magnitude of each force and the angle between them.

6. In example 3.9.1 find moments of all forces about B and C.

7. The forces ~F1 = −î + ĵ, ~F2 = ĵ, ~F3 = −2̂i − 4ĵ and ~F4 = 2̂i are acting at D(−1, 1),
C(1, 2), A(2, 0) and B(0,−2) respectively as shown in the Fig. 3.61. Find

a) moments of all forces about O.

b) sum of moments of all forces about O.

c) moments of all forces about A, B, C and D.

8. A force ~F = 4N î+ 3N ĵ is applied on an object of mass 4 kg at point P (5m, 4m).
If z − axis is a fixed axis in the object find the magnitude and the direction of the
torque.

9. A force ~F = 4N î + 3N ĵ − 2N k̂ is applied on an object of mass 2 kg at point
P (5m, 4m, 2m). Find the torque of the force ~F about A whose position vector
relative to origin O is ~rA = 1m î+ 3m ĵ + 2m k̂.
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Figure 3.61: Moment of a force



Chapter 4

Equilibrium

According to Newtons second law of motion, a body will move with a velocity if it is acted
upon by a force. When a number of concurrent forces acts on a body, it will move in the
direction of the resultant force. However, if another force, which is equal in magnitude of
the resultant but opposite in direction, is applied to a body, the body comes to rest. Then
the sum of all the forces acting on the body is zero and the body is said to be in equilibrium.
Equilibrium is also known as balancing as the forces are balanced .
Equilibrant of a system of forces is a single force, which acts along with the other forces
to keep the body in equilibrium.

4.1 Equilibrium

The external forces acting on the body may be

(a) Concurrent and coplanar forces.

(b) Non-concurrent and coplanar forces.

(c) Concurrent forces in space.

4.1.1 Conditions of Equilibrium

If a system of concurrent and coplanar forces is acting on a body. The body will be in
equilibrium if the following conditions are satisfied.

1. The vector sum of all the external forces that act on the particle/body must be zero.

2. The vector sum of all external torques that act on the body, measured about any
possible point, must also be zero.

123
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First condition of equilibrium:
The vector sum of all the external forces that act on the particle/body must be zero.
According to first condition, a particle is in equilibrium if the resultant of all the forces
acting on it is zero. If ~R is the resultant of n forces ~F1, ~F2, ... ~Fn acting on a body, then
accordingly

~R =
n∑
k=1

~Fk = ~0 (4.1.1)

If RX , RY and RZ are rectangular components of ~R, then (4.1.1) can be written as

〈RX , RY , RZ〉 = 〈0, 0, 0〉 (4.1.2)

or

RX = 0

RY = 0

RZ = 0

are the necessary and sufficient conditions of equilibrium of equilibrium of a particle.
If the acting forces are coplanar, then (4.1.2) reduces to

〈RX , RY 〉 = 〈0, 0〉 (4.1.3)

RX = 0

RY = 0

Next are some theorems regarding the equilibrium of a particle.

Theorem 4.1.1. The Triangle of Forces: If a particle is in equilibrium under the action

of three concurrent and coplanar forces, these forces may be represented in magnitude and

direction (but not in position) by the sides of a triangle, taken in order.

Proof : Let ~P , ~Q and ~R are three concurrent and coplanar forces acting in a body at
O and keep it in equilibrium. By parallelogram law, the resultant of two forces P and Q is
given by the diagonal of parallelogram OADB as shown in Fig 4.1 (b). Since the body is in
equilibrium, this resultant will be equal in magnitude and opposite in direction to ~R. Hence
If a particle is in equilibrium under the action of three concurrent and coplanar forces, these
forces may be represented in magnitude and direction (but not in position) by the sides of
a triangle, taken in order as shown in Fig 4.1 (d).
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Figure 4.1: Triangle of forces

Theorem 4.1.2. The Polygon of Forces: If a particle is in equilibrium under the action

of several forces, these forces may be represented in magnitude and direction (but not in

position) by the sides of a closed polygon, taken in order.

Theorem 4.1.3. Lami’s Theorem: If three coplanar forces acting at a point in a body

and keep it in equilibrium, then magnitude each force is directly proportional to the sine of

the angle between the other two forces.

Proof : Let ~P , ~Q and ~R are three coplanar forces acting in a body at O and keep it in
equilibrium. Let α be the angles between forces ~Q and ~R, β be the angles between forces
~R and ~P and γ be the angles between forces ~P and ~Q. Then by Lami’s theorem:

P

sinα
=

Q

sinβ
=

R

sin γ
(4.1.4)

Next by Law of triangle of forces, these forces may be represented in magnitude and
direction (but not in position) by three sides of a triangle taken in order. We obtain a
triangle of forces OAD as shown in Fig. 4.2. In this triangle
OA = P , AD = Q and DO = R.
Its internal angles are ∠ODA = π − α, ∠AOD = π − β and ∠OAD = π − γ.
Also the forces ~P and ~Q are coplanar, completing the parallelogram, its diagonal will give
the resultant of ~P and ~Q.
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Figure 4.2: Lami’s theorem

Next by law of sines to triangle OAD, we can write

QA

sin (π − α)
=

AD

sin (π − β)
=

DO

sin (π − γ)

P

sinα
=

Q

sinβ
=

R

sin γ

Example 4.1.1. Three forces ~F1, ~F2 and ~F3 keeps a body in equilibrium. ~F1 acts towards

north, ~F2 towards east-south and ~F3 towards south-west. If the magnitude of ~F1 is 8 N ,

find the magnitude of other two forces by using

(a) Equilibrium conditions.

(b) Law of triangle of force.

(c) Lami’s theorem.

Solution
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(a) Magnitude of other two forces by using equilibrium conditions.

Three forces acting on a particle are shown in Fig. 4.3 (a). The horizontal components of

Figure 4.3: Triangle of forces

these forces are

F1X = 0

F2X = F2 cos
(
−π

4

)
=

1√
2
F2

F3X = F3 cos

(
5π

4

)
= − 1√

2
F3

The vertical components of these forces are

F1Y = F1 = 8 N

F2Y = F2Y sin
(
−π

4

)
= − 1√

2
F2

F3Y = F3Y sin

(
5π

4

)
= − 1√

2
F3

Since particle is in equilibrium under the action of these forces, then by (4.1.3), we have

1√
2
F2 −

1√
2
F3 = 0 (4.1.5)

8− 1√
2
F2 −

1√
2
F3 = 0 (4.1.6)
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(4.1.5) implies that

F2 = F3 (4.1.7)

Using (4.1.7) in (4.1.6), we have

F2 = F3 = 4
√

2 N (4.1.8)

(4.1.8) gives the other two forces which are equal in magnitude.

(b) Magnitude of other two forces by using law of triangle of force.

Since the particle is in equilibrium under the action of three concurrent and coplanar forces,
so these forces can be represented in magnitude and direction (but not in position) by three
sides of a triangle, taken in order. This triangle of forces is shown in Fig. 4.4. In triangle

Figure 4.4: Triangle of forces

OAB

~OA = ~F1

~BO = ~F2

~AB = ~F3

and

∠OAB = 45◦

∠AOB = 45◦

∠ABO = 90◦

Since two angles are equal, each is 45◦. Their corresponding sides will also be equal i.e

BO = AB

F2 = F3
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From right triangle OAB, we can write

F1 =
√
F 2
2 + F 2

3

8 =
√

2F2

or

F2 = F3 = 4
√

2 N

(c) Magnitude of other two forces by using Lami’s theorem.

The force F1 is along vertical and F2, F3 are making angles 45◦ with the horizontal, so the
angles between these forces are (see Fig. 4.5 ):

Figure 4.5: Lami’s theorem

Angle between F1 and F2 = 135◦

Angle between F1 and F3 = 135◦

Angle between F2 and F3 = 90◦

Since particle is in equilibrium under the action of these forces, then by (4.1.4), we have

F1

sin 90◦
=

F2

sin 135◦
=

F3

sin 135◦

8

1
=

F2
1√
2

=
F3
1√
2

(4.1.9)

From (4.1.9), we can write

F2 = F3 = 4
√

2 N
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Figure 4.6: Equilibrium under three forces

Example 4.1.2. A particle is in equilibrium under the action of three concurrent and

coplanar forces ~P , ~Q and ~R. If ~P acts along horizontal towards right, the angle between ~P

and ~Q is double of the angle between ~P and ~R as shown in Fig. 4.6, then prove that

R2 = Q (Q− P )

by using

(a) Equilibrium conditions.

(b) Law of triangle of force.

(c) Lami’s theorem.

Solution

(a) Equilibrium conditions.

Take cartesian coordinate system, and the origin as the point of application of the forces.
Let the force ~P acts along positive x axis. Let the angle between ~P and ~R is θ, then the
angle between ~P and ~Q will be −2θ as shown in Fig. 4.11. We can say that ~P makes zero
angle with x axis, ~R makes θ angle with x axis and ~Q makes 2θ angle with x axis as shown
in Fig. 4.11. The horizontal components of these forces are

PX = P

RX = R cos θ

QX = Q cos (2π − 2θ) = Q cos 2θ
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Figure 4.7: Equilibrium under three forces

The vertical components of these forces are

PY = 0

RY = R sin θ

QY = Q sin (2π − 2θ) = −Q sin 2θ

Since particle is in equilibrium under the action of these forces, then by (4.1.3), we have

P +Q cos 2θ +R cos θ = 0 (4.1.10)

R sin θ −Q sin 2θ = 0 (4.1.11)

Since sin 2θ = 2 sin θ cos θ, then (4.1.11) can be written as

2Q sin θ cos θ = R sin θ (4.1.12)

Also θ 6= 0 i.e sin θ 6= 0, then (4.1.12) can be written as

cos θ =
R

2Q
(4.1.13)

Since cos 2θ = 2 cos2 θ − 1, then (4.1.10) can be written as

P +Q
(
2 cos2 θ − 1

)
+R cos θ = 0 (4.1.14)

Using (4.1.13) in (4.1.14), we have

P +Q

(
2

(
R

2Q

)2

− 1

)
+R

R

2Q
= 0

After simplification we get

R2 = Q (Q− P )
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(b) Law of triangle of force.

Since the particle is in equilibrium under the action of three concurrent and coplanar forces,
so these forces can be represented in magnitude and direction (but not in position) by three
sides of a triangle, taken in order. This triangle of forces is shown in Fig. 4.8. In triangle

Figure 4.8: Triangle of forces

OAB, the forces are not in order. One force seems to be the resultant of other two forces.

(c) Lami’s theorem.

Take cartesian coordinate system, and the origin as the point of application of the forces.
Let the force ~P acts along positive x axis. Let the angle between ~P and ~R is θ, then the
angle between ~P and ~Q is θ. The angle between ~Q and ~R is 2π − 3θ. Since particle is in

Figure 4.9: Lami’s theorem
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equilibrium under the action of these forces, then by (4.1.4), we have

P

sin (2π − 3θ)
=

Q

sin θ
=

R

sin 2θ

P

sin (−3θ)
=

Q

sin θ
=

R

sin 2θ

− P

sin 3θ
=

Q

sin θ
=

R

sin 2θ
(4.1.15)

From (4.1.15), we can write

− P

sin 3θ
=

Q

sin θ

which implies that

P sin θ +Q sin 3θ = 0 (4.1.16)

Also from (4.1.15), we can write

Q

sin θ
=

R

sin 2θ

R sin θ −Q sin 2θ = 0 (4.1.17)

which is (4.1.12), then we have (4.1.13), see (a).
Next use trigonometric relation sin 3θ = 3 sin θ − 4 sin3 θ in (4.1.16)

P sin θ +Q
(
3 sin θ − 4 sin3 θ

)
= 0 (4.1.18)

Since sin θ 6= 0, then (4.1.18) can be written as

P +Q
(
3− 4 sin2 θ

)
= 0

P +Q
(
3− 4 + 4 cos2 θ

)
= 0

P +Q
(
−1 + 4 cos2 θ

)
= 0

Next using (4.1.13) in (4.1.19) will give the desired result.

Example 4.1.3. A particle is in equilibrium under the action of three concurrent and

coplanar forces ~P , ~Q and ~R as shown in Fig. 4.10, then show that

R2 = Q (Q+ P )

by using
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Figure 4.10: Equilibrium under three forces

(a) Equilibrium conditions.

(b) Law of triangle of force.

(c) Lami’s theorem.

Solution

(a) Equilibrium conditions.

Take cartesian coordinate system, and the origin as the point of application of the forces.
Let the force ~P acts along positive x axis. Let the angle between ~P and ~R is θ, then the
angle between ~P and ~Q will be −2θ as shown in Fig. 4.11. We can say that ~P makes zero
angle with x axis, ~R makes θ angle with x axis and ~Q makes 2θ angle with x axis as shown
in Fig. 4.11. The horizontal components of these forces are

Figure 4.11: Equilibrium under three forces
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PX = −P
RX = R cos θ

QX = Q cos (2π − 2θ) = Q cos 2θ

The vertical components of these forces are

PY = 0

RY = R sin θ

QY = Q sin (2π − 2θ) = −Q sin 2θ

Since particle is in equilibrium under the action of these forces, then by (4.1.3), we have

−P +Q cos 2θ +R cos θ = 0 (4.1.19)

R sin θ −Q sin 2θ = 0 (4.1.20)

Since sin 2θ = 2 sin θ cos θ, then (4.1.20) can be written as

2Q sin θ cos θ = R sin θ (4.1.21)

Also θ 6= 0 i.e sin θ 6= 0, then (4.1.21) can be written as

cos θ =
R

2Q
(4.1.22)

Since cos 2θ = 2 cos2 θ − 1, then (4.1.19) can be written as

−P +Q
(
2 cos2 θ − 1

)
+R cos θ = 0 (4.1.23)

Using (4.1.22) in (4.1.23), we have

−P +Q

(
2

(
R

2Q

)2

− 1

)
+R

R

2Q
= 0

After simplification we get

R2 = Q (Q+ P )

(b) Law of triangle of force.

Since the particle is in equilibrium under the action of three concurrent and coplanar forces,
so these forces can be represented in magnitude and direction (but not in position) by three
sides of a triangle, taken in order. This triangle of forces is shown in Fig. 4.12.
Apply law of sine’s on triangle OAC

P

sin (π − 3θ)
=

Q

sin θ
=

R

sin 2θ

P

sin 3θ
=

Q

sin θ
=

R

sin 2θ
(4.1.24)



136 4 Equilibrium

Figure 4.12: Triangles of forces

From (4.1.24), we can write

P

sin 3θ
=

Q

sin θ

which implies that

P sin θ −Q sin 3θ = 0 (4.1.25)

Also from (4.1.24), we can write

Q

sin θ
=

R

sin 2θ

R sin θ −Q sin 2θ = 0

which gives (4.1.21), then we have (4.1.22), see (a).
Next use trigonometric relation sin 3θ = 3 sin θ − 4 sin3 θ in (4.1.25).

P sin θ −Q
(
3 sin θ − 4 sin3 θ

)
= 0 (4.1.26)

Since sin θ 6= 0, then (4.1.26) can be written as

P −Q
(
3− 4 sin2 θ

)
= 0

P −Q
(
3− 4 + 4 cos2 θ

)
= 0

P −Q
(
−1 + 4 cos2 θ

)
= 0 (4.1.27)

Next using (4.1.22) in (4.1.27) will give the desired result.

(c) Lami’s theorem.
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Figure 4.13: Lami’s theorem

Take cartesian coordinate system, and the origin as the point of application of the forces.
Let the force ~P acts along negative x axis. Let the angle between ~P and ~R is π − θ, then
the angle between ~P and ~Q is π − θ. The angle between ~Q and ~R is 3θ as shown in Fig.
4.13. Since particle is in equilibrium under the action of these forces, then by (4.1.4), we
have

P

sin 3θ
=

Q

sin (π − θ)
=

R

sin (π − 2θ)

P

sin 3θ
=

Q

sin θ
=

R

sin 2θ
P

sin 3θ
=

Q

sin θ
=

R

sin 2θ

which is (4.1.24), next we can use (b) to obtain the desire result.

Example 4.1.4. In example 4.1.3, if θ = 30◦ and P = 10 N , then find the other two forces.

Solution Put θ = 30◦ and P = 10 N in (4.1.24)

10

sin 3 (30◦)
=

Q

sin 30◦
=

R

sin 2 (30◦)

10

sin 90◦
=

Q

sin 30◦
=

R

sin 60◦

10 = 2Q = 1.1547R

and finally we have

Q = 5 N

R = 8.66 N

Note: Triangle OAC is right angle triangle. Then by Pythagoras theorem we have

(10)2 = (5)2 + (8.66)2
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4.2 Moment of a Force and Equilibrium

A body is balanced if the sum of clockwise moments acting on the body is equal to the sum
of anticlockwise moments acting on it.

Example 4.2.1. A beam of length 2 meter, is supported at its middle point O as shown in

Fig. 4.14. A body of weight 50 N is suspended at point A, 80 cm away from O. To the

Figure 4.14: Balancing weights

other side, at B, another block is suspended 50 cm away from O to balance the rod. Find

the weight of the second block.

Solution The given problem can be solved by considering clockwise and anticlockwise
moments acting on the body with O as the fixed point. The given data is

W1 = 50 N

OA = d1 = 80 cm = 0.8 m

OB = d2 = 50 cm = 0.5 m

see Fig. 4.15, and we have to find W2 Let τ1 be the anticlockwise moment of W1 about O

Figure 4.15: Balancing weights
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and τ2 be the clockwise moment of W2 about O. Then

τ1 = 50(0.8) = 40 N −m
τ2 = W2(0.5) N −m

By principle of moments, we can write

τ1 = τ2

40 = 0.5W2

or

W2 = 80 N

Thus, weight of the other block is 80 N
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Exercises

1. Three forces ~F1, ~F2 and ~F3 keeps a body in equilibrium. ~F1 acts towards south, ~F2

towards east-north and ~F3 towards north-west. If the magnitude of ~F1 is 10 N , find
the magnitude of other two forces by using

(a) Equilibrium conditions.

(b) Law of triangle of force.

(c) Lami’s theorem.

2. The three forces in the diagram are in equilibrium. Find ~F and θ? by using

Figure 4.16: Three forces

(a) Equilibrium conditions.

(b) Law of triangle of force.

(c) Lami’s theorem.

3. A beam of length 3 meter, is supported at its middle point O as shown in Fig. 4.17.
A body of weight 40 N is suspended at point A, 1.5 m away from O. To the other

Figure 4.17: Balancing weights

side, at B, another block is suspended 1 m away from O to balance the rod. Find the
weight of the second block.



Chapter 5

Friction

5.1 Friction

When a body moves or tends to move upon another body, an opposing force (opposite to
the direction of motion) appears between their surfaces, known as the force of friction. Its
line of action is tangential to the contacting surfaces. The magnitude of this force depends
on the roughness of surfaces.
Friction is a part of our daily life, may be useful or not. It appears in almost every movement.
We can walk on the ground because of friction. Friction is useful in power transmission by
belts. It is useful in appliances like brakes, bolts, screw jacks, etc. It is undesirable in
bearing and moving machine parts where it results in loss of energy and, thereby, reduces
efficiency of the machine.
Smooth Contact
If the force of friction between two bodies in contact with each other is zero, the contact is
said to be smooth.
Rough Contact
If the force of friction between two bodies in contact with each other is not zero, the contact
is said to be rough.
In nature no perfectly smooth body exist. Each body is capable of exerting some force of
friction, although it may be quite small as in the case of glass, steel etc.

5.1.1 Types of Friction

There are two types of friction:

1. Dry friction: When the surfaces in contact are un-lubricated surfaces or dry surfaces,
the friction is dry friction.

2. Fluid friction: When the surfaces in contact are lubricated surfaces, the friction is
fluid friction. In this case there is no direct contact between the surfaces.

141
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The dry friction can be further subdivided based on how the two surfaces are at rest or
moving relative to each other.

a) Static friction

The friction that exists between two surfaces that are not moving relative to each other.

b) Kinetic friction

The friction that exists between two surfaces that are moving relative to each other.
In any situation, the static friction is greater than the kinetic friction.

5.1.2 Static and Kinetic Friction

Consider a block of mass m rests on a plane surface as shown in Fig. 5.1. The weight ~W acts
downward and is balanced by an upward normal reaction ~R offered by the surface. Next
a pull force ~F is applied to the block such that it tends to move. The motion is opposed
by a frictional force ~Fr, equal and opposite to ~F . The resultant of normal reaction and the
applied force is called resultant reaction denoted be ~S, making an angle λ with the normal
reaction. If we increase the pull or attractive force, the fractional force will also increase

Figure 5.1: Friction

and hence the resultant reaction and inclination will increase. Thus, with increase of the
pull force, the frictional force, the resultant reaction and its inclination will increase, till the
body tends to move. The frictional resistance offered upto that instant is known as static
friction.
When the body is just on the point of sliding, but actual sliding has not started, the ultimate
value of static friction is called limiting friction or maximum static friction. The condition,
when all the forces are just in equilibrium and the body has a tendency to move, is called
limiting equilibrium position. When a body moves relative to another body, the resisting
force between them is called kinetic or sliding friction.
Thus four possible cases arise when two rough bodies are in contact with each other:
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1. No force of friction is acting between them.

2. The force of friction is acting but neither body is on the point of sliding along the
other. The friction in this case is non-limiting.

3. One of the bodies is on the point of sliding along the other. The friction in this case
is limiting.

4. One body slide along the other. The force of friction in such a case which opposes
motion is the kinetic friction.

Table 5.1: Coefficients of Static and Kinetic friction between different surfaces.

Surfaces µs µk

steel on steel 0.74 0.57
aluminum on steel 0.61 0.47
copper on steel 0.53 0.36
rubber on concrete 1.0 0.8
wood on wood 0.25− 0.5 0.2

depends on the type of wood
glass on glass 0.94 0.4
waxed wood on wet snow 0.14 0.1
waxed wood on dry snow − 0.04
metal on metal (lubricated) 0.15 0.06
ice on ice 0.14 0.03
teflon on teflon 0.04 0.04
synovial joints in humans 0.01 0.003

5.1.3 Laws of Dry Friction

The force of friction is self-adjusting force, obeying some definite laws. These laws are
stated as below.

1. The direction of friction is opposite to the direction in which the body moves or tends
to move.

2. The magnitude of friction upto a certain extent, is equal to the force, tending to
produce motion.

3. The frictional force depends upon the nature of the surfaces in contact.

4. The amount of friction is independent of the areas and shape of the surfaces in contact
provided the normal pressure remains unaltered.



144 5 Friction

5. For moderate speeds, frictional force is independent of the relative velocities of the
bodies in contact.

6. Only a certain amount of friction can be called into play and in each particular case it
can not exceed a certain limit. The maximum amount of friction which can be called
into play is called limiting friction.

7. The magnitude of the limiting friction (for given surfaces) bears a constant ratio µ to
the normal pressure between the surfaces

The magnitude of limiting friction is denoted by Fr and the normal reaction by R. Then
the coefficient of friction is

µ =
Fr
R

(5.1.1)

or

Fr = µR

Limiting Equilibrium Equilibrium under the influence of limiting friction is called limiting
equilibrium.

5.1.4 Angle of Friction

If Fr is the magnitude of limiting fraction and R be the normal reaction as shown in the
Fig. 5.2. In case of limiting friction the angle between the resultant reaction and the normal
reaction is called the angle of friction and is denoted by φ. From Fig. 5.2, we can write

Figure 5.2: Angle of friction

R = S cosφ

Fr = S sinφ
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Using above results, (5.1.1) can be written as

µ =
Fr
R

=
S sinφ

S cosφ

= tanφ (5.1.2)

(5.1.2) gives the relation between the angle of friction and the coefficient of friction. Its
inverse is

φ = tan−1 µ (5.1.3)

gives the angle of friction.
The magnitude of the angle of friction is usually denoted by λ so that λ = tan−1 µ or
µ = tanλ. The resultant reaction can make any angle with the normal with magnitude λ,
but cannot make a greater angle, because Fr cannot exceed µR.

5.1.5 Cone of Friction

It is defined as the right circular cone with vertex at the point of contact of the two surfaces,
its axis is in the direction of normal reaction N and its semi vertical angle is equal to angle
of friction. (see Fig. 5.3)
For any real contact of the bodies ~S lies within the cone and in case of limiting friction ~S
lies on a generator of this cone.

5.1.6 Role of Friction (Benefits)

Friction plays an important role in our daily life. Some of them are as following:

• Walking: When a person walks, he pushes the ground backward with his feet to
cause a forward reaction. If there were no friction our feet will slip and we would not
be able to walk.

• Rolling Motion: All rolling motion is caused by static friction.
The force of friction encompasses the entire operation of a car and makes the tires
possible to turn on the road. Tires are designed with a degree of tread that helps
maintain a high degree of friction to allow the tire to grip tightly to the road and keep
control. If there was no tread, there would be no friction and the car would not be
able to stop at the appropriate time.

• Using computers mouse pad: Friction occurs between the mouse and the desktop
or mouse pad. Friction is required to move the mouse and have it respond appropri-
ately. If you were to use a different kind of material for a mouse pad, such as a piece
of sand paper, the mouse is harder to move. The piece of sand paper has more friction
than the mouse pad.
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Figure 5.3: Cone of friction

If we lived in a world with no friction, things may be a bit more chaotic. Automobiles,
airplanes and other vehicles would have a tough time trying to slow down or stop because
they would be trying to brake on a frictionless surface. This would be like trying to stop
on an ice skating rink. There would be nothing to grip to the surface.

5.2 Condition of Equilibrium of a Particle on a Rough In-

clined Plane

Consider a rough inclined plane making an angle α with the horizontal. Let a block of mass
m is resting on it. Various forces acting on the mass are shown in the Fig. 5.4. If the angle
of inclination is slowly increased, a stage will come when the block will tend to slide down.
This angle of the plane with horizontal plane is known as angle of repose . For satisfying
the conditions of limiting equilibrium and resolving the forces along and perpendicular to
the plane. The forces along the plane are

µR−W sinα = 0 (5.2.1)
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Figure 5.4: Angle of friction

And the forces perpendicular to the plane are

R−W cosα = 0

or

R = W cosα (5.2.2)

Using (5.2.2), (5.2.1) can be written as

µW cosα = W sinα

or

µ =
sinα

cosα
= tanα (5.2.3)

Using (5.1.2), (5.2.3) can be written as

tanφ = tanα

φ = α (5.2.4)

(5.2.4) gives the condition for limiting equilibrium of a body on a rough inclined plane.

5.3 Least force required to drag a body on a rough plane

In this section we will find the least force required to drag a body on a rough horizontal
plane and inclined plane. First consider horizontal plane.
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5.3.1 Least Force Required to Drag a Body on a Rough Horizontal Plane

Consider a block of mass m is placed on a horizontal rough surface as shown in Fig. 5.5.
A tractive force F is applied at an angle θ with the horizontal such that the block just
tends to move. This force will have its components Fx = F cos θ along and Fy = F sin θ
perpendicular to the plane. Hence, at the limiting equilibrium, the forces acting on the

Figure 5.5: Friction

mass are:

1. The weight W acts downward and is balanced by a sum of vertical component of
tractive force and an upward normal reaction R offered by the surface.

R+ F sin θ = W (5.3.1)

2. The horizontal component of tractive force is balanced by the force of friction Fr.

F cos θ = Fr

= µR (5.3.2)

Using (5.3.1), (5.3.2) can be written as

F cos θ = µ (W − F sin θ) (5.3.3)

Using (5.1.2), (5.3.3) can be written as

F cos θ = tanφ (W − F sin θ)

=
sinφ

cosφ
(W − F sin θ)

or

F (cos θ cosφ+ sin θ sinφ) = W sinφ
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Hence the tractive force F can be written as

F =
W sinφ

cos (θ − φ)
(5.3.4)

The tractive force F will be least, if the denominator cos (θ − φ) must be maximum and it
will be so if

cos (θ − φ) = 1

then

(θ − φ) = 0

or

θ = φ (5.3.5)

Hence, the force F will be the least if angle of its inclination with the horizontal θ is equal
to the angle of friction φ. In this case the magnitude of the least tractive force is

F = W sinφ (5.3.6)

5.3.2 Least Force Required to Drag a Body on a Rough Inclined Plane

Here we consider two cases

a) The body drags up the inclined plane.

b) The body drags down the inclined plane.

a) The body drags up the inclined plane.

Consider a block of mass m is placed on an inclined rough surface as shown in Fig. 5.6. A
tractive force F is applied at an angle θ with the plane such that the block just tends to
move up. This force will have its components F cos θ along and F sin θ perpendicular to the
plane. Also the weight W has components W sinα along and W cosα perpendicular to the
plane. Hence, at the limiting equilibrium, the forces acting on the mass and perpendicular
to the plane are:

1. The weight component W cosα is balanced by a sum of component of force F sin θ
and a normal reaction R offered by the surface.

R+ F sin θ = W cosα

or

R = W cosα− F sin θ (5.3.7)
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Figure 5.6: Friction

2. The component of force F cos θ is balanced by a sum of the force of friction Fr and
weight component W sinα.

F cos θ = Fr +W sinα

= µR+W sinα (5.3.8)

Using (5.3.7), (5.3.8) can be written as

F cos θ = µ (W cosα− F sin θ) +W sinα (5.3.9)

Using (5.1.2), (5.3.9) can be written as

F cos θ = tanφ (W cosα− F sin θ) +W sinα

=
sinφ

cosφ
(W cosα− F sin θ) +W sinα

or

F (cos θ cosφ+ sin θ sinφ) = W (cosα sinφ+ sinα cosφ)

Hence the tractive force F can be written as

F =
W sin (θ + φ)

cos (θ − φ)
(5.3.10)

The tractive force F will be least, if the denominator cos (θ − φ) must be maximum and it
will be so if

cos (θ − φ) = 1

then

(θ − φ) = 0
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or

θ = φ

Hence, the force F will be the least if angle of its inclination with the horizontal θ is equal
to the angle of friction φ. In this case the magnitude of the least tractive force is

F = W sin (θ + φ) (5.3.11)

b) The body drags down the inclined plane.

Consider a block of mass m is placed on an inclined rough surface as shown in Fig. 5.7. A
tractive force F is applied at an angle θ with the plane such that the block just tends to move
down. This force will have its components F cos θ along and F sin θ perpendicular to the
plane. Also the weight W has components W sinα along and W cosα perpendicular to the
plane. Hence, at the limiting equilibrium, the forces acting on the mass and perpendicular

Figure 5.7: Friction

to the plane are:

1. The weight component W cosα is balanced by a sum of component of force F sin θ
and a normal reaction R offered by the surface.

R+ F sin θ = W cosα (5.3.12)

2. The component of force F cos θ is balanced by a sum of the force of friction Fr and
weight component W sinα.

F cos θ +W sinα = Fr

= µR+W sinα (5.3.13)
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Using (5.3.12), (5.3.13) can be written as

F cos θ = µ (W cosα− F sin θ)−W sinα (5.3.14)

Using (5.1.2), (5.3.14) can be written as

F cos θ = tanφ (W cosα− F sin θ)−W sinα

=
sinφ

cosφ
(W cosα− F sin θ)−W sinα

or

F (cos θ cosφ+ sin θ sinφ) = W (cosα sinφ+ sinα cosφ)

Hence the tractive force F can be written as

F =
W sin (θ − φ)

cos (θ − φ)
(5.3.15)

= W tan (θ − φ)

This means that the force F can be applied for φ < θ, and for θ < φ body will move without
applying force F .
Hence for φ < θ, the tractive force F will be least, if in (5.3.15), the denominator cos (θ − φ)
must be maximum and it will be so if

cos (θ − φ) = 1

then

(θ − φ) = 0

or

θ = φ

Hence, the force F will be the least if angle of its inclination with the horizontal θ is equal
to the angle of friction φ. In this case the magnitude of the least tractive force is

F = W sin (θ − φ) (5.3.16)

Example 5.3.1. Consider a block of weight 40N rests on a rough horizontal plane and can

just be moved by a force of 10N acting horizontally. Find the coefficient and the angle of

friction.
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Figure 5.8: Friction

Solution Various forces acting on the block are shown in Fig. 5.8.
At limiting equilibrium, the forces acting perpendicular to the plane are the weight W

balanced by the normal reaction R offered by the surface.

R = W

= 40N (5.3.17)

The forces acting along the plane are the pull force F balanced by the force of friction Fr.

F = Fr

10N = µR (5.3.18)

Using (5.3.17) in (5.3.18), the coefficient of friction is

µ =
10

40
= 0.25 (5.3.19)

Using (5.1.3), the angle of friction is

φ = tan−1 µ = tan−1(0.25)

= 14.03◦ (5.3.20)

(5.3.20) gives the angle of friction.

Example 5.3.2. Consider a block of mass 3kg rests on a floor (rough horizontal plane) and

can just be moved by a force of 12N acting at an upward angle θ with the horizontal. The

coefficient of static friction between the block and floor is 0.4. Find the least force required

to drag a body on the floor. Also find its inclination with the horizontal.
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Solution The given data is

m = 3kg

F = 12N

µ = 0.4

The weight of the body is W = 29.4N
Various forces acting on the block are shown in Fig. 10.3.
Using (5.1.3), the angle of friction is

Figure 5.9: Friction

φ = tan−1 µ = tan−1(0.4)

= 21.8◦ = 22◦ (5.3.21)

A the limiting equilibrium, considering (5.3.5), the angle of least force is

θ = φ = 22◦

Finally, using (5.3.6), the magnitude of the least tractive force is

F = W sinφ

= 29.4 sin(22)

= 1.611N
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Exercises

1. A 10kg piece of wood is placed on top of another piece of wood. There is 30N of
maximum static friction measured between them. Determine the coefficient of static
friction and the angle of friction between the two pieces of wood.

2. A rod, 4ft. long, rests on a rough floor against the smooth edge of a table of height
3ft. If the rod is on the point of slipping when inclined at an angle of 60◦ to the
horizontal. Find the coefficient and the angle of friction.

3. A uniform ladder of length 30feet, rests against a vertical wall, making an angle of
45◦ with the horizontal. The coefficient of friction between the ladder and the wall is
0.4 and the coefficient of friction between the ladder and the ground is 0.5. If a man,
whose weight is equal to that of the ladder, ascends the ladder, where will he be when
the ladder slips?
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Chapter 6

Linear Momentum, Impulse and
Collision

There are phenomena in which interaction between bodies is so fast that it is difficult to
measure the forces that are produced between them or the time that the interaction lasts.
For example, how long does the collision between two billiard balls last for? What force
does one ball apply on the other? These questions are, no doubt, difficult to answer. In
these cases, the notion of linear momentum and impulse, in addition to the conditions under
which linear momentum is conserved, will allow us to make predictions of the speed and
direction of the movement after the interaction. First consider some information about
types of system.
Isolated system: No matter or energy is allowed to enter or leave in this system.
Closed system: A system in which no matter is allowed to enter or leave but energy can
enter or leave is called closed system.
Open system: In this system energy and matter can enter or leave.

6.1 Linear Momentum

The momentum measure provides a sense of how difficult or easy it will be to change the
motion of a particle. Assume a locomotive has a large mass m and a very small velocity.
Despite the slow motion, it makes intuitive sense that it would be very difficult to stop the
motion of this large object. The linear momentum ~p of the locomotive is large due to the
large mass. Similarly, consider a bullet with a small mass moving with a very high velocity.
Again, it makes intuitive sense that it would be difficult to deflect the motion of the bullet
once it has been fired. In this case the linear momentum of the bullet is large not because
of its mass, but because of its very large inertial velocity. We can say momentum as the
quality of motion.
For a particle of mass m moving with velocity ~v, then the linear momentum or simply

157
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momentum is:

~p = m~v

It is a vector quantity. Its unit in SI is kg.m/s or N.s.

6.1.1 Linear Momentum and Newtons Second Law of Motion

Newton expressed his second law of motion in terms of momentum as:
The time rate of change of the momentum of a particle is equal to the net force acting on
the particle and is in the direction of the force. Mathematically

~F (t) =
d

dt
~p(t)

If the mass is not time-dependent, we have

~F (t) = m
d

dt
~v(t) = m

d2

dt2
~r(t)

The velocity is the time derivative of position vector

~v = ~̇r =
d

dt
~r

and acceleration is the two times derivative of position vector

~a = r̈ =
d2

dt2
~r

Then Newton’s second law of motion is

~F = ~̇p = m~̇v = m~̈r

= m~a

Thus Newton’s second law of motion can also be stated as the force acting on a particle is
directly proportional to the acceleration produced, considering m as a constant.
If a particle of constant mass m has a velocity changed from ~v1 to ~v2 in a time t by a force
~F acting then the acceleration ~a is

~a =
~v2 − ~v1

t

Then the force is

~F = m
~v2 − ~v1

t

=
m~v2 −m~v1

t
(6.1.1)
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Example 6.1.1. A car of mass 1000 kg has changed its speed from 15 m/s to 12 m/s in

2 s. How large was the retarding force?

Solution:
The given data is

m = 1000 kg

v1 = 15 m/s

v2 = 12 m/s

t = 2 s

A force is retarding force if its magnitude has negative sign. Using (6.1.1), the force acting
on the car is

~F = m
~v2 − ~v1

t

= 1000
12− 15

2
= −1500 N

The negative sign indicates that the acting force is retarding force.

Corollary 6.1.1. If no force is acting on the particle, then the linear momentum is constant.

Proof : According to Newton’s second law of motion, the force acting on a particle is

~F = ~̇p

If ~F = 0, then

~̇p = ~O

or

~p = ~C (constant)

Hence the linear momentum is constant.

6.1.2 Law of Conservation of Linear Momentum

Consider an isolated system of two particles with masses m1 and m2. At an instant of
time the particles are moving with velocities ~v1 and ~v2. Since the system is isolated, then
by Newton’s third law of motion, the action and reaction are the only forces coming into
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action, having same magnitude but opposite direction. If ~F12 be the force exerted by m1

on m2, then If ~F21 be the force exerted by m2 on m1, and we have

~F12 = −~F12

or

~F12 + ~F12 = ~0

Over some time interval, the two masses will accelerate. Then, following Newton’s second
law of motion ~F = m~a, we can write

m1~a1 +m2~a2 = ~0

Since acceleration is the time derivative of velocity, so above relation can be written as

m1
d

dt
~v1 +m2

d

dt
~v2 = ~0

If the masses m1 and m2 are constants, they can be brought into the derivatives, that is

d

dt
(m1~v1) +

d

dt
(m2~v2) = ~0

d

dt
(m1~v1 +m2~v2) = ~0

or

(m1~v1 +m2~v2) = ~C (constant) (6.1.2)

Hence the linear momentum is conserved.

6.2 Impulse of a Force

The impulse I of a constant force F acting for a time t is defined as the product of the force
and time. (i.e)

~I = ~F · t (6.2.1)

The impulsive of a force acting on a particle in any interval of time (t1, t2) is defined to be
the momentum changed produced.

~I = ~pf − ~pi = ∆~p

From Newton’s second law of motion, we have

~F =
d~p

dt
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Figure 6.1: Impulse of a force

or

d~p = ~Fdt (6.2.2)

Integrating Eq. (6.2.2) from a time t1 to t2, we have∫ t2

t1

d~p =

∫ t2

t1

~Fdt

~p2 − ~p1 =

∫ t2

t1

~Fdt

∆~p =

∫ t2

t1

~Fdt

~I =

∫ t2

t1

~Fdt (6.2.3)

Thus the impulse of the force ~F is the time integral of the force.
Another way to show this is as follow:
If a particle of constant mass m has a velocity changed from ~v1 to ~v2 in a time t by a force
~F acting then the impulse ~I is

~I = ∆~p = ~p2 − ~p1
= m~v2 −m~v1

If m is constant and ~v2 − ~v1 can be written as the combination of differentiation and
integration.

= m

∫ t2

t1

d~v

dt
dt =

∫ t2

t1

m~adt

=

∫ t2

t1

~Fdt
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Figure 6.2: Impulse of a force

Thus the impulse of the force ~F is the time integral of the force. Also we can say that it
is the area between the curve and t axis.

6.2.1 Linear Momentum and Kinetic Energy

The kinetic energy of a particle of mass m moving with speed v is

K =
1

2
mv2

=
m2v2

2m

=
p2

2m
(6.2.4)

(6.2.4) is the relation between kinetic energy, momentum and mass.

Example 6.2.1. The magnitude of an impulse I changes the speed of a particle of mass m

from v1 to v2 in a time t by a force F . Show that the kinetic energy gained is 1
2I(v2 + v1)

Solution: Since

I = mv2 −mv1

The kinetic energy gained is

K =
1

2
m(v22 − v21)

=
1

2
m(v2 − v1)(v2 + v1)

=
1

2
I(v2 + v1)
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6.3 Collision and Impact

An important area of application of the conservation laws is the study of the collisions of
various physical bodies. In many cases, it is hard to assess how exactly the colliding bodies
interact with each other. However, in a closed system, the conservation laws often allow one
to obtain the information about many important properties of the collision without going
into the complicated details of the collision dynamics. The collision is of two types.

6.3.1 Elastic Collision

A collision between particles in which the total kinetic energy of the particles remains
unchanged is called elastic collision.

6.3.2 Inelastic Collision

A collision where the total kinetic energy of the particles is not conserved is called inelastic
collision. One or more of the particles may also be deformed after the collision.

6.4 Impulsive Forces

An impulsive force is a very great force acting for a very short time on a body, so that the
change in the position of the body during the time the force acts on it may be neglected.
Consider the relation (6.2.3)

~I = ∆~p =

∫ t2

t1

~Fdt

it follows that the net external force is responsible for change in momentum. When a
collision (or crash) occur, the external force on the body has large magnitude, and suddenly
changes the momentum of the body.
In many situation we do not know how the force varies with time but we do know the
average magnitude ~Favg of the force and the duration ∆t(= t2 − t1) of the collision. Thus
we can write the magnitude of the impulse as

~I = ~Favg∆t (6.4.1)

When the force ~F grows very large (F →∞) during very small interval of time (t2 − t1 =
∆t→ 0), then

~I = lim
F→∞

∫ t2

t1

~Fdt = l (finite)

Then such forces are called impulsive forces. Their measurement as force in impracticable
(not measurable) but one can measure the momentum change they produce.
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Examples: The blow of a hammer, a bat hits a cricket ball, the collision of two billiard
balls etc.

Example 6.4.1. When a male bighorn sheep runs head-first into another male, the rate

at which its speed drops to zero is dramatic. Figure (6.4) gives a typical graph of the

Figure 6.3: The acceleration versus time of a bighorn sheep during a collision with another
male

acceleration a versus time t for such a collision, with the acceleration taken as negative to

correspond to an initially positive velocity. The peak acceleration has magnitude 34m/s2

and the duration of the collision is 0.27s. Assuming that the sheep’s mass is 90kg. What

are the magnitudes of the impulse and average force due to the collision?

Solution: Since the impulse (magnitude) of the force F (magnitude) is the area between
the curve and t axis. We can reform the given Figure (6.4) as:

Figure 6.4: The force versus time of a bighorn sheep during a collision with another male
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I = area =
1

2
F · t =

1

2
ma · t

=
1

2
(90)(34)(0.27) · t

= 413N.s

For the magnitude of average force, from Eq. (6.4.2), we can write

Favg =
I

∆t
=

413

0.27
= 1500N

6.4.1 Elastic Collision in One Dimension

Consider two smooth, non-rotating balls of masses m1 and m2. Let both are moving in the
same directions with initial velocities (before impact) u1 and u2 respectively. After some
time they collide and after collision they move in the same direction. Let m1 moves with
velocity v1 and m2 with velocity v2. By law of conservation of linear momentum, we have

momentum before collision = momentum after collision

m1u1 +m2u2 = m1v1 +m2v2

m1 (u1 − v1) = m2 (v2 − u2) (6.4.2)

As the collision is elastic, the kinetic energy of the system is conserved. Hence by law of
conservation of kinetic energy, we have

kinetic energy before collision = kinetic energy after collision
1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2

m1

(
u21 − v21

)
= m2

(
v22 − u22

)
(6.4.3)

Dividing (6.4.3) by (6.4.2), we have

u1 + v1 = v2 + u2 (6.4.4)

or

u1 − u2 = v2 − v1 = − (v1 − v2) (6.4.5)

We note that before collision (u1 − u2) is the velocity of the first ball relative to the second
ball and (v1 − v2) is the velocity of the first ball relative to the second ball after collision.
(6.4.5) shows that these relative velocities have same magnitude but the order is reversed
after the collision.
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If all the data before collision (m1, m2, u1 and u2 ) is known, the velocities after collision
(v1 and v2 )can be calculated using (6.4.2) and (6.4.4).

v1 =
m1 −m2

m1 +m2
u1 +

2m2

m1 +m2
u2 (6.4.6)

v2 =
2m1

m1 +m2
u1 +

m2 −m1

m1 +m2
u2 (6.4.7)

The velocities after collision also depend on the masses of both balls. Some cases arise
depending on the nature of masses as follows.

case 1 If m1 = m2 then (6.4.6) and (6.4.7) gives the velocities after collision as

v1 = u2

v2 = u1

case 2 If m1 = m2 and u2 = 0 then (6.4.6) and (6.4.7) gives the velocities after collision as

v1 = 0

v2 = u1

case 3 If m1 6= m2 and u2 = 0 then (6.4.6) and (6.4.7) gives the velocities after collision as

v1 =
m1 −m2

m1 +m2
u1

v2 =
2m1

m1 +m2
u1

case 4 If m1 is very very small as compared to m2 i.e m1 � m2 and u2 = 0 then (6.4.6) and
(6.4.7) gives the velocities after collision as

v1 = u1

v2 = 0

case 5 If m1 is very very large as compared to m2 i.e m1 � m2 and u2 = 0 then (6.4.6) and
(6.4.7) gives the velocities after collision as

v1 = u1

v2 = 2 u1
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Example 6.4.2. Consider a ball of mass 20 g is moving to the right with a velocity of

9 m/sec and it collides with ball of mass 1 kg which is at rest. Assume the collision was

perfectly elastic. Find the velocity of each ball after collision.

Solution The given data is

m1 = 20 g = 0.02 kg

m2 = 1 kg

u1 = 9 m/sec

u2 = 0

The problem is similar to case 3, then the velocity of first ball after collision is

v1 =
m1 −m2

m1 +m2
u1

=
0.02− 1

1 + 0.02
9

= −8.65 m/sec

The first ball after collision moves to the left with a velocity of 8.65 m/sec. Next the velocity
of second ball after collision is

v2 =
2m1

m1 +m2
u1

=
2(0.02)

1 + 0.02
9

= 0.35 m/sec

The second ball after collision moves to the right with a velocity of 0.35 m/sec.

6.5 Impact of Elastic Bodies

A collision between two bodies is said to be impact, if the bodies are in contact for a short
interval of time and exert very large force on each other during this short period. On im-
pact, the bodies deform first and then recover due to elastic properties and start moving
with different velocities. The velocity with which they they separate depends not only on
their velocity of approach but also on the shape, size, elastic property and line of impact.
Here the velocity of the bodies during the short period of impact in not considered. Only
the velocities of the colliding bodies before impact and after impact are considered. First
some some technical terms.
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6.5.1 Definitions

.

• Line of Impact: Common normal to the colliding surfaces is known as line of impact.

• Direct Impact: If the motion of the two colliding bodies is directed along the line
of impact

• Oblique Impact: If the motion of one or both of the colliding bodies is not directed
along the line of impact.

• Central Impact: If the mass centres of colliding bodies are on the line of impact.

• Eccentric Impact: Even if mass centre of one of the colliding bodies is not on the
line of impact.

Figure 6.5: Direct Central Impact

Figure 6.6: Oblique Central Impact
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Figure 6.7: Direct Eccentric Impact

During the collision, the colliding bodies initially undergo a deformation for a small time
interval and then recover the deformation in a further small time interval. So, the period
of collision (or time of impact) consists of two time intervals.

1. Period of Deformation

2. Period of Restitution

- Period of Deformation is the time elapse between the instant of the initial contact and
the instant of maximum deformation of the bodies.
- Period of Restitution is the time elapse between the instant of the maximum deforma-
tion condition and the instant of separation of the bodies. Thus,impulse during deformation
= FDdt
where FD is the force that acts during the period of deformation. The magnitude of FD
varies from zero at the instant initial contact to the maximum value at the instant of max-
imum deformation.
Similarly, impulse during deformation = FRdt where FR is the force that acts during the
period of deformation. The magnitude of FR varies from A maximum at the instant of
maximum deformation condition to zero at the instant of just separation of the bodies.
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Figure 6.8: Oblique Eccentric Impact

6.6 Coefficient of Restitution.

Let
m1 - mass of the first body
m2 - mass of the second body
u1 - velocity of the first body before impact
u2 - velocity of the second body before impact
v1 - velocity of the first body after impact
v2 - velocity of the second body after impact
At the instant of maximum deformation, the colliding bodies will have same velocity. Let
the velocity of the bodies at the instant of maximum deformation be uD max.
Applying Impulse-Momentum principle for the first body

FDdt = m1 (uD max − u1) (6.6.1)

FRdt = m1 (v1 − uD max) (6.6.2)

Dividing (6.6.2) BY (6.6.2)

FRdt

FDdt
=

v1 − uD max

uD max − u1
(6.6.3)

Similarly the analysis for the second body gives,

FRdt

FDdt
=

uD max − v2
u2 − uD max

(6.6.4)
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From (6.6.3) and (6.6.4)

FRdt

FDdt
=

v1 − uD max

uD max − u1
=
uD max − v2
u2 − uD max

=
v1 − uD max + uD max − v2
uD max − u1 + u2 − uD max

=
v1 − v2
u2 − u1

=
v2 − v1
u1 − u2

(6.6.5)

=
Relative velocity of separation

Relative velocity of approach

Sir Isaac Newton conducted the experiments and observed that when collision of two bodies
takes place relative velocity of separation bears a constant ratio to the relative velocity of
approach, the relative velocities being measured along the line of impact. This constant
ratio is called as the coefficient of restitution and is denoted by the letter e or CR. Hence
from (6.6.5), we have

e = CR =
FRdt

FDdt
=

v1 − v2
u2 − u1

(6.6.6)

For perfectly elastic bodies, the magnitude of relative velocity after impact will be same
as that before impact and hence the coefficient of restitution will be 1. Perfectly inelastic
bodies cling together and hence the velocity of separation will be zero, and so the coefficient
of restitution will also be 0. Hence the coefficient of restitution always lies between 0 and
1.
The value of coefficient of restitution depends not only on the material property but it
also depends on the shape and size of the body. Hence the coefficient of restitution is the
property of two colliding bodies but not merely of material of the colliding bodies.

Example 6.6.1. Consider a 20N body is moving to the right with a velocity of 8m/sec

and a 10N body moving to the left with a velocity of 12m/sec. Direct central impact occurs

between them (See Fig. 6.11). Find the velocity of each body after impact if the coefficient

of restitution is 0.6.

Solution

velocity of 20N body before impact = u1 = 8 m/sec

velocity of 10N body before impact = u2 = −12 m/sec

velocity of 20N body after impact = v1 m/sec

velocity of 10N body after impact = v2 m/sec

Applying the principles of conservation of momentum to the colliding bodies, we get

m1u1 +m2u2 = m1v1 +m2v2
20

g
(8) +

10

g
(−12) =

20

g
v1 +

10

g
v2
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Figure 6.9: Direct Central Impact

Figure 6.10: Direct Central Impact

or we have

2v1 + v2 = 4 (6.6.7)

From (6.6.6), we have

e (u1 − u2) = v2 − v1
0.6 (8− (−12)) = v2 − v1

v2 − v1 = 12 (6.6.8)

From (6.6.11) and (6.6.8), we have

v1 = −8

3
= −2.67 (6.6.9)

From (6.6.8), we can write

v2 = 12 + v1

v2 = 12− 2.67

= 9.33 m/sec (6.6.10)

After collision the 20N body is moving to the left with a velocity of 2.67 m/sec and a 10N
body moving to the right with a velocity of 9.33 m/sec.
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Example 6.6.2. A body of 20N is moving to the right at a speed of 7 m/sec and strikes a

10N body that is moving to the left at a speed of 10 m/sec. The final velocity of 10N body

is 4 m/sec to the right. Calculate the coefficient of restitution and final the velocity of the

20N body.

Solution

Figure 6.11: Direct Central Impact

Figure 6.12: Direct Central Impact

velocity of 20N body before impact = u1 = 7 m/sec

velocity of 10N body before impact = u2 = −10 m/sec

velocity of 20N body after impact = v1 m/sec

velocity of 10N body after impact = 4 m/sec

Applying the principles of conservation of momentum to the colliding bodies, we get

m1u1 +m2u2 = m1v1 +m2v2
20

g
(7) +

10

g
(−10) =

20

g
v1 +

10

g
(4)

14− 10 = 2v1 + 4

or we have

v1 = 0 (6.6.11)
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After collision, the 20N body comes to rest.
The coefficient of restitution is given by (6.6.6)

e =
v1 − v2
u2 − u1

=
0− 4

−10− 7

=
4

17
= 0.235 (6.6.12)
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Exercises

1. Consider a ball of mass 200 g is moving to the right with a velocity of 9 m/sec and it
collides with ball of mass 80 g which is moving to the left with a velocity of 15 m/sec.
Assume the collision was perfectly elastic. Find the velocity of each ball after collision.

2. A glass marble of weight 0.2N falls from a height of 10m and rebounds to a height
of 8m. Its time of contact with floor is 0.1s. Find the impulse and the average force
between the marble and the floor.

3. A 1N ball is bowled to a batsman. The velocity of the ball was 20m/s horizontally
just before batsman hit it. After hitting it went away with a velocity of 48m/s at
an inclination of 300 to the horizontal as shown in the Fig.(). Find the average force
exerted on the ball by the bat if the impact lasts for 0.02 seconds.

4. An 80N body moving to the right at a speed of 3 m/sec strikes a 10N body that is
moving to the left at a speed of 10 m/sec. The final velocity of 10N body is 4 m/sec
to the right. Calculate the coefficient of restitution and final the velocity of the 80N
body.
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Chapter 7

Angular Momentum

7.1 Angular Momentum

Consider a particle of mass m is moving under a force ~F . At time t the particle is at A,
having position vector ~r. The velocity ~v or linear momentum ~p of the particle is tangent to
~r at A. The angular momentum ~L of the particle is

~L = ~r × ~p = rp sin θn̂ (7.1.1)

= ~r ×m~v = mvr sin θn̂ (7.1.2)

Therefore, the angular momentum ~L is always perpendicular to the plane defined by the

Figure 7.1: Angular Momentum.

particle’s position vector ~r and velocity ~v as shown in Fig. 7.1. Note the magnitude and
the direction of ~L depend on the choice of origin. The SI unit of angular momentum is

177
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kg −m2/s. If θ is the angle between ~r and ~v, the magnitude of angular momentum is

L = |~r × ~p|
= rp sin θ = mvr sin θ

= pd = mvd

Where d = r sin θ is the perpendicular distance of ~v from O.
Note:

• If ~r and ~v are parallel, the angular momentum is zero. In this case θ = 0 or π rad.
In other words, when the linear velocity of the particle is along a line that passes
through the origin, the particle has zero angular momentum with respect to the origin.

• If ~r and ~v are perpendicular to each other then the angular momentum is L = rp.
At that instant, the particle moves exactly as if it were on the rim of a wheel rotating
about the origin in a plane defined by ~r and ~p.

Example 7.1.1. A particle of mass 3 kg moves in xy plane with a uniform velocity ~v =

2m/s î+ 3m/s ĵ. At time t, the particle passes through the point P (3m, 2m) as shown in

Fig. 7.2. Find the magnitude and the direction of the angular momentum about the origin

at time t.

Figure 7.2: Angular momentum about origin in a plane

Solution: The given data is

m = 3 kg

~v = 2m/s î+ 3m/s ĵ

P = P (3m, 2m)
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The position vector of P is

~r = 3m î+ 2m ĵ

and linear momentum is

~p = m~v = 6N.s î+ 9N.s ĵ

Using (7.1.2), the angular momentum about O is

~L = ~r × ~p

=
(

3 î+ 2 ĵ
)
×
(

6m/s î+ 9m/s ĵ
)

= 18
(
î× î

)
+ 27

(
î× ĵ

)
+ 12

(
ĵ × î

)
+ 18

(
ĵ × ĵ

)
Using î× î = 0 = ĵ × ĵ, î× ĵ = k̂ and ĵ × î = −k̂, we have

~L = 27k̂ − 12k̂

= 15 kg −m2/s k̂

The magnitude of the angular momentum about the origin at time t is 15 kg −m2/s, and
the direction is along z axis.

7.1.1 Angular Momentum and Uniform Circular Motion

Consider a particle of mass m moves with linear velocity is vin a circular path of radius r,
in the xy plane as shown in Figure 7.3. In this motion ~r and ~v are perpendicular to each

Figure 7.3: Angular momentum in uniform circular motion.
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other, so θ = 90◦. Then the magnitude of angular momentum is

L = rp = rmv (7.1.3)

Next ~r and ~v lies in xy plane. Let î be unit vector along X − axis and ĵ be unit vector
along Y −axis. Then k̂ be a unit vector perpendicular xy plane. Hence angular momentum
has direction along k̂.

Corollary 7.1.1. A particle in uniform circular motion has a constant angular momentum

about an axis through the center of its path.

Proof : Since the particle is moving with uniform circular motion, so the linear momen-
tum like velocity of the particle is always changing (in direction, not magnitude).

dv

dt
= 0

In this case r is also fixed. Next take time derivative of (7.1.3)

dL

dt
=

drp

dt
=
drmv

dt
= 0

Hence a particle in uniform circular motion has a constant angular momentum about an
axis through the center of its path.

7.1.2 Angular Momentum of a System of n Particles

Consider a system of n particles. Let the ith particle with mass mi is moving with linear
momentum ~pi. At time t it is at point Pi having position vector ~ri, then its angular
momentum is

~Li = ~ri × ~pi

Angular momentum of a system of particles is the sum of angular momentums all n particles.
i.e

~L = ~L1 + ~L2 . . . ~Ln =
n∑
i=1

~Li

7.1.3 Magnitude of Angular Momentum in Polar Coordinates

The angular momentum L of the particle is

~L = ~r × ~p
= ~r ×m~v = m(~r × ~v)
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The velocity in polar coordinates is

v = ṙr̂ + rθ̇θ̂

The angular momentum in polar coordinates is

~L = m
(
rr̂ × (ṙr̂ + rθ̇θ̂)

)
= m

(
rṙ(r̂ × r̂) + r2θ̇(r̂ × θ̂)

)
= m

(
0 + r2θ̇k̂

)
= m

(
r2θ̇
)
k̂ (7.1.4)

The magnitude of angular momentum is

|~L| = m
(
r2θ̇
)

(7.1.5)

The unit mass magnitude of angular momentum is

|~L|
m

= r2θ̇ (7.1.6)

7.1.4 Law of Conservation of Angular Momentum

Theorem 7.1.2. The total angular momentum of a system is constant in both magnitude

and direction if the resultant external torque acting on the system is zero, that is, if the

system is isolated.

Proof : First we show that time rate of change of the angular momentum ~L equals the
net torque.

~τ =
d~L

dt
= ~r × ~F

From (7.1.2), the angular momentum and then its time derivative are

~L = ~r × ~p = ~r ×m~v
d~L

dt
= ~̇r ×m~v + ~r ×m~̇v

= ~̇r ×m~̇r + ~r ×m~̈r
= 0 + ~r × ~F

= ~τ
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Hence time rate of change of the angular momentum ~L equals the net torque.
if the resultant external torque acting on the system is zero

d~L

dt
= 0

Hence, the total angular momentum of a system is constant in both magnitude and direction
if the resultant external torque acting on the system is zero.
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Exercises

1. A particle of mass 2 kg moves in xy plane with a uniform velocity ~v = 2.4m/s î +
3.3m/s ĵ. At time t, the particle passes through the point P (3m, 4m). Find the
magnitude and the direction of the angular momentum about the origin at time t.
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Chapter 8

Work Energy and Conservative
Force

Work and energy are the same thing. Energy cant be created or destroyed, it can only be
changed from one type into another type. When a force is applied on an object and it moves
a distance we say that work has been done and energy has been transformed (changed from
one type to another type).

8.1 Work

Consider a regular trihedral system with O as origin. Let a particle of mass m is moving
under a force ~F along a curve C. Let at time t it be at point P , with position vector ~r.
After a very small time interval ∆t it moved an infinitesimal displacement ~dr and is at point
Q as shown in Fig. 8.1. Then the work done by a force ~F in taking the particle from point
P to point Q along the curve C in an infinitesimal displacement ~dr is the dot product of ~F
and ~dr. Hence

dW = ~F · ~dr (8.1.1)

Also the total work done in moving from A to B is

W =

B∫
A

~F · ~dr (8.1.2)

If θ is an angle between ~F and ~dr, then (8.1.1) can be written as

dW = Fdr cos θ

is the general expression for work done by a force. The expression may be rearranged as

dW = F cos θdr (8.1.3)

185
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Figure 8.1: Work done

gives a new definition of work done. The work done by a force is defined as the product of
component of force in the direction of motion and the distance moved.

8.1.1 Work done by a Constant Force

If ~F is constant and ~AB = ~rB − ~rA = ~r

W = ~F ·
rB∫
rA

~dr

= ~F · (~rA − ~rB)

= ~F .~r

NetWork = NetForce · displacement

If θ is an angle between ~F and ~r then the work done is

W = Fr cos θ

or

W = F cos θr

Its unit in SI is Joule (J) or N.m. Note the work is done only if an object moves in the
direction of F .

Example 8.1.1. A crate is pulled for a distance of 6 m along a floor with a horizontal

force of 5 N . Find the work done by the force.
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Solution The given data is:

F = 5 N

d = 6 m

Here the force and the displacement are in the same direction, so the angle between them
is θ = 0. Hence the work done is just the product of force and distance. i.e

W = Fd

= 5(6) = 30 N ·m

8.2 Energy

Energy is defined as the capacity to do work. It is non-material property capable of causing
changes in matter. In dynamics, we deal with mechanical energy which is of two types,
namely kinetic and potential energy.

8.2.1 Kinetic Energy

Energy of an object due to its motion is called kinetic energy. It is the amount of work done
by a force in bringing a moving particle to rest from its existing position. It is denoted by
T .
Consider a regular trihedral system with O as origin. Let a particle of mass m is moving
with velocity ~v, under the a force ~F along a curve C. Let at time t it be at point P , with
position vector ~r. Then the work done by a force ~F in taking the particle from point P to
Q (rest) along the curve C is:

T = W =

Q∫
P

~F · ~dr

If the applied force ~F = m~a, then

T =

Q∫
P

m~a · d~r (8.2.1)

The acceleration is

~a =
d2~r

dt2
=
d~v

dt
(8.2.2)

and the velocity of the particle is

~v =
d~r

dt
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Figure 8.2: Work done

or

d~r = ~vdt (8.2.3)

Using (8.2.2) and (8.2.3), (8.2.1) becomes

T =

Q∫
P

m
d~v

dt
· ~vdt

=

Q∫
P

1

2
m
dv2

dt
dt

=

Q∫
P

d

dt

(
1

2
mv2

)
dt

=
1

2
mv2 (8.2.4)

(8.2.4) is an expression for kinetic energy. In SI, it is measured in Joules (J).

8.2.2 Kinetic Energy in terms of Work

Kinetic energy is the amount of work done by a force in bringing a moving particle to rest
from its existing position. If m is the mass of the particle, then by Newton’s second law of
motion, the applied force is ~F = m~a. Using (8.2.2) and (8.2.3), (8.1.1) can be written as

dW = m
dv

dt
· vdt
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dW = mvdv

= d

(
1

2
mv2

)
(8.2.5)

Now the total work done from A to B is

WAB =

∫ B

A
Fdr

=

∫ B

A
d

(
1

2
mv2

)
=

(
1

2
mv2

)B
A

=
1

2
mv2B −

1

2
mv2A

The quantity T = 1
2mv

2 is the kinetic energy. Hence the work done is

WAB = TB − TA
= ∆T (8.2.6)

We can postulate some results as under:

(a) If TA > TB then WAB < 0
The work is done by the particle against the force and its kinetic energy has decreased.

(b) If TA < TB then WAB > 0
The work is done by the force on the particle and its kinetic energy has increased.

In any case the work done depends upon the difference in kinetic energies of the particle in
the two positions. The work done against the dissipative force like the fractional force is
always negative.

8.2.3 Potential Energy

Potential energy is energy of position. The amount of potential energy possessed by an
object is proportional to how far it was displaced from its original position. If the dis-
placement occurs vertically, raising an object off of the ground, is known as gravitational
potential energy. It is denoted by U . If m is the mass of the object raised a height h from
the ground as shown in Fig. 8.3, then gravitational potential energy of the object is

gravitational potential energy = weight× height

U = mgh

The concept of potential energy can be used when dealing with conservative force that will
be discussed later.
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Figure 8.3: Potential energy

8.2.4 Potential Energy is converted to Kinetic Energy and vice-versa

Consider Fig. 8.1. Let ~vi be the velocity of the particle at P and ~vf be at P . Considering
xy plane as the zero level and hight above it is the distance, that is (d = h height ). Its
equation of motion can be written as

v2f − v2i = 2gh

1

2
mv2f −

1

2
mv2i = mgh

∆T = ∆U

Note only changes in potential energy can be measured. Total amount of energy at any
instant cannot be determined.
At ground level all energy is kinetic energy and at maximum height h all energy is potential
energy.

8.3 Power

Rate of doing work by a force ~F is called power or activity.

dP =
dW

dt

= ~F ·
~dr

dt
= ~F · ~v (8.3.1)
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Also the power is defined as the rate at which energy is transferred by a force ~F . Consider

dT

dt
=

d

dt

(
1

2
mv2

)
=

1

2
m
d

dt
(~v · ~v) = m

d~v

dt
· ~v

= ~F · ~v
= P

It is measured in Watts (W )→ 1 Joule of energy transferred in 1 second
We usually measure it in kW (kilowatts)

8.3.1 Efficiency

Ratio of output work to input work of a machine

Efficiency =
Woutput

Winput
× 100

8.4 Work done by a Variable Force

Consider a body moves under the influence of a force ~F (t). Suppose that the body moves
a displacement d~r(t) between time t1 and t2. Then the work done by the force is

W =

∫
C

~F · d~r

As F and r are functions of t, hence the work done is

W =

t2∫
t1

~F · d~rdt

That is, work is the path integral of the force along the trajectory. Work may be either
positive or negative, where in the latter case we will say that it is the body that has
performed work.

8.5 Conservative Force

If the force field acting on a physical body is such that the work done along a closed path
is zero, the force is called conservative. In other words we can say that a vector field is
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Figure 8.4: Work done

called conservative if integrals along paths only depend on the end points and not on the
trajectory.
Consider a particle is moving along a curve C under the action of a variable force F . Let

the particle moves from A to B and then from B to A, forming a closed path. If the total
work done is zero, the acting force is conservative. i.e.

W =

∫
C

F.dr = 0 (8.5.1)

If the force F is uniquely defined at every point of a region of space, the set of all such
forces is a called a force field. If at every point of the space, the force F is conservative,
then the force field is said to be conservative.
It is not always true that the work done by an external force is stored as some form of
potential energy. This is only true if the force is conservative.
Examples: the force of gravity and the spring force are conservative forces.
For a non-conservative (or dissipative) force, the work done in going from A to B depends
on the path taken.
Examples: friction and air resistance.

8.6 Examples of conservative and Non Conservative Force

Field

In this section we will give some examples of conservative and non conservative systems.

8.6.1 The Earth’s Gravitational Field is Conservative

The zero level of the potential energy is arbitrary; it can be assigned to any position. If the
xy plane is chosen the zero level of potential energy , the potential energy at any point A
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is the work done by the force when the body moves from the point A to the point B with
zero potential energy. So,

U(A) = WAB

Consider a particle of mass m is initially at A, the gravitational force is F = mg. The work
done by this force along the path AB is

WAB = mg(h− 0) = mgh

Near Earths surface, the work done by gravity on an object of mass m depends only on

Figure 8.5: Work done

the change in the objects height h that depends on the end points of the path.
Vector Approach
Consider a particle of mass m is initially at A, the gravitational force always acts downward,
having only z component, so can be written as

~F = mgk̂ = 〈0, 0, mg〉

and dr can be written as

d~r = dxî+ dyĵ + dzk̂ = 〈dx, dy, dz〉

The work done by this force along the path AB is
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Figure 8.6: Work done

W = −
B∫
A

~F .d~r

=

A∫
B

〈0, 0, mg〉.〈dx, dy, dz〉

= mg

A∫
B

dz

= mg.z
∣∣A
B

= mg. (zA − zB)

= mg. (z2 − z1)

Here the work done depends upon the initial and final positions of the particle, and is
independent of the path. Hence the force is a conservative force and the earth’s gradational
field is conservative.
2.

~F = kŝ

where k is some constant and ŝ unit arc length. Also we can take dr ≡ ds. The work done
by this force along the path AB is
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Figure 8.7: Work done

W =

∫ B

A
kŝ.dr = k

∫ B

A
ŝ.ds

= k

∫ B

A
1ds cos θ

= k cos θs
∣∣B
A

= k cos θ (sB − sA)

Here the work done depends upon the arc length of the path. Hence the force is not
conservative force.

8.6.2 Potential Energy and Conservative Force

The potential energy of a particle in a field of force F is defined as the total work done
in moving a particle from its existing position to its standard position (zero level of the
potential energy) along the curve.
Let O be the origin of an inertia frame of reference fixed in space. Let P0 be the position
(standard) of a particle on a curve C and P (t) be an arbitrary existing position of a particle
at any time t. Let

~OP0 = ~r0
~OP = ~r

Analytically we can write, the expression for the potential energy is

U(P ) =

∫ r0

r

~F . ~dr

= −
∫ r

r0

~F . ~dr
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Figure 8.8: Work done

Theorem 8.6.1. A vector field is conservative if and only if it is the gradient of a scalar

field.

~F = − ~∇U (8.6.1)

where U(r) is called the potential field, or the potential energy; the negative sign is a con-

vention whereby the force is directed in the direction of decreasing potential.
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Proof Consider Fig. , we can write

Figure 8.9: Work done

~r = 〈x, y, z〉
~r0 = 〈x0, y0, z0〉
~dr = 〈dx, dy, dz〉
~F = 〈Fx, Fy, Fz〉
U = U(x, y, z)

Let P0 be the zero level of potential energy, then U at P is

U(P ) =

∫ (x0,y0,z0)

(x,y,z)
〈Fx, Fy, Fz〉.〈dx, dy, dz〉

= −
∫ (x,y,z)

(x0,y0,z0)
(Fxdx+ Fydy + Fzdz)

= −
∫ P

P0

~F . ~dr (8.6.2)

differentiating we have

dU(P ) = −d

[∫ (x,y,z)

(x0,y0,z0)
(Fxdx+ Fydy + Fzdz)

]
= −(Fxdx+ Fydy + Fzdz)

dU(x, y, z) = (−Fxdx− Fydy − Fzdz)
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz = −Fxdx− Fydy − Fzdz)
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(
∂U

∂x
+ Fx

)
dx+

(
∂U

∂y
+ Fy

)
dy +

(
∂U

∂z
+ Fz

)
dz = 0 (8.6.3)

Since x, y, and z are linearly independent, so dx, dy, and dz are also linearly independent.
This implies that the coefficient of dx, dy, and dz must be equal to zero. i.e.

∂U

∂x
+ Fx = 0

∂U

∂y
+ Fy = 0

∂U

∂z
+ Fz = 0

or we have

Fx = −∂U
∂x

Fy = −∂U
∂y

Fz = −∂U
∂z

Hence ~F can be written as

~F = 〈Fx, Fy, Fz〉 =

〈
−∂U
∂x

,−∂U
∂y

,−∂U
∂z

〉
= −

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
U(x, y, z)

= −∇U

where

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉

is an operator.
Conversely suppose that

~F = −∇U
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The work done is

W =

P0∫
P

F.dr

= −
P0∫
P

∇U.dr

= −
P0∫
P

〈
∂U

∂x
,
∂U

∂y
,
∂U

∂z

〉
.〈dx, dy, dz〉

= −
P0∫
P

(
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz

)

= −
P0∫
P

dU = −U
∣∣∣P0

P
(8.6.4)

= −U(P0) + U(P )

= ∆U

Hence the work done along a trajectory r connecting the points P and P0, is independent
of path, so the vector field of force F is conservative.
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Theorem 8.6.2. A necessary and sufficient condition for a vector field to be conservative

is

curl ~F = ~O (8.6.5)

Proof Let ~F is conservative, Then there exist a function U(x, y, z) of class C2 (second
order partial derivatives of U exist and are continuous) and ~F can be expressed as

~F = −∇U

Apply curl on both sides

curl ~F = −curl ∇U
= −∇×∇U

This cross product can be written as

curl ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

∂U
∂x

∂U
∂y

∂U
∂z

∣∣∣∣∣∣∣∣
=

(
∂2U

∂y∂Z
− ∂2U

∂z∂y

)
î−
(
∂2U

∂z∂x
− ∂2U

∂x∂z

)
ĵ +

(
∂2U

∂x∂y
− ∂2U

∂y∂x

)
k̂

Since U is of class C2, then ∂2U
∂y∂Z = ∂2U

∂z∂y and all other pairs are so. Hence we have

curl ~F = 〈0, 0, 0〉
= ~O

Conversely suppose that

curl ~F = ~O

Let

~F = 〈P,Q,R〉

be a force to do the work. Then

curl ~F = ~O∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣∣ = 〈0, 0, 0〉

(
∂R

∂y
− ∂Q

∂z

)
î+

(
∂P

∂z
− ∂R

∂x

)
ĵ +

(
∂Q

∂x
− ∂P

∂y

)
k̂ = 0̂i+ 0ĵ + 0k̂



8.6 Examples of conservative and Non Conservative Force Field 201

Since the two vectors are equal, this mean that their corresponding elements are equal. i.e(
∂R

∂y
− ∂Q

∂z

)
= 0(

∂P

∂z
− ∂R

∂x

)
= 0(

∂Q

∂x
− ∂P

∂y

)
= 0

or we can write

∂R

∂y
=

∂Q

∂z

∂P

∂z
=

∂R

∂x
∂Q

∂x
=

∂P

∂y

which is possible only if there exist a function U of class C2 such that

~F = −~∇U

Hence ~F is conservative.

Example 8.6.1. The force

~F = 〈x, y, z〉

is conservative. Also find the corresponding potential function.

Solution For a conservative force we need to show only

curl ~F = ~O

Next

curl ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

x y z

∣∣∣∣∣∣∣∣
=

(
∂z

∂y
− ∂y

∂z

)
î+

(
∂x

∂z
− ∂z

∂x

)
ĵ +

(
∂y

∂x
− ∂x

∂y

)
k̂
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Since x, y, z are linearly independent, that means

∂z

∂y
= 0 =

∂y

∂z

∂x

∂z
= 0 =

∂z

∂x
∂y

∂x
= 0 =

∂x

∂y

Then

curl ~F = 〈0, 0, 0〉
= ~O

Hence the given force ~F is conservative and there exist a function U of class C2 such that

~F = −~∇U

〈x, y, z〉 = 〈−∂U
∂x

,−∂U
∂y

,−∂U
∂z
〉

The two vectors are equal, so there corresponding entries are equal.

x = −∂U
∂x

or − ∂U

∂x
= x (8.6.6)

y = −∂U
∂y

or − ∂U

∂y
= y (8.6.7)

z = −∂U
∂z

or − ∂U

∂z
= z (8.6.8)

Partially integrate (8.6.6) with respect to x

−U =

∫
xdx+ f(y, z)

=
x2

2
+ f(y, z) (8.6.9)

Partially differentiate (8.6.9) with respect to y

−∂U
∂y

=
∂f

∂y
(8.6.10)

Using (8.6.10) in (8.6.7)

∂f

∂y
= y (8.6.11)

Partially integrate (8.6.11) with respect to y

f =
x2

2
+ g(z) (8.6.12)
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Then (8.6.9) becomes

−U =
x2

2
+
y2

2
+ g(z)

Partially differentiate (8.6.13) with respect to z

−∂U
∂z

=
dg

dz
(8.6.13)

From (8.6.8) and (8.6.13), we can write

dg

dz
= z (8.6.14)

Integrating (8.6.14)

g =
z2

2
+ c (8.6.15)

Using (8.6.15) in (8.6.13) we have

−U =
x2

2
+
y2

2
+
z2

2
+ C

Ignoring C, the corresponding potential function is

U = −1

2

(
x2 + y2 + z2

)
(8.6.16)

From this potential function, the corresponding conservative force can be calculated as Let
the force is

~F = 〈P,Q,R〉

~F = −∇U

〈P,Q,R〉 = 〈− ∂U
∂X

,−∂U
∂Y

,−∂U
∂z
〉

From (8.6.16), we have

−∂U
∂x

= x

−∂U
∂y

= y

−∂U
∂z

= z

Hence the corresponding conservative force is

~F = 〈x, y, z〉
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Example 8.6.2. A particle moves under the action of a force

~F = 〈3x2 + 6xy, 3x2 − 3y2, 0〉

from A(1, 1, 0) to B(2, 3, 0). Then determine

(a) Is the force conservative?

(b) If yes, find the corresponding potential energy function.

(c) The work done from A to B

Solution For a conservative force we need to show only

curl ~F = ~O

Next

curl ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

3x2 + 6xy 3x2 − 3y2 0

∣∣∣∣∣∣∣∣
=

(
∂(0)

∂y
−
∂
(
3x2 − 3y2

)
∂z

)
î+

(
∂
(
3x2 + 6xy

)
∂z

− ∂(0)

∂x

)
ĵ

+

(
∂
(
3x2 − 3y2

)
∂x

−
∂
(
3x2 + 6xy

)
∂y

)
k̂

Since x, y, z are linearly independent, then

curl ~F = (0) î+ (0) ĵ + (6x− 6x) k̂

= 〈0, 0, 0〉
= ~O

Hence the given force ~F is conservative.

(b) Since the given force is conservative, then there exist a function U of class C2 such
that

~F = −~∇U

〈3x2 + 6xy, 3x2 − 3y2, 0〉 = 〈−∂U
∂x

,−∂U
∂y

,−∂U
∂z
〉
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The two vectors are equal, so there corresponding entries are equal.

3x2 + 6xy = −∂U
∂x

or − ∂U

∂x
= 3x2 + 6xy (8.6.17)

3x2 − 3y2 = −∂U
∂y

or − ∂U

∂y
= 3x2 − 3y2 (8.6.18)

0 = −∂U
∂z

or − ∂U

∂z
= 0 (8.6.19)

The given force is a two dimensional force, so we can ignore (8.6.19) Partially integrate
(8.6.17) with respect to x

−U =

∫ (
3x2 + 6xy

)
dx+ f(y)

= x3 + 3x2y + f(y) (8.6.20)

Partially differentiate (8.6.20) with respect to y

−∂U
∂y

= 3x2 +
df

dy
(8.6.21)

Using (8.6.21) in (8.6.18)

df

dy
= −3y2 (8.6.22)

Partially integrate (8.6.22) with respect to y

f = −y3 + C (8.6.23)

Then (8.6.20) becomes

−U = x3 + 3x2y − y3 + C (8.6.24)

Ignoring C, the corresponding potential function is

U = −x3 − 3x2y + y3 (8.6.25)

(c) Work done from A to B can be calculated by using (8.6.4)

W = −U
∣∣∣B
A

Using (8.6.25) the work done is

W =
∣∣∣x3 + 3x2y − y3

∣∣∣(2,3,0)
(1,1,0)

= [(8 + 36− 27)− (1 + 3− 1)] = [17− 3]

= 14 J
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Example 8.6.3. Examples of potential energy functions.

1. For a mass under the influence of earth gravity

U(r) = U(z) = mgz

2. For a mass suspended on a spring,

U(z) =
1

2
kz2

3. For a planet under the influence of a stars gravity,

U(r) = −GMm

r2

8.7 Law of Conservation of Energy

StatementWithin a closed, isolated system, energy can change form, but the total amount
of energy is constant

Tinitial + Uinitial = Tfinal + Ufinal (8.7.1)

The sum of kinetic energy and potential energy represents the total mechanical energy.
Proof Consider a particle of mass m is moving under the influence of a conservative force
field F . If the particle performs a trajectory r(t) connecting the points r(t1) and r(t2) then
from (8.6.4), we can write

−U(rt2) + U(rt1) =

P0∫
P

~F .d~r

= m

P0∫
P

~a.d~r (8.7.2)

Using (8.2.2) and (8.2.3), (8.7.2) becomes

−U(rt2) + U(rt1) =

t2∫
t1

d~v

dt
· ~vdt

=

t2∫
t1

1

2
m
dv2

dt
dt

=

t2∫
t1

d

dt
Kdt

= T (v(t2))− T (v(t1))

∆U = ∆T (8.7.3)
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It can also be written as

T (v(t1)) + U(rt1) = T (v(t2)) + U(rt2) (8.7.4)

8.7.4 is known as the law of conservation of energy.
Defining the total mechanical energy, or simply the energy,

E(r, v) = U(r) + T (v), (8.7.5)

we conclude that it assumes the same value at time t1 and t2, i.e., it is conserved (it is a
function of the trajectory whose value remains constant in time).

Theorem 8.7.1. In a conservative vector field, the total energy (mechanical) is constant

throughout the motion.

Proof It is another to proof the law of conservation of energy.
It can be proved by showing

d

dt
E(r, v) = 0

Taking time derivative of (8.7.5)

d

dt
E(r, v) =

d

dt

[
U(r) + T (v)

]
=

d

dt

[
U(r(t)) + T (v(t))

]
(8.7.6)

Now by chain rule, the first term on right hand side can be written as

d

dt

[
U(r(t))

]
=

∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
+
∂U

∂z

dz

dt

= ~∇U · ~̇r

Since ~F is conservative, then by (8.6.1), we can write

d

dt

[
U(r(t))

]
= −~F · ~v (8.7.7)

Again by chain rule, the second term on right hand side can be written as

d

dt

[
T (v(t))

]
=

d

dt

[1
2
mv2

]
=

1

2
m
d

dt
v2

= m
d~v

dt
· ~v

= ~F · ~v (8.7.8)
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Using (8.7.7) and (8.7.8), (8.7.6) becomes

d

dt
E(r, v) = −~F · ~v + ~F · ~v = 0 (8.7.9)

(8.7.4) and (8.7.9) represent the principle of conservation of energy.
Second Method We will show that the sum of kinetic and potential energies is constant.
By Newton’s second law of motion its equation of motion is

F = mr̈ (8.7.10)

Multiply (8.7.10) with ṙ = dr
dt ,

mṙr̈ = F
dr

dt
(8.7.11)

Integrating (8.7.11) with respect to t

1

2
mṙ2 =

∫
F
dr

dt
dt+ constant

or we can write

1

2
mṙ2 −

∫
F · dr = constant (8.7.12)

Since the force is conservative, so we have

~F = − ~∇U

where U(r) is the potential energy and can be written as

U = −
∫
F · dr

and the term 1
2mṙ

2 is the kinetic energy of the system. Using these results, (8.7.12) becomes

T + U = constant (8.7.13)

Hence the total energy of the system is conserved. The conservation of total mechanical
energy when forces are conservative is useful as shows in the following examples.

Example 8.7.1. A body is dropped (at rest) from a height of h meters. If the motion is

free fall, show that the energy of the system is conserved.
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Figure 8.10: Downward motion

Solution We will show that the sum of kinetic and potential energies is constant. The
particle is executing one dimensional motion and its motion is along z−axis. Let any time
t the particle is at P as shown in the Fig 8.10. At P the kinetic energy is

T =
1

2
mż2

Taking ground (xy plane) as zero level for potential energy, then potential energy is

U = mgz

By Newton’s second law of motion its equation of motion is

F = −W
mz̈ = −mg (8.7.14)

Multiply (8.7.14) with ż,

mżz̈ +mgż = 0 (8.7.15)

(8.7.15) can be written as

d

dt

(
1

2
mż2 +mgz

)
= 0 (8.7.16)



210 8 Work Energy and Conservative Force

The term 1
2mż

2 is the kinetic energy and mgz is the potential energy of the system. Using
these results, (8.7.16) becomes

d

dt
(T + U) = 0

dE

dt
= 0 (8.7.17)

Integrating (8.7.17), we have

E = constant (8.7.18)

Hence the total energy of the system is conserved.

Example 8.7.2. A body is dropped (at rest) from a height of h meters. If the motion is

free fall, use energy approach to find speed with which it will hit the ground.

Solution As the body starts from rest, so the initial data is

t0 = 0

v0 = 0

z0 = h

One way to solve it is via the equations of motion:
The other way of solving this exercise is with energies. Taking xy plane as zero level for
potential energy. At P the potential energy is

U(z) = mgz

the conservation of energy implies that

U(z(0)) +
mv2(0)

2
= U(z(t1)) +

mv2(t1)

2

i.e.,

mgh+ 0 = 0 +
mv2(t1)

2

v(t1) =
√

2hg.

which gives the exact same answer.

Example 8.7.3. Earth does not perform any work on the moon because the trajectory

of the moon is perpendicular to the vector that connects the moon to the earth, i.e., it is

(approximately) perpendicular to the force of gravity.
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Figure 8.11: Downward motion

Remark 8.7.1. For a single particle with constant mass m, Newtons equations for the kinetic

energy is given by (8.7.8)

d

dt

(
T (v(t))

)
= ~F · ~v

and more generally, if the mass can vary, then

d

dt

(
mT (v(t))

)
= ~F · ~p
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Exercises

1. A force of magnitude 20N is applied on cart and it moves a distance of 10 m Find
the work done if the angle between force and distance is as following: (a) 0◦, (b) 30◦

(c) 45◦ (d) 60◦ (e) 90◦, (f) 120◦ and (g) 180◦.

2. A force of 400 N is applied on a block to reach the top of 2 m long smooth ramp that
is inclined at an angle of 30◦ with the ground (Figure 8.12). Let there are no frictional
forces. Find the work done if the angle between force and ramp is as following: (a)
0◦, (b) 30◦ (c) 45◦ (d) 60◦ (e) 90◦, (f) 120◦ and (g) 135◦.

Figure 8.12: Block on inclined plane

3. A wagon is pulled horizontally by exerting a constant force of 50N on the handle at
an angle of 60◦ with the horizontal. How much work is done in moving the wagon
10 m?

4. A force of ~F = 〈3,−1, 2〉 N is applied to a point that moves on a line from A(0, 1,−1)
to B(4, 1, 2). If distance is measured in feet, how much work is done?

5. Determine which of the following forces are conservative. If a force is conservative
find the corresponding potential energy function.

(a) ~F = x2yz3î+ 2xy2 sin zĵ + 3zeyk̂

(b) ~F = x2ey î+ 2xey ĵ + 3 cos yexk̂

(c) ~F = x2yî+ 2xy2z3ĵ + 3zexk̂
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6. A particle moves under the action of a force

~F = 〈y2 cosx+ z3, 2y sinx− 4, 3xz2 + 2〉

from A(0, 1,−1) to B(π2 ,−1, 2). Then determine

(a) The force is conservative.

(b) Find the corresponding potential energy function.

(c) The work done from A to B

7. The escape velocity of a particle on earth is the minimum velocity required in order for
a particle to escape from earths gravitational field. Use the conservation of energy to
calculate the escape velocity. Could you obtain this result by directly solving Newtons
equations, which for motion along the radial direction take the form,

m
d2r

dt2
=
−GMm

r2

with initial data r(0) = R and v(0) = v0, where R is the radius of earth.
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Chapter 9

Virtual Displacement and Virtual

Work

The concepts of virtual displacement and virtual work are very useful and are given next.

9.0.1 Virtual Displacement

A hypothetical displacement of a system in which the forces and constraints remain un-
changed and which takes place during infinitesimal time interval is called virtual displace-
ment. It is denoted by δri for the ith particle.
Note: During this displacement, the forces of constraints do not do work.

9.0.2 Real and Virtual Displacement

Let ~ri be the position vector of the ith particle having generalized coordinates qi at time t.
Then

ri = ri (qi, t) (9.0.1)

and the quantity

dri =
∂ri
∂qi

dqi +
∂ri
∂t
dt (9.0.2)

is called the real displacement. If t is fixed then dt = 0 and the quantity

δri =
∂ri
∂qi

δqi (9.0.3)

is called the virtual displacement.
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9.0.3 Virtual Work

The work done by a force in virtual displacement.

Example 9.0.1. A particle of mass m moves under the central force F = −µm
r2

, where µ

is some constant. Find virtual work done.

The particle moves in polar coordinates, so r and θ are the generalized coordinates.
Then r, θ, ṙ and θ̇ are linearly independent. The force acting on the particle is

F = −µm
r2

The generalized force F can be written in polar components as

Fr = −µm
r2

Fθ = 0

The virtual work done is

Figure 9.1: Polar motion

δW =
2∑
i=1

Fi.δqi

= F1.δq1 + F2.δq2

= Fr.δr + Fθ.δθ

= Fr.δr
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9.1 Workless Constraints

In the case of a displacement consistent with the constraints of a system, the forces of
constraints generally do no work. Thus, for example, if a particle in contact with a smooth
plane, is displaced along the plane, the reactive force, being perpendicular to the displace-
ment, does zero work. Some of the usual workless constraints are described below:

1. Reaction of a smooth with which the body is in contact. For, in such a case, the
reaction of the surface at a point of contact is entirely normal to the surface and,
therefore, does zero work.

2. Reaction at a fixed point or fixed axis of a body.
For in this case, displacement of the point of application of any reactive force is zero,
and so the work done by it vanishes

3. Reaction at the point of contact of a fixed surface on which a body rolls without
sliding. For, the point of contact is instantaneously at rest, so its displacement in the
direction of the reaction is zero.

4. The mutual action and reaction of two bodies which roll over each other. The bod-
ies, when regarded as a system, will exert equal and opposite forces on each other.
The algebraic sum of the works done by such forces in any displacement, therefore,
vanishes.

5. Tension of an inextensible string.

9.1.1 Principle of Virtual Work

The necessary and sufficient condition for a system of N particles to be in equilibrium is
the total virtual work done by applied forces is zero.
Proof : Consider a system of N particles. Let Qi be the force acting on the ith particle.
Then

Qi = Fi + fi (9.1.1)

Where Fi are external applied forces and fi are constraint forces. If δri is the virtual
displacement of the ith particle. Then the virtual work is

δWi = (Fi + fi) .δri (9.1.2)

Let the system be in equilibrium, then

Qi = 0 ∀i (9.1.3)

⇒ δWi = 0 ∀i (9.1.4)
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And for the whole system

N∑
i=1

δWi =

N∑
i=1

Qi.δri = 0

=
N∑
i=1

(Fi + fi) .δri = 0

=
N∑
i=1

Fi.δri +
N∑
i=1

fi.δri = 0

Since the work done by the constraint forces is zero, we have

N∑
i=1

δWi =
N∑
i=1

(Fi.δri) = 0 (9.1.5)

Conversely suppose that the total work done by applied forces is zero. Then

N∑
i=1

δWi = 0

If δri is the virtual displacement for the applied force Fi, then we have

N∑
i=1

Fi.δri = 0

or

N∑
i=1

Fi = 0

Hence the system is in equilibrium.



Chapter 10

Centers of Mass and Gravity

The concepts of centre of mass and center of gravity of a system are very useful in mechanics.
Many of the important quantities are similarly simplified using the center of mass. In this
chapter we shall state some basic definitions and some usual methods to compute them.
Homogeneous object: A material or a body is called homogeneous if its composition is
uniform throughout and inhomogeneous otherwise. It means a homogeneous material has
the same properties at every point of the space. For example, an object of uniform density
is sometimes described as homogeneous.

10.1 Density of Homogeneous Material

Density is a very important measurement of a material. Objects of same material regardless
of how big or small an object is, their density will be same. For example, a watch made of
gold and a brick made of gold have different masses and volumes, but they have the same
density. It is denoted by ρ. We can define it, keeping in mind the dimensions of the object.

10.1.1 Density of One Dimensional Object

The density of one dimensional homogeneous material is its mass per unit length. If a
homogeneous body has mass m and length l, then its density is given by

ρ =
m

l
(10.1.1)

The mass m of a homogeneous body can be expressed as

m = ρl (10.1.2)
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10.1.2 Density of Two Dimensional Object

The density of two dimensional homogeneous material is its mass per unit area. If a homo-
geneous body has mass m and area A, then its density is given by

ρ =
m

A
(10.1.3)

The mass m of a two dimensional homogeneous object can be expressed as

m = ρA (10.1.4)

The above definitions are just to understand the concept. For physical bodies, the following
definition is applicable.

10.1.3 Density of Three Dimensional Object

The density of three dimensional homogeneous material is its mass per unit volume. If a
homogeneous body has mass m and volume V , then its density is given by

ρ =
m

V
(10.1.5)

The mass m of a three dimensional homogeneous object can be expressed as

m = ρV (10.1.6)

Example 10.1.1. A table and a chair are made up of red cedar. If the mass and volume

of table are 49.9 kg and 0.13 m3 respectively, and the mass and volume of chair are 19.2 kg

and 0.05 m3 respectively. Is the density of both objects same?

Solution: The given data is

mt = 49.9 kg

Vt = 0.13 m3

mc = 19.2 kg

Vc = 0.05 m3

Using (10.1.5), the density of table is

ρt =
m

V
=

49.9

0.13
= 384 kg/m3
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and the density of chair is

ρc =
19.2

0.05
= 384 kg/m3

The table and chair has same density. It means, density is the property of a material.
Lamina: A lamina is an idealized flat object that has negligible thickness so that it is
viewed as a two-dimensional plane region (see Fig. 10.1).

Figure 10.1: lamina

Example 10.1.2. A triangular lamina with vertices (0, 0), (0, 1), and (1, 0) has mass

3 kg. If the length is measured in meters, find its density.

Solution: The given triangle is right angle triangle with base =1 = perpendicular, its
area is

A =
1

2
(1)(1) =

1

2
m2

(10.1.3), its density is given by

ρ =
m

A
=

3

1/2

= 6 kg/m2

10.2 Moment of Mass

Consider a regular trihedral system with O as origin. Let a mass m is located at P at a
distance r from O as shown in Fig. 10.2, then its moment about O is

M = mr (10.2.1)
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Figure 10.2: Moment of mass

In words, the moment of the mass about O, is the mass multiplied by its distance from O.
The units of moment in SI will be kg.m.
Note: A large moment corresponds to a large turning effect.
Example Let a mass of 10 kg is placed at a distance 8 m from origin, then its moment is
80 kg.m. If the same mass is placed at a distance 10 m from origin, then its moment is
100 kg.m.

10.3 Center of Gravity

Earth attracts every body by a constant gravitational force (weight of the body). As a body
is composed of many particles so each particle is affected by gravity, hence a large number
of forces are acting on the entire body. The point at which the resultant of these forces acts
is called center of gravity of the body. It can be defined as an imaginary point in a body of
matter where the total weight of the body may be thought to be located.

10.4 Center of Mass

For every system of mass m, there is a unique location in space, where all the mass can be
assumed to be located. This place is called the center of mass, and is defined as point with
respect to which the linear moment of mass m is zero. It is commonly designated by c.m
or C.
Note: Center of mass is independent of gravitational field while center of gravity is affected
by gravitational field.
When the gravitational field is uniform, the center of mass is also its center of gravity but
if the body is lying in varying gravitational fields, the center of gravity will be shifted from
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center of mass towards stronger gravitational field. For example if a stronger gravitational
field is found towards right and a weaker gravitational field is found towards left of a body,
the center of mass is unmoved but the center of gravity will be shifted towards stronger
gravitational field.
Here we will consider only earth’s gravitational field that is uniform, hence the center of
mass will be the center of gravity of the body.

10.4.1 Center of Mass of a System of Two Particles

Consider a regular trihedral system and two particle of mass m1 and m2, situated at point
P1 and P2, whose position vectors relative to origin O are ~r1 and ~r2. At center of mass, the
linear moment of mass is zero. Mathematically

m1~r1 +m2~r2 = 0 (10.4.1)

10.4.2 Center of Mass of a Set of n Particles

Consider a regular trihedral system and a set of n particles of masses m1,m2, ...,mn, situated
at point P1, P2, ..., Pn, whose position vectors relative to origin O are ~r1, ~r2, ..., ~rn. At center
of mass, the sum of linear moments of all masses is zero. Mathematically

n∑
i=1

mi~ri = 0 (10.4.2)

Theorem 10.4.1. Every set of particles has one and only center of mass.

Proof Consider a regular trihedral system and a system of n particles of masses
m1,m2, ...,mn, situated at point P1, P2, ..., Pn, whose position vectors relative to origin
O are ~r1, ~r2, ..., ~rn. Suppose C is a center of mass of the system and ~r be its position vector
relative to O. Then the position vector of Pi relative to C is ~ri − ~r. Then by definition, at
C the sum of moments of all masses is zero.

n∑
i=1

mi (~ri − ~r) = 0

n∑
i=1

mi~ri − ~r
n∑
i=1

mi = 0

or we can write

~r

n∑
i=1

mi =

n∑
i=1

mi~ri
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Figure 10.3: center of mass

therefore

~rm =

n∑
i=1

mi~ri

n∑
i=1

mi

(10.4.3)

(10.4.3) gives the position vector of C relative to O. Let C
′

be an other center of mass

of the system and ~r′ be its position vector relative to O. Then the position vector of Pi
relative to C is ~ri − ~r′ . Then by definition, at C

′
the sum of moments of all masses is zero.

n∑
i=1

mi

(
~ri − ~r′

)
= 0

with the same above reasoning, we can write

~r′m =

n∑
i=1

mi~ri

n∑
i=1

mi

(10.4.4)

From (10.4.3) and (10.4.4),we can write

~r′m = ~rm

Hence the system has one and only center of mass.
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Example 10.4.1. Find center of mass of the system consisting of two particles connected

by a massless rod given in the following cases:

(a) Both masses are 1 kg and length of rod is 2 m.

(b) The mass on right from O is 2 kg and the mass on left is 1 kg. The length of rod is

2 m.

(c) Both masses are 1 kg. The mass on right is 1.5 m away from O and mass on left

from O is 1 m away from O.

Solution: The rod is considered to be 1 dimensional object just to understand the
concept. And for one dimensional motion +, − signs are enough to represent the direction
of a vector.

(a) Both masses are same and length of rod is 2 m.

Let the center of the rod be at the origin. Let one mass is at A with position vector 1 m
and the other mass is at B with position vector −1 m. The system is shown the Fig. 10.4.
Here n = 2. Using (10.4.3), the center of mass of the system is

Figure 10.4: System of 2 particles with same masses and same distances

~rm =

2∑
i=1

mi~ri

2∑
i=1

mi

=
m1~r1 +m2~r2
m1 +m2

=
1(1) + 1(−1)

1 + 1
=

0

2
= 0 m

In this case origin is the center of mass.

(b) The mass on right from O is 2 kg and the mass on left from O is 1 kg. The length of
rod is 2 m.
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Let the center of the rod be at the origin. Let the mass of 2 kg is at A with position vector
1 and mass of 1 kg is at B with position vector −1. The system is shown the Fig. 10.5.
Here n = 2. Using (10.4.3), the position vector of center of mass of the system is

Figure 10.5: System of 2 particles with different masses and same distances

~rm =
m1~r1 +m2~r2
m1 +m2

=
2(1) + 1(−1)

1 + 1
=

1

2
= 0.5 m

In this case the center of mass is shifted towards right from origin.

(c) Both masses are 1 kg. The mass on right is 1.5 m away from O and mass on left is
1 m away from O.

Let one mass 1 kg is at A with position vector 1.5 and mass 1 kg is at B with position
vector −1. The system is shown the Fig. 10.6. Here n = 2. Using (10.4.3), the center of

Figure 10.6: System of 2 particles with same masses and different distances

mass of the system is

~rm =
m1~r1 +m2~r2
m1 +m2

=
1(1.5) + 1(−1)

1 + 1
=

0.5

2
= 0.25 m

In this case the center of mass is shifted towards right from origin.
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10.4.3 Cartesian Coordinates of the Center of Mass

Consider a regular trihedral system and a system of n particles of masses m1,m2, ...,mn,
situated at point P1, P2, ..., Pn, whose position vectors relative to origin O are ~r1, ~r2, ..., ~rn.
Then the position vector of Pi is

~ri = xiî+ yiĵ + zik̂ (10.4.5)

Suppose C is a center of mass of the system and ~r = (x̄, ȳ, z̄) be its position vector relative
to O. Then

x̄ =

n∑
i=1

mixi

n∑
i=1

mi

(10.4.6)

ȳ =

n∑
i=1

miyi

n∑
i=1

mi

(10.4.7)

z̄ =

n∑
i=1

mizi

n∑
i=1

mi

(10.4.8)

In case of plane coordinate system, z− coordinate can be ignored considering xy plane and
in case of collinear coordinate system only one coordinate will be sufficient.

Example 10.4.2. A mass of 3 kg is located at (0, 0), a mass of 4 kg is located at (5, 4)

and a mass of 8 kg is located at (−3, 3). Find the coordinates of their centre of mass.

Solution: The given system has three masses and is two dimensional. Here n = 3 Let

m1 = 3 kg

m2 = 5 kg

m1 = 8 kg

Then
3∑
i=1

mi = m1 +m2 +m3 = 3 + 5 + 8

= 16 kg

Sum of moments of all masses about x axis is
3∑
i=1

mixi = m1x1 +m2x2 +m3x3 = 3(0) + 4(5) + 8(−3)

= 0 + 20− 24 = −4 kg.m
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Sum of moments of all masses about y axis is

3∑
i=1

miyi = m1y1 +m2y2 +m3y3 = 3(0) + 4(4) + 8(3)

= 0 + 16 + 24 = 40 kg.m

using (10.4.6), the x coordinate of center of mass are

x̄ =

3∑
i=1

mixi

3∑
i=1

mi

=
−4

16
= −0.25 m

using (10.4.7), the y coordinate of center of mass are

ȳ =

3∑
i=1

miyi

3∑
i=1

mi

=
40

16
= 2.5 m

Hence the centre of mass of the system is located at the point (-0.25, 2.5).

10.5 Centroid of a Body or System

For a uniform body, the center of mass is called centroid. In this case, if body or system
has n particles of equal masses m1 = m2 = ... = mn, situated at point P1, P2, ..., Pn, then
its center of mass or centroid is

~r =

n∑
i=1

~ri

n

(x̄, ȳ, z̄) =


n∑
i=1

xi

n
,

n∑
i=1

yi

n
,

n∑
i=1

zi

n

 (10.5.1)

10.5.1 Center of Mass of a System of n Particles in Plane or Space

If n mass points are not necessarily on a line but are in a plane or in space with position
vectors ~r1, ~r2, ...~rn, then its center of mass is

~rm =
m1~r1 +m2~r2 + ...mn~rn

m1 +m2 + ...mn
(10.5.2)
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The center of mass of a system of two particles of masses m1,m2 is

~rm =
m1~r1 +m2~r2
m1 +m2

(10.5.3)

But (10.5.3) gives the position vector of the point dividing the directed line segment from
~r1 to ~r2 in the ratio m1 : m2. Hence the center of mass of two particles of masses m1,m2

divides the directed line segment from ~r1 to ~r2 in the ratio m1 : m2.
In case of two equal masses m1 = m2 = m, the centroid is

~rm =
~r1 + ~r2

2
(10.5.4)

Example 10.5.1. Consider three masses 2, 3, 4 kg are situated at P1, P2, P3 having position

vectors î, 2̂i− ĵ and 3̂i+ ĵ − 4k̂. What will be their centroid and center of mass?

Solution The position vector of the centroid is

~rm =
î+ 2̂i− ĵ + 3̂i+ ĵ − 4k̂

3

=
6̂i− 4k̂

3

And the position vector of the center of mass is

~rm =
2
(
î
)

+ 3
(

2̂i− ĵ
)

+ 4
(

3̂i+ ĵ − 4k̂
)

2 + 3 + 4

=
19̂i− ĵ − 12k̂

9

Hence the coordinates of the center of mass is
(
19
9 ,−

1
9 ,−

4
3

)
.

10.6 Center of Mass of a Continuous Distribution of Matter

The formulae obtained in the preceding article are applicable in the case of discrete systems
only. If we are to find the center of mass of a continuous distribution of matter forming a
body, integration methods explained below are to be employed. First of all consider one
dimensional object.

10.6.1 Center of Mass of One Dimensional Object

Consider a body (a line or curve) of mass m and length l in one dimension. We subdivide
the object into n parts. Take a small element of length ds with r be its position vector (see
Fig. 10.7), then mass of small element is

dm = ρds
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Figure 10.7: Center of mass of 1 dimensional system

Where ρ is the density of the body. Then the center of mass of the body is

r̄ =

∫
s
~rdm∫
s
dm

=

∫
s
~rdm

m
(10.6.1)

Where the integration has to be performed over the entire body.
More clearly if one dimensional system is x axis and the mass m is from x1 to x2, then its
total length is l = x2 − x1. Consider small element dm having length dx, having position
vector ~x from the orion. Let ρ be the its density at ~r, then

ρ =
dm

dx

or small element is

dm = ρdx

then the center of mass of is

x̄ =

x2∫
x1

~xρdx

x2∫
x1

ρdx

=
1

m

x2∫
x1

~xρdx (10.6.2)
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Where m =
x2∫
x1

ρdx is the total mass of the body.

If the body is homogenous (has uniform distribution of mass), then the center of mass of is

x̄ =

x2∫
x1

~xdx

x2∫
x1

dx

=
1

l

x2∫
x1

~xdx (10.6.3)

Example 10.6.1. Find center of mass of a uniform rod of mass m kg of length a m.

Solution: A uniform rod of mass m kg of length a m is shown in Fig. 10.8 Consider a
small element mass dm of width dx at a distance x from origin O. Here

Figure 10.8: rod of length a

~x = x

m = m kg

l = a

x1 = 0

x2 = a
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Since the rod is uniform, using (10.6.3) the center of mass of the rod is

x̄ =
1

a

a∫
0

xdx

=
1

a

[
x2

2

]a
0

=
1

a

(a)2

2

=
1

2
a m

Hence the center of mass of the rod is its mid point.

10.6.2 Center of Mass of Two Dimensional Object

Consider a lamina of mass m and area A in cartesian coordinate system. We subdivide the
lamina into n rectangles by drawing lines parallel to coordinate axes. Take a small rectangle
of area ds (see Fig. 10.9), then mass of small element is

dm = ρds

Let ri = (xi, yi) be any point in it. Then the center of mass of the lamina is

~rm =

∫
s
~rdm∫
s
dm

=

∫
s
~rdm

m
(10.6.4)

Where the integration has to be performed over the entire body.
More clearly if two dimensional system is in xy plane and the mass m has dimensions

x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2, then its total area is A = (x2 − x1) (y2 − y1). Consider small
element dm having area dA = dxdy. Let ri = (xi, yi) be any point with density ρ in it.
Then

ρ =
dm

dA

or small element is

dm = ρdA
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Figure 10.9: Center of mass of 2 dimensional system

Then the center of mass of the lamina is

r̄ =

x2∫
x1

y2∫
y1

~rρdA

x2∫
x1

y2∫
y1

ρdA

=

x2∫
x1

y2∫
y1

~rρdA

m
(10.6.5)

Where m =
∫
s
ρdA is the total mass of the lamina.

If the body homogenous, then the center of mass of the lamina is

~rm =

x2∫
x1

y2∫
y1

~rdA

x2∫
x1

y2∫
y1

dA

=

x2∫
x1

y2∫
y1

~rdA

A
(10.6.6)

Where A =
∫
s
dA is the total area of the lamina.

Example 10.6.2. Find the center of mass of a uniform rectangular lamina.

Solution
Let OABC be a rectangular lamina of mass m and OA (along x axis) and OB along y axis



234 10 Centers of Mass and Gravity

Let OA = 2a and OC = 2b Area of lamina is

A = 4ab

Consider a small element of surface area dA = dxdy at a distance y from x axis Here

Figure 10.10: rectangular lamina

~r = 〈x, y〉
m = m kg

A = 4ab

x1 = 0

x2 = 2a

y1 = 0

y2 = 2b
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Since lamina is uniform, using (10.6.6) the center of mass of the rod is

~rm =

x2∫
x1

y2∫
y1

~rdA

A

〈x̄, ȳ〉 =

2a∫
0

2b∫
0

〈x, y〉dxdy

4ab

=
1

4ab

〈[
x2

2

]2a
0

2b∫
0

dy,
[
x
]2a
0

2b∫
0

ydy

〉

=
1

4ab

〈[
2a2
] [
y
]2b
0
, (2a)

[
y2

2

]2b
0

〉
=

1

4ab

〈[
2a2
]

(2b) , (2a)
[
2b2
]〉

= 〈a, b〉

Hence the center of mass or centroid of rectangular lamina is (a, b)

10.6.3 Center of Mass of Three Dimensional Object

Consider a three dimensional rigid body of mass m and volume V in a regular trihedral
system. We subdivide the lamina into n rectangular parallelepipeds by drawing planes
parallel to coordinate axes. One such parallelepiped of volume ds is shown in Fig. 10.11.
The mass of small element is

dm = ρds

Let ri = (xi, yi, zi) be any point within it. Then the center of mass of the body is

r̄ =

∫
s
~rdm∫
s
dm

=

∫
s
~rdm

m
(10.6.7)

Where the integration has to be performed over the entire body, and m =
∫
s
dm is the total

mass of the body.
More clearly if three dimensional system is in xyz space and the mass m has dimen-

sions x1 ≤ x ≤ x2, y1 ≤ y ≤ y2 and z1 ≤ z ≤ z2, then its total volume is V =
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Figure 10.11: Center of mass of 3 dimensional system

(x2 − x1) (y2 − y1) (z2 − z1). Consider small element dm having volume dV = dxdydz,
Let ri = (xi, yi, zi) be any point with density ρ in it. Then

ρ =
dm

dV

or small element is

dm = ρdV

Then the center of mass of the body is

~rm =

x2∫
x1

y2∫
y1

z2∫
z1

~rρdV

x2∫
x1

y2∫
y1

z2∫
z1

ρdV

=

x2∫
x1

y2∫
y1

z2∫
z1

~rρdV

m
(10.6.8)

Where m =
∫
s
ρdV is the total mass of the body.

If the body homogenous, then the center of mass of the body is

~rm =

x2∫
x1

y2∫
y1

z2∫
z1

~rdV

x2∫
x1

y2∫
y1

z2∫
z1

dV

=

x2∫
x1

y2∫
y1

z2∫
z1

~rdV

V
(10.6.9)
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Where V =
∫
s
dm is the total volume of the body.

Example 10.6.3. Find the center of mass of a uniform cube.

Solution
Consider a uniform cube of mass m with OA along x axis, OB along y axis and OC along
z axis. Let OA = a, OB = a and OC = a Volume of the cube is

V = a3

Consider a small volume dV = dxdydz at a distance r from origin O. Here

Figure 10.12: A cube with edges along coordinate axis.

~r = 〈x, y, z〉
m = m kg

V = a3

x1 = 0

x2 = a

y1 = 0

y2 = a

z1 = 0

z2 = a
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Since cube is uniform, using (10.6.9) the center of mass of the rod is

~rm =

x2∫
x1

y2∫
y1

z2∫
z1

~rdV

V

〈x̄, ȳ〉 =

a∫
0

a∫
0

a∫
0

〈x, y, z〉dxdydz

a3

=
1

a3

〈[
x2

2

]a
0

a∫
0

a∫
0

dydz,
[
x
]a
0

a∫
0

a∫
0

ydydz,
[
x
]a
0

a∫
0

a∫
0

zdydz

〉

=
1

a3

〈[
a2

2

] [
y
]a
0

a∫
0

dz, (a)

[
y2

2

]a
0

a∫
0

dz, a
[
y
]a
0

a∫
0

zdz

〉

=
1

a3

〈
1

2
a3
[
z
]a
0
,
1

2
a3 [z]a0 , a

2

[
z2

2

]a
0

〉
=

1

a3

〈
1

2
a4,

1

2
a4,

1

2
a4
〉

= 〈a
2
,
a

2
,
a

2
〉

Hence the center of mass or centroid of a uniform cube is (a2 ,
a
2 ,

a
2 )

10.7 Symmetry and Center of Mass

If a body possesses some sort of symmetry, then it is too much easy to compute the position
of its center of mass. We first explain the concept of symmetry and shall therefore show
how to use this concept in determining the center of mass of a body.

10.7.1 Symmetry with respect to a Point

A body is said to be symmetric with respect to a point O if and only if corresponding to
every point P of the body there exist a point P

′
in the body such that O is the middle

point of the line segment PP
′

and ρ(P ) = ρ(P
′
), i.e., the density of the body at the points

P and P
′

is the same. Such symmetry is called central symmetry and the point O is called
the center of symmetry.
It follows that a uniform body is symmetric with respect to origin O if and only if for every
point P (x, y, z) of the body there exist a point P

′
(−x,−y,−z) in the body such that O is

the middle point of the line segment PP
′

and ρ(P ) = ρ(P
′
).

Examples
1. A uniform rod is symmetric with respect to its mid point, hence its mid point is center
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of mass as shown in example 10.6.1.
2. A uniform circular lamina is symmetric with respect to its geometric center.
3. A uniform solid sphere or spherical shell is symmetric with respect to its geometric
center.

10.7.2 Symmetry with respect to a Line

A body is said to be symmetric with respect to a line l if and only if corresponding to every
point P of the body there exist a point P

′
in the body such that l bisects the line segment

PP
′

perpendicularly and ρ(P ) = ρ(P
′
). Such symmetry is called axial symmetry and the

line l is called the axis of symmetry.
In particular, a uniform body is symmetric with respect to the z axis if and only if for every
point P (x, y, z) of the body there exist a point P

′
(−x,−y, z) in the body such that z axis

is the right bisector of the line segment PP
′
.

Examples
1. A uniform circular cylinder is symmetric with respect to its axis.
2. A uniform solid sphere or spherical shell is symmetric with respect to its axis.
A uniform lamina is symmetric with respect to x axis if and only if for every point P (x, y)
of the body there exist a point P

′
(x,−y) of the lamina. In this case its center is the center

of mass as shown in example 10.6.3.

10.7.3 Symmetry with respect to a Plane

A body is said to be symmetric with respect to a plane p if and only if corresponding to
every point P of the body there exist a point P

′
in the body such that p bisects the line

segment PP
′

perpendicularly and ρ(P ) = ρ(P
′
). Such symmetry is called axial symmetry

and the line l is called the axis of symmetry.
In particular, a uniform body is symmetric with respect to the xy plane if and only if for
every point P (x, y, z) of the body there exist a point P

′
(x, y,−z) in the body such that xy

plane bisects of the line segment PP
′
.

Examples
1. A uniform solid or hollow ellipsoid is symmetric with respect to each of its principal
planes.
2. A uniform solid sphere or spherical shell is symmetric with respect to each of its diame-
tral plane (planes passing through the center).

10.8 Centroid of a Plane Region

The centroid C is a point which defines the geometric center of an object. The centroid
coincides with the center of mass or the center of gravity only if the material of the body is
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homogenous (density or specific weight is constant throughout the body). If an object has
an axis of symmetry, then the centroid of object lies on that axis.
Consider the region bounded by the curve y = f(x), the x − axis, the line x = a and the
line x = b as shown in Fig. 10.13. Let the density of the region is 1. Then by (10.1.4) the

Figure 10.13: Plane region.

total mass of the system is the total area of the region

m = A

For uniform distribution of mass the area under the curve is

A =

b∫
a

f(x)dx

Hence the mass of the region is

m =

b∫
a

f(x)dx

As area under the curve is obtained by using approximation method. In this method the
interval [a, b] is divided into n subintervals of length h. Then h is

h =
b− a
n

(10.8.1)

Let xk, k = 1, 2, ...n be the endpoints of each subinterval. Next construct a rectangle on
each subinterval and find its area to approximate the area under the curve. On interval
xk−1 ≤ x ≤ xk, the rectangle has height f(xk) and width xk−xk−1 = h. Its area is its mass

dA = hf(xk) = dm
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And its center of mass is its geometric center, given by

CI =

(
xk −

h

2
,
1

2
f(xk)

)
The mass moment about y − axix of this rectangle is

dMy = hf(xk)

(
xk −

h

2

)
We can imagine that center of mass of each rectangle is its geometric center. The mass
moment about y − axix of all n rectangles is

Mx =

n∑
k=1

[
hf(xk)

(
xk −

h

2

)]
Similarly the mass moment about x− axix of all n rectangles is

My =

n∑
k=1

[
hf(xk)

1

2
f(xk)

]
Taking limit n → ∞, the sum of areas of all rectangles approaches to true area under the
curve, and in the same way the moments about y − axix and x − axix of the rectangles
approaches to true moments of area under the curve. As n→∞, by (10.8.1) h→ 0. Hence
xk − h

2 → xk. Thus for a plane region bounded by y = f(x), the x − axis, the line x = a
and the line x = b, the moments about x− axis is

Mx = lim
n→∞

n∑
k=1

[
hf(xk)

1

2
f(xk)

]

=

b∫
a

xf(x)dx (10.8.2)

and y − axis is

My = lim
n→∞

n∑
k=1

[
hf(xk)

(
xk −

h

2

)]

=

b∫
a

1

2
[f(x)]2 dx (10.8.3)

Hence the x coordinate of center of mass is

x̄ =
Mx

m
=

b∫
a
xf(x)dx

b∫
a
f(x)dx

(10.8.4)
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the y coordinate of center of mass is

ȳ =
My

m
=

b∫
a

1
2 [f(x)]2 dx

b∫
a
f(x)dx

(10.8.5)

Example 10.8.1. Find the center of mass of a plane region bounded by the curve y =
√
x,

the x− axis, the line x = 1 and the line x = 3.

Solution
The given data is

f(x) =
√
x = x

1
2

a = 1

b = 3

The plane region bounded by the curve y =
√
x, the x − axis, the line x = 1 and the line

x = 3 is shown in Fig. 10.14. The area of the region is

Figure 10.14: Plane region.
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A =

b∫
a

f(x)dx

=

3∫
1

(x)
1
2dx

=

[
(x)

3
2

3
2

]3
1

=
2

3

[
(3)

3
2 − 1

]
= 2.8 units2

Using (10.8.2) the mass moments about x− axis is

Mx =

b∫
a

xf(x)dx

=

3∫
1

x(x)
1
2dx =

3∫
1

(x)
3
2dx

=

[
(x)

5
2

5
2

]3
1

=
2

5

[
(3)

5
2 − 1

]
= 5.8 units3

Using (10.8.3) the mass moments about y − axis is

My =

b∫
a

1

2
[f(x)]2 dx

=

3∫
1

1

2

[√
x
]2
dx

=

3∫
1

1

2
xdx

=
1

2

[
x2

2

]3
1

= 2 units3
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Using (10.8.4) the x coordinate of center of mass is

x̄ =
Mx

m
=

b∫
a
xf(x)dx

b∫
a
f(x)dx

=
5.8

2.8
= 2.1 units

Using (10.8.5) the y coordinate of center of mass is

ȳ =
My

m
=

b∫
a

1
2 [f(x)]2 dx

b∫
a
f(x)dx

=
2

2.8
= 0.7 units

Hence the center of mass is (2.1, 0.7) unit.
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Exercises

1. The density of glass of mass 10kg is 3140 kg/m3. Determine its volume.

2. A mass of 5 kg is located at (1, 0,−1), a mass of 4 kg is located at (2, 5, 4) and a mass
of 2 kg is located at (4,−3, 1). Find the coordinates of their centre of mass.

3. A square of side a has particles of masses 1 kg, 2 kg, 3 kg, 4 kg at its vertices. Find
the center of mass of the system.

4. Find the center of mass of a uniform rectangular lamina whose center is the origin of
the coordinate system.

5. Find the center of mass of a uniform triangular lamina.

6. Find the center of mass of a uniform circular disc whose center

(a) is the origin of the coordinate system.

(b) lies on x axis of the coordinate system and passing through the origin.

(c) lies on y axis of the coordinate system and passing through the origin.

7. Find the center of mass of a uniform elliptic disc whose center lies on the origin.

8. Find the center of mass of a plane region bounded by

(a) lines y = 2x, y = −2x and x = 2.

(b) the curve y =
√
x, the x− axis and the line x = 4.

(c) the curve y = x2, the x− axis and the lines x = 1, x = 2.
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Chapter 11

Moments and Products of Inertia

Inertia The tendency of a body to preserve its state of rest or uniform motion unless acted
upon by an external force.

11.1 Moments of Inertia

The moment of inertia plays much the same role in rotational dynamics as mass does in
linear dynamics. In classical mechanics, moment of inertia, also called mass moment of
inertia, rotational inertia, polar moment of inertia of mass, or the angular mass.
It is the inertia of a rotating body with respect to its rotation. i.e. a quantity that measures
the resistance of an object to changes to its rotation. The symbols I and sometimes J are
usually used to refer it.

11.1.1 Moments of Inertia of a Particle

Moment of inertia of a particle of mass m about line l or AB axis is defined as

I = md2 (11.1.1)

Where I stands for moment of inertia and d is the perpendicular distance of the particle
of mass m from the line l or AB axis (see Fig. 11.1). In SI its measuring unit is kg ·m2.
For continuous distribution of mass the moment of inertia is

I =

∫
r2dm (11.1.2)

Where r is the distance of the mass element dm from the given line or axis and the inte-
gration is to be performed for entire body.
In this chapter, the body under consideration has uniform distribution of mass.
The moment of inertia describes the relationship between angular momentum and angular

247
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Figure 11.1: Moment of inertia of a single particle

velocity, torque and angular acceleration, and several other quantities.

11.1.2 Moments of Inertia of a System of Particles

The moment of inertia of a system of particles of masses m1,m2, ...,mn about line l or AB
axis is defined as

I = m1d
2
1 +m2d

2
2 + ...+mnd

2
n

=
n∑
i=1

mid
2
i (11.1.3)

Where di is the distance of the particle of mass mi from the line l or AB axis (see Fig.
11.2).

11.2 Moment of Inertia of a Mass with Continuous Distri-

bution

The formulae obtained in the preceding article are applicable in the case of discrete systems
only. If we are to find the moment of inertia of a continuous distribution of matter forming
a body, integration methods explained below are to be employed. First of all consider one
dimensional object.
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Figure 11.2: Moment of inertia of a system of particles

11.2.1 Moment of Inertia of One Dimensional Particle

Consider a body (a line or curve) of mass m in one dimension. Take a small element of
length ds (see Fig. 11.3), then mass of small element,

dm = ρds

Let AB be the axis of rotation, then moment of inertia of small element dm is

dI = dmd2

M.I. of body about AB axis is

I =

∫
s

dmd2

=

∫
s

ρd2ds (11.2.1)

More clearly if one dimensional system is x axis and the mass m is from x1 to x2, then
its total length is l = x2 − x1. Consider small element dm having length dx, at a distance
d = x from the axis of rotation. Since the body has uniform distribution of mass, then

ρ =
masstotal
lengthtotal

=
dm

dx

or small element is

dm =
m

x2 − x1
dx
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Figure 11.3: Moment of inertia of 1 dimensional system

then moment of inertia of small element dm is

dI = dmd2

=
m

x2 − x1
x2dx (11.2.2)

M.I. of body about AB axis is

I =
m

x2 − x1

x2∫
x1

x2dx (11.2.3)

11.2.2 Moment of Inertia of Two Dimensional Particle

Consider a body (a plane curve) of mass m in two dimension. Take a small element area
ds (see Fig. 11.4), then mass of small element,

dm = ρds

Let AB be the axis of rotation, then moment of inertia of small element dm is

dI = dmd2

M.I. of body about AB axis is

I =

∫∫
s

dmd2

=

∫∫
s

ρd2ds (11.2.4)
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Figure 11.4: Moment of inertia of 2 dimensional system

More clearly if two dimensional system is xy plane and the mass m has dimensions x1 ≤
x ≤ x2 and y1 ≤ y ≤ y2, then its total area is A = (x2 − x1) (y2 − y1). Consider small
element dm having area dA = dxdy, at a distance d from the axis of rotation. Since the
body has uniform distribution of mass, then

ρ =
masstotal
Areatotal

=
dm

dA

or small element is

dm =
m

A
dA

then moment of inertia of small element dm about the axis of rotation is

dI = dmd2

=
m

A
d2dA (11.2.5)

M.I. of body about AB axis is

I =
m

A

x2∫
x1

y2∫
y1

d2dxdy (11.2.6)

11.3 Moment of Inertia of Three Dimensional Particle

Consider a body (a surface) of mass m in three dimension. Take a small element of volume
ds (see Fig. 11.5), then mass of small element,

dm = ρds
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Let AB be the axis of rotation, then moment of inertia of small element dm is

dI = dmd2

M.I. of body about AB axis is

I =

∫∫∫
s

dmd2

=

∫∫∫
V

ρd2ds (11.3.1)

More clearly if three dimensional system is xyz space and the mass m has dimensions x1 ≤

Figure 11.5: Moment of inertia of 3 dimensional system

x ≤ x2, y1 ≤ y ≤ y2 and z1 ≤ y ≤ z2, then its total volume is V = (x2 − x1) (y2 − y1) (z2 − z1).
Consider small element dm having volume dV = dxdydz, at a distance d from the axis of
rotation. Since the body has uniform distribution of mass, then

ρ =
masstotal
V olumetotal

=
dm

dV

or small element is

dm =
m

V
dV

then moment of inertia of small element dm about the axis of rotation is

dI = dmd2

=
m

V
d2dV (11.3.2)
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M.I. of body about AB axis is

I =
m

V

x2∫
x1

y2∫
y1

z2∫
z1

d2dxdydz (11.3.3)

11.4 Radius of Gyration

Radius of gyration of a body about an axis, is the effective distance (perpendicular distance)
of point P from its axis where whole mass can be assumed to be concentrated so that I
remains the same.

For a system of mass M =
n∑
i=1

mi and moment of inertia I about an axis, the radius of

Gyration denoted by K and is defined as

K2 =
I

M

=

n∑
i=1

mir
2
i

n∑
i=1

mi

(11.4.1)

where ri the perpendicular distances of mass mi from axis of rotation. When the mass has

Figure 11.6: Radius of gyration
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equal distribution i.e M = nm

K2 =

n∑
i=1

mr2i

n∑
i=1

mi

=

(
mr21 +mr22 + ...+mr2n

)
nm

=
nm

(
r21 + r22 + ...+ r2n

)
nm

=
n∑
i=1

r2i (11.4.2)

and the radius of gyration is

K =

√√√√ n∑
i=1

r2i

When a system consists of a single particle then the radius of Gyration about a line or axis

Figure 11.7: Radius of gyration

is simply the distance of the particle from the line or axis.

K =

√
I

m
(11.4.3)

K2 =
I

m

=
mr2

m
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or

K = r (11.4.4)

11.5 Moment of Inertia about Coordinate Axes

11.5.1 Moment of Inertia of a Single Particle

Consider a particle P of masses m in a regular trihedral system OXY Z. Its perpendicular
distance from OZ axis is

d = PR = OQ

=
√
x2 + y2 (11.5.1)

Then its moment of inertia about OZ axis is

Figure 11.8: M.I of of a single particle

IOZ = md2

= m(x2 + y2) (11.5.2)

Similarly about OX axis

IOX = m(y2 + z2) (11.5.3)

and OY axis

IOY = m(x2 + z2) (11.5.4)



256 11 Moments and Products of Inertia

11.5.2 Moment of Inertia of a System of n Particles

Consider a system of particles P1(x1, y1, z2), P2(x2, y2, z2), ... Pn(xn, yn, zn) with masses
m1,m2, ...,mn respectively in a regular trihedral system OXY Z. The ith particle of mass
mi is at point Pi having a distance di from z axis. Then its moment of inertia about the
axis OZ is

Figure 11.9: M.I of of a system of particles

dIOZ = midi
2

= mi

(
xi

2 + yi
2
)

(11.5.5)

and the moment of inertia of the rigid body about the z axis is

C = IOZ = Izz =
n∑
i=1

mi

(
xi

2 + yi
2
)

(11.5.6)

about OX axis is

A = IOX = Ixx =
n∑
i=1

mi(yi
2 + zi

2) (11.5.7)

and about OY axis is

B = IOY = Iyy =

n∑
i=1

mi(xi
2 + zi

2) (11.5.8)
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11.6 Product of Inertia

The quantities

D =
n∑
i=1

miyizi (11.6.1)

E =
n∑
i=1

mizixi (11.6.2)

F =
n∑
i=1

mixiyi (11.6.3)

are called products of inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively.
They are a measure of the imbalance in the mass distribution. They can be positive, nega-
tive, or zero.

11.6.1 Product of Inertia for a System of Continuous Distribution of Mass

The M.I. about x−axis, y−axis and z−axis are defined as under

A =

∫∫∫
V

ρ
(
y2 + z2

)
dV (11.6.4)

B =

∫∫∫
V

ρ
(
z2 + x2

)
dV (11.6.5)

C =

∫∫∫
V

ρ
(
x2 + y2

)
dV (11.6.6)

Similarly, the products of inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively
are as under

D =

∫∫∫
V

ρyzdV (11.6.7)

E =

∫∫∫
V

ρzxdV (11.6.8)

F =

∫∫∫
V

ρxydV (11.6.9)
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For laminas in xy plane, we put z = 0, then



A =
n∑
i=1

miy
2
i

B =
n∑
i=1

mix
2
i

C =
n∑
i=1

mi

(
x2i + y2i

) (11.6.10)

Similarly, the products of inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively
are as under 

D = 0

E = 0

F =
n∑
i=1

mixiyi

(11.6.11)

and for continuous distribution of mass

A =

∫∫
S

ρy2dA

B =

∫∫
S

ρx2dA

C =

∫∫
S

ρ
(
x2 + y2

)
dA

Similarly, the products of inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively
are as under

D = 0

E = 0

F =

∫∫
S

ρxydxdy

11.7 Parallel Axis Theorem

The parallel axis theorem states that the moment of inertia of a body about any axis is
equal to the moment of inertia about a parallel axis through the center of mass, plus the
mass of the body × the square of the distance between the two axes.
Proof : Consider a rigid body in a regular trihedral system. Let C be the center of mass
and M be the total mass of the body. i.e.

M =

n∑
i=1

mi (11.7.1)
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Let mi be the mass of the ith particle. Then for its M.I about z−axis, we consider another
axis PC parallel to it. Let d be the distance between these two parallel axes. Let ~ri and ~ai
be the position vectors of the particle P of mass mi relative to O and C respectively. Let
rc be the position vector of point C relative to O. Then

~ri = ~rC + ~ai (11.7.2)

The moment of inertia of mass mi about z − axis is

Figure 11.10: Parallel axis theorem

Izz = mir
2
i

And the moment of inertia of the body about z − axis is

Izz =
n∑
i=1

mir
2
i

=
n∑
i=1

mi (~ri · ~ri)

using (11.7.2) we have

Izz =

n∑
i=1

mi ( ~rC + ~ai) · ( ~rC + ~ai)

=

n∑
i=1

mi

(
r2C + 2rCai + a2i

)
= r2C

n∑
i=1

mi + 2rC

n∑
i=1

miai +

n∑
i=1

mia
2
i (11.7.3)
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From Fig. 11.10, we have r2C = d2. Also the term miai represents moment of a force about

a point lying on its line of action. So the term miai = 0. And the term
n∑
i=1

mia
2
i represents

M.I of mi about PC axis. Using above results along with (11.7.1), (11.7.3) can be written
as

Izz = d2M + IPC (11.7.4)

11.8 Perpendicular Axis Theorem

For a 2D object (a thin plate) the moment of inertia about a perpendicular axis equals the
sum of the moments of inertia about any two axes at right angles through the same point
in the plane. It states that the moment of inertia of the lamina about the z− axis is equal
to the sum of the moments of inertia about the x− and y − axes.

Izz = Ixx + Iyy

Proof : Consider a regular trihedral system. Let Ox,Oy are the axes in the xy plane of
lamina and Oz be the normal axis, Let a particle of mass m, lying at point P in xy plane.
Then its distance from x axis is x and from y axis is y. Then its M.I. about Ox and Oy
axes are respectively:

Ixx = mx2 (11.8.1)

Iyy = my2 (11.8.2)

Let r be its distance from oz axis i.e. perpendicular axis(see Fig 11.11). Then the M.I.
about Oz axis is

Figure 11.11: M.I. about perpendicular axis
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Izz = mr2

= m
(
x2 + y2

)
= mx2 +my2 (11.8.3)

Using (11.8.1) and (11.8.2), (11.8.3) becomes

Izz = Ixx + Iyy

Similarly for a system of n particles, the M.I. about perpendicular axis, i.e., oz axis is

Izz =
∑
i

mir
2
i

=
∑
i

mi

(
x2i + y2i

)
= Ixx + Iyy

11.8.1 Converse of Perpendicular Axis Theorem

It states that the moment of inertia of an object about the z − axis is equal to the sum of
the moments of inertia about the x− and y − axes i.e.

Izz = Ixx + Iyy (11.8.4)

then the object is a plane lamina.
Proof : Consider a particle P of masses m in a regular trihedral system OXY Z. Its
perpendicular distance from OZ axis is

d = PR = OQ

=
√
x2 + y2 (11.8.5)

Then its moment of inertia about OZ axis is

Izz = md2

= m(x2 + y2) (11.8.6)

Similarly about OX axis

Ixx = m(y2 + z2) (11.8.7)

and OY axis

Iyy = m(x2 + z2) (11.8.8)

Using (11.8.5), (11.8.5) and (11.8.5) in (11.8.4), we have

mx2 +my2 = my2 +mz2 +mx2 +mz2

2mz2 = 0
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Figure 11.12: Position of a body

Since 2m 6= 0, ⇒ z = 0
Hence the given object is a plane.
Similarly for a system of n particles

n∑
i=1

mix
2 +

n∑
i=1

miy
2 =

n∑
i=1

miy
2 +

n∑
i=1

miz
2 +

n∑
i=1

mix
2 +

n∑
i=1

miz
2

2
n∑
i=1

mizi
2 = 0

Since 2
n∑
i=1

mi 6= 0, ⇒ zi = 0 ∀i

Hence the given object is a plane.

11.9 Angular Momentum of a Rigid Body

Angular momentum can be subdivided as the body can rotate about instantaneous axis
and about fixed axis.

11.9.1 Angular Momentum of a Body Rotating About an Instantaneous

Axis

Consider a system of n particles rotating about an axis OC through O with angular velocity
~ω. Let â be a unit vector in the direction of OC axis having direction cosines λ, µ, ν. Then

â = 〈λ, µ, ν〉 (11.9.1)
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Let a particle of mass mi lying at P having position vector ~ri. Then

~OP = ~r = 〈xi, yi, zi〉 (11.9.2)

Let d be its perpendicular distance from OC axis. Then

Figure 11.13: Angular Momentum of a rigid body about instantaneous axis

d = PM = r sin θ = |~r||â| sin θ
= |~r × â| (11.9.3)

Using (11.9.1) and (11.9.2), ~r × â is

~r × â =


î ĵ k̂

xi yi zi

λ µ ν


= 〈νyi − µzi, λzi − νxi, µxi − λyi〉

(11.9.3) can be written as

d =

√
(νyi − µzi)2 + (λzi − νxi)2 + (µxi − λyi)2

=
√
λ2
(
y2i + z2i

)
+ µ2

(
z2i + x2i

)
+ ν2

(
x2i + y2i

)
− 2µνyizi − 2λνxizi − 2λµxiyi

or

d2 = λ2
(
y2i + z2i

)
+ µ2

(
z2i + x2i

)
+ ν2

(
x2i + y2i

)
− 2µνyizi − 2λµxizi − 2λµxiyi (11.9.4)
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Hence M.I. of mass mi about OC axis with unit vector 〈λ, µ, ν〉 is

IOC = mi

[
λ2
(
y2i + z2i

)
+ µ2

(
z2i + x2i

)
+ ν2

(
x2i + y2i

)]
− mi [2µνyizi + 2λνxizi + 2λµxiyi] (11.9.5)

and the M.I. of of the body about OC axis is

IOC =
n∑
i=1

mi

[
λ2
(
y2i + z2i

)
+ µ2

(
z2i + x2i

)
+ ν2

(
x2i + y2i

)]
−

n∑
i=1

mi [2µνyizi + 2λνxizi + 2λµxiyi] (11.9.6)

11.9.2 Angular Momentum of a Body Rotating About a Fixed Point and

Fixed Axis

Consider a system of n particles rotating about an axis OC through O with angular velocity
~ω. Let one of the points of the rigid body is fixed, so translation motion is absent. Let a
particle of mass mi lying at P having position vector ~ri. Then its linear velocity in terms
of angular velocity is

~vi = ~ω × ~ri (11.9.7)

The linear momentum p of the ith particle is

Figure 11.14: Angular momentum of a body

~pi = mi~vi (11.9.8)
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Using (11.9.7), (11.9.8) becomes

~pi = mi (~ω × ~ri) (11.9.9)

The angular momentum Li of the ith particle is

~Li = ~ri × ~pi (11.9.10)

Using (11.9.9), (11.9.10) becomes

~Li = ~ri ×mi (~ω × ~ri) (11.9.11)

The angular momentum L of the rigid body is

L =
n∑
i=1

~Li =
n∑
i=1

mi [~ri × (~ω × ~ri)]

=
n∑
i=1

mi [(~ri · ~ri) ~ω − (~ri · ~ω)~ri]

=
n∑
i=1

mir
2
i ~ω −

n∑
i=1

mi (~ri · ~ω)~ri (11.9.12)

Next we consider a regular trihedral system. Then each ~ri is

~ri = 〈xi, yi, zi〉 (11.9.13)

and ω can be written as

~ω = 〈ωx, ωy, ωz〉

Then we have

r2i = x2i + y2i + z2i (11.9.14)

and

~ri · ~ω = xiωx + yiωy + ziωz

Using above results (11.9.13)

〈Lx, Ly, Lz〉 =
n∑
i=1

mi

(
x2i + y2i + z2i

)
〈ωx, ωy, ωz〉

−
n∑
i=1

mi (xiωx + yiωy + ziωz) 〈xi, yi, zi〉 (11.9.15)



266 11 Moments and Products of Inertia

Figure 11.15: Angular momentum of a rigid body

Next x component of (11.9.15) can be written as

Lx =
n∑
i=1

mi

(
x2i + y2i + z2i

)
ωx −

n∑
i=1

mi

(
x2iωx + xiyiωy + xiziωz

)
=

n∑
i=1

mi

(
y2i + z2i

)
ωx −

n∑
i=1

mixiyiωy −
n∑
i=1

mixiziωz (11.9.16)

Using (11.5.7), (11.6.1) and (11.6.2), (11.9.16) can be written as

Lx = Ixxωx − Ixyωy − Ixzωz (11.9.17)

Using M.I. about coordinate axes (11.5.6), (11.5.7), (11.5.8) and product of inertia (11.6.1),
(11.6.2) and (11.6.3), the x, y, z components of angular momentum can be written as

Lx = Ixxωx − Ixyωy − Ixzωz
Ly = −Iyxωx + Iyyωy − Iyzωz
Lz = −Izxωx − Izyωy + Izzωz

In compact form it can be written as

Li =

3∑
j=1

Iijωj i = 1, 2, 3 (11.9.18)

In another format it can be written as

Lx = Aωx − Fωy − Eωz
Ly = −Fωx +Bωy −Dωz
Lz = −Eωx −Dωy + Cωz
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and in matrix form can be written as

Lx

Ly

Lz


=



A −F −E

−F B −D

−E −D C





ωx

ωy

ωz


(11.9.19)

and in symbolic form can be written as

~L = [I]~ω

The inertia matrix [I] gives us an idea about how the mass is distributed in a rigid body.
(11.9.19) represents angular momentum of a rigid body about a fixed point in terms of
inertia. It follows from (11.9.19), that the tensors of inertia are always symmetric. In many

Figure 11.16: Angular momentum when rotation of a body is about arbitrary axis

situations of importance, even for bodes of some symmetry, the angular momentum vector
L and the angular velocity vector ω are not parallel.

Corollary 11.9.1. Show that

Lk = Ikω (11.9.20)

where Lk is the angular momentum and Ik is the moment of inertia about k̂ axis.
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Solution: Let the rotation is about k̂ axis. Then

~ω = ωk̂

where is a unit vector pointing along the object’s axis of rotation (in the sense given by the
right-hand grip rule). then (11.9.7) can be written as

~vi = ωk̂ × ~ri (11.9.21)

The angular momentum Li of the ith particle (11.9.10)

~Li = ~ri × ~pi = mi~ri × ~vi
= ~ri × ~pi = ωmi~ri ×

(
k̂ × ~ri

)
And for the whole system

L =

n∑
i=1

~Li = ω

n∑
i=1

mi

[
~ri ×

(
k̂ × ~ri

)]
We can write the component of angular momentum along the axis of rotation as

Lk = ~L.k̂ = ω

n∑
i=1

mi

[
k̂ · ~ri ×

(
k̂ × ~ri

)]
(11.9.22)

since ~a ·~b× ~c = ~a×~b · ~c , (11.9.22) can be rewritten as

Lk = ω

n∑
i=1

mi

[(
k̂ × ~ri

)
·
(
k̂ × ~ri

)]
(11.9.23)

= ω

n∑
i=1

mi

∣∣∣k̂ × ~ri∣∣∣2 (11.9.24)

Next the term
n∑
i=1

mi

∣∣∣k̂ × ~ri∣∣∣2 is the moment of inertia about k̂ axis. Let it be Ik. Then

(11.9.23) can be rewritten as

Lk = Ikω (11.9.25)

It means that the component of a rigid body’s angular momentum vector along its axis
of rotation is simply the product of the body’s moment of inertia about this axis and the
body’s angular velocity. Does this result imply that we can automatically write

~L = I~ω (11.9.26)

Unfortunately, in general, the answer to the above question is no! This conclusion fol-
lows because the body may possess non-zero angular momentum components about axes
perpendicular to its axis of rotation. Thus, in general, the angular momentum vector of
a rotating body is not parallel to its angular velocity vector. This is a major difference
from translational motion, where linear momentum is always found to be parallel to linear
velocity.
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11.10 Kinetic Energy of a Body Rotating About a Fixed

Point

Consider a system of n particles rotating about an axis OC through O with angular velocity
~ω. Let a particle of mass mi lying at P having position vector ~ri. Then its linear velocity
in terms of angular velocity is

Figure 11.17: Rotational Kinetic energy of a body

~vi = ~ω × ~ri (11.10.1)

And the kinetic energy of the ith particle is

Ki =
1

2
miv

2
i

=
1

2
mi|~vi|2

=
1

2
mi(~vi · ~vi)

Next the kinetic energy of the whole system is

K =

n∑
i=1

Ki =
1

2

n∑
i=1

mi(~vi · ~vi) (11.10.2)
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Using (11.10.1), (11.10.2) becomes

K = =
1

2

n∑
i=1

mi(~ω × ~ri) · (~ω × ~ri)

=
1

2

n∑
i=1

mi~ω · [~ri × (~ω × ~ri)]

=
1

2
~ω ·

n∑
i=1

mi(~ri × ~vi)

=
1

2
~ω ·

n∑
i=1

(~ri ×mi~vi)

=
1

2
~ω ·

n∑
i=1

(~ri × ~pi)

=
1

2
~ω ·

n∑
i=1

~Li (11.10.3)

=
1

2
~ω · ~L (11.10.4)

Next we consider a regular trihedral system. Its angular momentum in terms of inertia is

~Li =
3∑
i=1

Iij~ωj , i = j = 1, 2, 3 (11.10.5)

and ω can be written as

~ω = 〈ω1, ω2, ω3〉

Using (11.10.5), (11.10.3) becomes

K =
1

2

3∑
i,j=1

Iij~ωi · ~ωj , i = j = 1, 2, 3 (11.10.6)

Consider OXY Z a regular trihedral system, then

K =
1

2

[
Ixxω

2
x + Iyyω

2
y + Izzω

2
z + 2Ixyωxωy + 2Iyzωyωz + 2Izxωzωx

]
If the body rotates about z axis with angular velocity ω then

ωz = ω, , ωx = 0 = ωy

Then above relation becomes

K =
1

2
Izzω

2
z
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Figure 11.18: Rotational kinetic energy when rotation of a body is about z axis

In this case the components of angular momenta are

Lx = Izxωz

Ly = Iyzωz

Lz = Izzωz

Which shows that in general, the direction of angular velocity and the direction of the
angular momenta are different.
If the axis of rotation is coordinate axis it follows.

K =
1

2
Iω2 (11.10.7)

11.11 Principal Axes

Consider a regular trihedral system. A body of mass m is rotating about an axis through a
point O with angular velocity ~ω. If the angular momentum ~L is parallel to angular velocity
~ω then the axis of rotation is known as principal axis. In equation form we can write as

~L = k~ω (11.11.1)

〈Lx, Ly, Lz〉 = 〈kωx, kωy, kωz〉 (11.11.2)

where k is some constant.
For a three-dimensional body, it is always possible to find three mutually orthogonal axis
(a regular trihedral system), for which the products of inertia are zero, and the inertia
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matrix takes a diagonal form. Then the rotation is about only one of these axis, and the
angular momentum vector is parallel to the angular velocity vector. In most problems, such
systems are preferred. For symmetric bodies, it may be obvious which axis are principle
axis. However, for an irregular-shaped body this coordinate system may be difficult to
determine by inspection.

Theorem 11.11.1. Prove that in general, there are three principal axes through a point of

rigid body.

Proof Consider (11.9.19)



Lx

Ly

Lz


=



A −F −E

−F B −D

−E −D C





ωx

ωy

ωz


Using (11.11.2) we can write



kωx

kωy

kωz


=



Aωx −Fωy −Eωz

−Fωx Bωy −Dωz

−Eωx −Dωy Cωz


or can be written as

kωx = Aωx − Fωy − Eωz
kωy = −Fωx +Bωy −Dωz
kωz = −Eωx −Dωy + Cωz

and we have

(A− k)ωx − Fωy − Eωz = 0

−Fωx + (B − k)ωy −Dωz = 0 (11.11.3)

−Eωx −Dωy + (C − k)ωz = 0
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The above system has a non-zero solution only if∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A− k −F −E

−F B − k −D

−E −D C − k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



A− k −F −E

−F B − k −D

−E −D C − k


+ k



1 0 0

0 1 0

0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

|I − kE| = 0 (11.11.4)

Where E is identity matrix.
(11.11.13) is known as characteristic equation of symmetric inertia matrix. This equation
has three real roots (since matrix is symmetric), known as eigen values. Let k = (k1, k2, k3)
be the corresponding roots. Let (λ, µ, ν) has values as

(λ1, µ1, ν1)→ k = k1

(λ2, µ2, ν2)→ k = k2

(λ3, µ3, ν3)→ k = k3

These three sets of value determine three principal axes â1, â2, â3 has the form

âj = 〈λj , µj , νj〉 with j = 1, 2, 3

Another Approach Let â be a unit vector along principal axis of body through O. Then
angular velocity vector is

~ω = ωâ

and angular momentum is

~L = Lâ

using (11.11.1)

~L = kωâ
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Also consider (11.9.12)

L =

n∑
i=1

mir
2
i ~ω −

n∑
i=1

mi (~ri · ~ω)~ri

using above results we have

kωâ =

n∑
i=1

mir
2
i ωâ−

n∑
i=1

mi (~ri · ωâ)~ri

= ω

(
n∑
i=1

mir
2
i â−

n∑
i=1

mi (~ri · â)~ri

)

Canceling ω on both sides, we have

kâ =
n∑
i=1

mir
2
i â−

n∑
i=1

mi (~ri · â)~ri

or we can write

n∑
i=1

mi (~ri · â)~ri =

(
n∑
i=1

mir
2
i − k

)
â (11.11.5)

Let

~ri = 〈xi, yi, zi〉

and

â = 〈λ, µ, ν〉

Then

r2i = x2i + y2i + z2i

and

~ri · â = xiλ+ yiµ+ ziν

using above results (11.11.5) becomes

n∑
i=1

mi (xiλ+ yiµ+ ziν) 〈xi, yi, zi〉 =

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
〈λ, µ, ν〉
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Since the above two vectors are equal, so their corresponding entries must be equal

n∑
i=1

mi

(
x2iλ+ xiyiµ+ xiziν

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
λ

n∑
i=1

mi

(
xiyiλ+ y2i µ+ yiziν

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
µ

n∑
i=1

mi

(
xiziλ+ yiziµ+ z2i ν

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
ν

Let

~ri = 〈xi, yi, zi〉

and

â = 〈λ, µ, ν〉

Then

r2i = x2i + y2i + z2i

and

~ri · â = xiλ+ yiµ+ ziν

using above results (11.11.5) becomes

n∑
i=1

mi (xiλ+ yiµ+ ziν) 〈xi, yi, zi〉 =

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
〈λ, µ, ν〉

Since the above two vectors are equal, so their corresponding entries must be equal

n∑
i=1

mi

(
x2iλ+ xiyiµ+ xiziν

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
λ

n∑
i=1

mi

(
xiyiλ+ y2i µ+ yiziν

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
µ

n∑
i=1

mi

(
xiziλ+ yiziµ+ z2i ν

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k

)
ν

or (
n∑
i=1

mi

(
y2i + z2i

)
− k

)
λ−

n∑
i=1

mixiyiµ−
n∑
i=1

mixiziν = 0(
n∑
i=1

mi

(
x2i + z2i

)
− k

)
µ−

n∑
i=1

mixiyiλ−
n∑
i=1

miyiziν = 0(
n∑
i=1

mi

(
x2i + y2i

)
− k

)
ν −

n∑
i=1

mixiziλ−
n∑
i=1

miyiziµ = 0
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Using the notations of M.I about coordinate axis and products of inertia

(A− k)λ− Fµ− Eν = 0

−Fλ+ (B − k)µ−Dν = 0

−Eλ−Dµ+ (C − k)ν = 0

Next is the same as above.

Theorem 11.11.2. Three principal axes through a point of a rigid body are mutually or-

thogonal.

Proof Let â1, â2, â3 be three principal axes corresponding to eigen values k1, k2, k3 of
the characteristic equation ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A− k −F −E

−F B − k −D

−E −D C − k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Let all the eigen values k1, k2, k3 are different. Then (11.11.5)

n∑
i=1

mi (~ri · â)~ri =

(
n∑
i=1

mir
2
i − k

)
â

takes the form

n∑
i=1

mi (~ri · â1)~ri =

(
n∑
i=1

mir
2
i − k1

)
â1 (11.11.6)

n∑
i=1

mi (~ri · â2)~ri =

(
n∑
i=1

mir
2
i − k2

)
â2 (11.11.7)

n∑
i=1

mi (~ri · â3)~ri =

(
n∑
i=1

mir
2
i − k3

)
â3 (11.11.8)

Next we eliminate the sums. First consider (11.11.6) and (11.11.7). Scalar Multiplication
of (11.11.6) by â2 and (11.11.7) by â1 and then subtracting we get.

(k1 − k2) â1 · â2 = 0

Since k1 and k2 are different. i.e k1 − k2 6= 0. Then

â1 · â2 = 0 (11.11.9)
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Similarly

â1 · â3 = 0 (11.11.10)

and

â2 · â3 = 0 (11.11.11)

(11.11.9), (11.11.10) and (11.11.11) shows that â1, â2, â3 are mutually orthogonal.

Remark 11.11.1. For a general three-dimensional body, it is always possible to find three

mutually orthogonal axis (a regular trihedral system) for which the products of inertia are

zero, and the inertia matrix is a diagonal matrix. In most problems, this would be the

preferred system in which to formulate a problem. For a rotation about only one of these

axis, the angular momentum vector is parallel to the angular velocity vector. For symmetric

bodies, it may be obvious which axis are principle axis. However, for an irregular-shaped

body this coordinate system may be difficult to determine by inspection; we will present a

general method to determine these axes in the next section.

1. If a body has k1 6= k2 6= k3 i.e. all principal moments of inertia are distinct, then there
are exactly three mutually perpendicular axis through O. It is termed as asymmetric
top

2. If a body has k1 6= k2 = k3 (i.e two roots are equal) then there is one principal axis
corresponding to k1 through O, and every line through O and perpendicular to â1
axis is a principal axis. Hence we have infinite set of principal axes with one fixed
principal axis along (â1). It is termed as symmetrical top.

3. If a body has k1 = k2 = k3 then any three mutually perpendicular axis through O
(center of a sphere) are principal axis, it is termed as spherical top.

4. If a body has k1 = 0 and k2 = k3, as for example, two point masses connected by a
weightless shaft, or a diatomic molecule, it is called a rotor.

Theorem 11.11.3. If the principal axes are along coordinate axes, then the products of

inertia are zero and hence write inertia matrix and angular momentum.

Proof Consider a regular trihedral system. Let â1, â2, â3 be three principal axes with eigen
values k1, k2, k3. Let â1 be along x− axis, â2 be along y − axis and â3 be along z − axis.
The position vector ri of mass mi relative to principal axes is



278 11 Moments and Products of Inertia

Figure 11.19: Principal axis for cylinder

ri = xiâ1 + yiâ2 + ziâ3 (11.11.12)

Consider (11.11.6), (11.11.7) and (11.11.8)

n∑
i=1

mi (~ri · â1)~ri =

(
n∑
i=1

mir
2
i − k1

)
â1

n∑
i=1

mi (~ri · â2)~ri =

(
n∑
i=1

mir
2
i − k2

)
â2

n∑
i=1

mi (~ri · â3)~ri =

(
n∑
i=1

mir
2
i − k3

)
â3

Consider the terms

~ri · â1 = (xiâ1 + yiâ2 + ziâ3) · â1
= xi

and ~ri · â2 = yi

~ri · â3 = zi

r2i = x2i + y2i + z2i
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Figure 11.20: Principal axis for sphere

Using above results (11.11.6), (11.11.7) and (11.11.8) becomes.

n∑
i=1

mixi (xiâ1 + yiâ2 + ziâ3) =

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k1

)
â1

n∑
i=1

mi

(
x2i â1 + xiyiâ2 + xiziâ3

)
=

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k1

)
â1

Comparing coefficients of âi; i = 1, 2, 3 on both sides, we have

n∑
i=1

mix
2
i =

(
n∑
i=1

mi

(
x2i + y2i + z2i

)
− k1

)
or

k1 =

n∑
i=1

mi

(
y2i + z2i

)
= A∗

and

n∑
i=1

mixiyi = 0 = F ∗

n∑
i=1

mixizi = 0 = E∗

Similarly (11.11.7) gives

k2 =

n∑
i=1

mi

(
x2i + z2i

)
= B∗
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Figure 11.21: Principal axes along coordinate axes

and

n∑
i=1

mixiyi = 0 = F ∗

n∑
i=1

miyizi = 0 = D∗

and (11.11.8) gives

k3 =
n∑
i=1

mi

(
x2i + y2i

)
= C∗

and

n∑
i=1

mixizi = 0 = E∗

n∑
i=1

miyizi = 0 = D∗

From above we see that products of inertia are zero. i.e

D∗ = 0 = E∗ = F ∗

Hence the inertia matrix for principal axes through O is
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

k1 0 0

0 k2 0

0 0 k3


=



A∗ 0 0

0 B∗ 0

0 0 C∗


(11.11.13)

Next we define principal axes as:
Three mutually perpendicular lines through any point of a body which are such that the
product of inertia about them vanishes are known as principal axes.
Let ωx, ωy, ωz be the components of ω along â1, â2, â3 axes respectively, then angular mo-
mentum (11.9.19) becomes:

Lx

Ly

Lz


=



A∗ 0 0

0 B∗ 0

0 0 C∗





ωx

ωy

ωz


(11.11.14)

Hence A∗, B∗, C∗ are also called principal moments of inertia. In this case the angular
momentum (11.11.2) is

〈Lx, Ly, Lz〉 = 〈A∗ωx, B∗ωy, C∗ωz〉 (11.11.15)
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11.12 Equimomental Systems

Two systems are said to be equimomental if they have equal moment of inertia about every
line in space.

Theorem 11.12.1. :- The necessary and sufficient condition for two systems to be equimo-

mental are

1. They have same total mass.

2. They have same centroid.

3. They have same principal axes.

These conditions are sufficient.

Proof :- Part A
If (1) to (3) are true, two systems are equimomental.
Consider two systems, each having mass m (see Fig. 11.23). Let O = G be the common

Figure 11.22: Equimomental Systems

centroid of both the system. Let A∗, B∗, C∗ be the principal moment of inertia about
principal axes through O for both the systems. Let l1 be any line in the direction of â1
(unit vector) with direction cosines 〈λ, µ, ν〉 passing through O. Also l2 be another line in
the direction of â2 (unit vector) with direction cosines 〈λ, µ, ν〉. Let h be the perpendicular
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distance between â1 and â2. The principal moment of inertia about â1 for both the system
is

Iâ1 = A∗λ2 +B∗µ2 + C∗ν2 (11.12.1)

And by parallel axes theorem, the principal moment of inertia about â2 for both the system
is

Iâ2 = Iâ1 +mh2

= A∗λ2 +B∗µ2 + C∗ν2 +mh2 (11.12.2)

Hence both the system have same principal moment of inertia about any line of space. So
they are equimomental.
Part B:- The conditions are necessary. Let the two systems are equimomental, then con-
ditions (1) to (3) are true. Let m1 be the mass of system I with centroid at G1 and m2 be
the mass of system II with centroid at G2 (see Fig. 11.23).
Condition (1) They have same total mass.

Figure 11.23: Equimomental Systems

Since the systems are equimomental i.e. they have same moment of inertia about any line.
Let G1G2 be the line and I be the moment of inertia of each system about it. Also â be
a unit vector parallel to G1G2 at a distance h. Then by parallel axes theorem, moment of
inertia of system I about a line along â is

I1 = I +m1h
2 (11.12.3)

moment of inertia of system II about a line along â is

I2 = I +m2h
2 (11.12.4)
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Since the two systems are equimomental, i.e. I1 = I2, then by (11.12.3) and (11.12.4), we
have

I +m1h
2 = I +m1h

2

m1 = m2 = m

Hence both systems have same mass.
Condition (2) They have same centroid.
Since the systems are equimomental i.e. they have same moment of inertia about any line.
Let I be the moment of inertia about line G1G2. (see Fig. 11.24) Let â1 and â2 be two

Figure 11.24: Equimomental Systems

unit vectors, perpendicular to line G1G2. Hence the distance between these two parallel
vectors is G1G2 = h. Since the systems are equimomental i.e. they have same moment of
inertia about any line. Let I be the moment of inertia of either system about a line along
â1. Using parallel axes theorem, the moment of inertia of system I about a line along â2 is

I1 = I +mh2 (11.12.5)

and moment of inertia of system II about about a line along â2 is

I2 = I −mh2 (11.12.6)

Since the two systems are equimomental, i.e. I1 = I2, then by (11.12.5) and (11.12.6), we
have

I +mh2 = I −mh2

2mh2 = 0

since m 6= 0, Hence we have

h = 0
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Hence both systems have same centroid. i.e. G1 = G2 = G
Condition (3) They have same principal axes.
Since the systems are equimomental i.e. they have same moment of inertia about every
line through their common centroid. Hence they have same principal axes and principal
moments of inertia.

11.13 Coplanar Distribution

Theorem 11.13.1. Show that for a two dimensional mass distribution (lamina), one of

the principal axes at origin O is inclined at an angle θ to the x− axis through O, such that

tan 2θ =
2F

B −A

where A, B, F have their usual meanings.

Proof
Consider a fixed xy−cartesian system OXY . Let a particle of mass m be at P (xi, yi) (see
Fig. 11.25). Using (11.6.10) the moments of inertia of mass distribution (lamina) about

Figure 11.25: Equimomental Systems

coordinate axes (Ox,Oy)are

A =

n∑
i=1

miy
2
i (11.13.1)

B =

n∑
i=1

mix
2
i (11.13.2)
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and using(11.6.11) the product of inertia F is

F =

n∑
i=1

mixiyi (11.13.3)

Introduce another xy−coordinate system Ox
′
y
′

rotatable with same origin O. Let it be
rotated about the origin through an angle θ with x

′
y
′−coordinate system. As shown in the

figure 11.26. Then P
(
x

′
i, y

′
i

)
in terms of P (xi, yi) is (using (??) and (??))

Figure 11.26: Equimomental Systems

x
′
i = xi cos θ − yi sin θ

y
′
i = xi sin θ + yi cos θ

Using (11.6.10) the moments of inertia of lamina about coordinate axes (Ox
′
, Oy

′
) are

AOx′ =

n∑
i=1

mi

(
y
′
i

)2
BOy′ =

n∑
i=1

mi

(
x

′
i

)2
and using(11.6.11) the product of inertia F is

Fx′y′ =

n∑
i=1

mix
′
iy

′
i
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Using above transformations, we have

AOx′ =

n∑
i=1

mi (xi sin θ + yi cos θ)2

= sin2 θ

n∑
i=1

mix
2
i + cos2 θ

n∑
i=1

miy
2
i + 2 sin θ cos θ

n∑
i=1

mixiyi

Using (11.13.1), (11.13.2) and (11.13.3), we have

AOx′ = A sin2 θ +B cos2 θ + F sin 2θ (11.13.4)

Similarly

BOy′ =
n∑
i=1

mi (xi cos θ − yi sin θ)2

= A cos2 θ +B sin2 θ − F sin 2θ (11.13.5)

and

Fx′y′ =

n∑
i=1

mi (xi cos θ − yi sin θ) (xi sin θ + yi cos θ)

= sin θ cos θ

(
n∑
i=1

mix
2
i −

n∑
i=1

miy
2
i

)
+
(
cos2 θ − sin2 θ

) n∑
i=1

mixiyi

= (A−B)
1

2
sin 2θ + F cos 2θ

The axes Ox
′
, Oy

′
will be principal axes if

Fx′y′ = 0

(A−B)
1

2
sin 2θ + F cos 2θ = 0

Then we have

tan 2θ =
2F

B −A
(11.13.6)

or

θ =
1

2
arctan

(
2F

B −A

)
(11.13.7)

(11.13.7) is the direction of principal axes relative to co-ordinates axes.
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Theorem 11.13.2. For a 2−Dimensional mass distribution (lamina), the value of max-

imum and minimum moment of inertia about lines passing through a point O are attained

through principal axes at O.

Proof
The maximum/minimum (extreme) values of AOx′ , BOy′ can also be obtained.
Consider (11.13.4)

AOx′ = A sin2 θ +B cos2 θ + F sin 2θ

=
1

2

[
A sin2 θ +B cos2 θ

]
+

1

2

[
A sin2 θ +B cos2 θ

]
+ F sin 2θ

=
1

2

[
A
(
1− cos2 θ

)
+B cos2 θ

]
+

1

2

[
A sin2 θ +B

(
1− sin2 θ

)]
+ F sin 2θ

=
1

2
(A+B) +

1

2

[
(B −A)

(
cos2 θ − sin2 θ

)]
+ F sin 2θ

=
1

2
(A+B) +

1

2
(B −A) cos 2θ + F sin 2θ (11.13.8)

Similarly from (11.13.5) we have

BOy′ =
1

2
(A+B)− 1

2
(B −A) cos 2θ − F sin 2θ (11.13.9)

From (11.13.6), we can write

sin 2θ =
2F√

4F 2 + (B −A)2
(11.13.10)

and

cos 2θ =
(B −A)√

4F 2 + (B −A)2
(11.13.11)

Using (11.13.10) and (11.13.11) in (11.13.8), we have

AOx′ =
1

2
(A+B) +

1

2

(B −A)2√
4F 2 + (B −A)2

+
2F 2√

4F 2 + (B −A)2

=
1

2
(A+B) +

1

2

[
(B −A)2 + 4F 2√
4F 2 + (B −A)2

]
(11.13.12)

=
1

2

[
(A+B) +

√
4F 2 + (B −A)2

]
(11.13.13)

Similarly

BOy′ =
1

2

[
(A+B)−

√
4F 2 + (B −A)2

]
(11.13.14)
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Also

COz′ = AOx′ +BOy′ (11.13.15)

For critical points

dAOx′

dθ
= 0

dBOy′

dθ
= 0

From (11.13.8), we have

dAOx′

dθ
= − (B −A) sin 2θ + 2F cos 2θ = 0

tan 2θ =
2F

B −A

same calculated in (11.13.6)

Similarly
dB

Oy
′

dθ = 0 gives (11.13.6). So extreme values of AOx′ , BOy′ are already attained
in (11.13.12) and (11.13.14) for θ given by (11.13.7).
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11.14 Euler’s Dynamical Equations for the Motion of a Rigid

Body About a Fixed Point

Consider a rigid body of mass m rotating about OC axis through O, with angular velocity
~ω. Let the axes are principal axes. Using angular momentum vector (11.11.15), in the

Figure 11.27: A body is rotating about OC axis

operator equation (??)

d~L

dt
=

∂~L

∂t
+ ~ω × ~L (11.14.1)

Since d~L
dt = ~τ , is the torque acting on the body about O. And

~ω × ~L =

∣∣∣∣∣∣∣∣
î ĵ k̂

ωx ωy ωz

A∗ωx B∗ωy C∗ωz

∣∣∣∣∣∣∣∣
= 〈− (B∗ − C∗)ωyωz,− (C∗ −A∗)ωxωy,− (A∗ −B∗)ωxωy〉

Also

∂

∂t
〈Lx, Ly, Lz〉 = 〈A∗ω̇x, B∗ω̇y, C∗ω̇z〉

Then (11.14.1) becomes
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

τx

τy

τz


=



A∗ω̇x − (B∗ − C∗)ωyωz

B∗ω̇y − (C∗ −A∗)ωxωy

C∗ω̇z − (A∗ −B∗)ωxωy


(11.14.2)

(11.14.2) are known as Euler’s dynamical equations of motion.
If no force is acting the rigid body, then there is no torque and hence

~τ = 〈τx, τy, τz〉 = 0 (11.14.3)

then Euler’s dynamical equations become

A∗ω̇x − (B∗ − C∗)ωyωz = 0

B∗ω̇y − (C∗ −A∗)ωxωy = 0

C∗ω̇z − (A∗ −B∗)ωxωy = 0

 (11.14.4)

11.15 Principle of Gyroscopic Compass

If a rigid body rotates about a fixed point under no force (torque free body) with constant
angular velocity, once the instantaneous axis of rotation coincides with a principal axis and
rotation about this axis is continuous .
Since no force is acting, then (11.14.1) becomes

∂~L

∂t
+ ~ω × ~L = 0 (11.15.1)

Also the rotation is about a principal axis (~ω is parallel to ~L)

~ω × ~L = 0

then (11.15.1) becomes

∂~L

∂t
= 0 (11.15.2)

Integrating (11.15.2)

~L = C (constant)

Hence ~L is fixed relative to the frame of principal axis through the point of rotation. Thus
a wheel rotating about its axle, tends to continue its motion. This is the principle of
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Gyroscopic Compass.
When the angular velocity is constant, then

~̇ω = 〈ω̇x, ω̇y, ω̇z〉 = 0 (11.15.3)

Then 11.15.4 becomes

(B∗ − C∗)ωyωz = 0

(C∗ −A∗)ωxωy = 0

(A∗ −B∗)ωxωy = 0

or

ωyωz = 0

ωxωy = 0

ωxωy = 0

It means, any two components are zero, so the instantaneous axis of rotation coincides with
a principal axis.
Conversely when the instantaneous axis of rotation coincides with a principal axis, then

A∗ = B∗ = C∗ = I

and 11.15.4 becomes

Iω̇x = 0

Iω̇y = 0

Iω̇z = 0

or

ωx = C1 (constant)

ωy = C2 (constant)

ωz = C3 (constant)

Hence ~ω = constant, and the body rotates about a fixed point under no force with constant
angular velocity.

11.16 Momental Ellipsoid

Consider a system of n particles rotating about an axis OC through O with angular velocity
~ω. Let â be a unit vector in the direction of OC axis having direction cosines λ, µ, ν. Then

â = 〈λ, µ, ν〉 (11.16.1)
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Let a particle of mass mi lying at P on OC axis, having position vector ~ri. Then

~OP = ~ri = 〈xi, yi, zi〉 (11.16.2)

Also ~OP = ~ri is in the direction of â, using (11.16.1) and | ~OP | = ri, ~ri can also be written
as

~OP = ~ri = ri〈λ, µ, ν〉 (11.16.3)

From (11.16.2) and (11.16.3), we can write

Figure 11.28: Momental Ellipsoid

λ =
xi
ri
, µ =

yi
ri

and ν =
zi
ri

(11.16.4)

Then by (11.9.6) the moment of inertia of the body about OC axis (M.I. about an instan-
taneous axis) is

IOC = I = Aλ2 +Bµ2 + Cν2 − 2Dµν − 2Eλν − 2Fλµ (11.16.5)

Now let P moves in such a way that Ir2i remains constant, then from (11.16.4), (11.16.5)
we can write as

Ax2i +By2i + Cz2i − 2Dyizi − 2Ezixi − 2Fxiyi = Ir2i (constant)

Let P has coordinates (x, y, z), then

Ax2 +By2 + Cz2 − 2Dyz − 2Ezx− 2Fxy = Ir2 (11.16.6)

Since A,B,C are positive quantities, so (11.16.6) represents an ellipsoid known as momental
ellipsoid.
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11.17 Examples

In this section we will present some examples about above concepts. we can divide it into
3 categories depending upon the dimensions of the systems.

11.18 One Dimensional Systems

Example 11.18.1. A rigid body consisting of two particles of mass m connected by a

massless rod of length 2a. Find the moment of inertia about an axis through the center of

mass and perpendicular to the rod.

Solution: The system is shown the fig. Let AB be the axis passing through the center
of mass. Then each particle is at a distance a from the line AB
The moment of inertia of the system about AB axis is

I = I1 + I2

= ma2 +ma2

= 2ma2

Figure 11.29: M.I of a system of particles

Example 11.18.2. Find moment of inertia of a uniform rod of mass m lying along x−axis

with one end at origin having length a about

(a) an axis passing through one end and perpendicular to the rod.

(b) Coordinate axes.
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(c) finding products of inertia, hence complete inertia matrix.

Solution: Let m be the mass of rod of length a and LM (parallel to y axis) be the axis
of rotation passing through one end and origin O and perpendicular to the rod.
Consider a small element mass dm of width dx at a distance x from LM axis. Since the

Figure 11.30: rod of length a

rod is uniform, the mass per unit length is a constant,

ρ =
dm

dl
=
mtotal

l

=
dm

dx
=
m

a
(11.18.1)

or the small element mass is

dm =
m

a
dx (11.18.2)

Hence the moment of inertia (M.I.) of small element about LM axis is

dILM =
m

a
dx x2

(a) an axis passing through one end and perpendicular to the rod.

The M.I. of rod about LM axis is

ILM =

a∫
0

m

a
x2dx

I =
m

a

[
x3

3

]a
0

=
m

a

(a)3

3
=

1

3
ma2
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Hence moment of inertia about an axis passing through one end and perpendicular to the
rod is

ILM =
1

3
ma2 (11.18.3)

(b) Coordinate axes.

In (a) x axis is along the rod, see Fig 11.30. Then the distance of mass element dm from x
axis is zero, so its moment of inertia about x axis is zero. Hence the moment of inertia of
whole mass about x axis is

A = Ixx = m(0)2 = 0 (11.18.4)

Here y and z axes are perpendicular to the rod, so mass m has same moment of inertia
about both axes. In (a) LM axis, the axis of rotation is taken along y axis, so moment of
inertia about y axis

B = Iyy =
1

3
ma2

and about z axis

C = Izz =
1

3
ma2

(c) Products of inertia and inertia matrix.

Since the body is one dimensional, so y = 0 = z. Hence the products of inertia w.r.t. pair
of axes (oy, oz), (oz, ox) and (ox, oy) respectively are as under

D =

∫∫∫
V

ρyzdV = 0

E =

∫∫∫
V

ρzxdV = 0

F =

∫∫∫
V

ρxydV = 0

Hence the inertia matrix for (a) is

[I] =



0 0 0

0 1
3ma

2 0

0 0 1
3ma

2


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The radius of gyration about axis of rotation can be calculated by using (11.4.3). First
about x axis is

Kx =

√
Ixx
m

= 0

and about y axis is

Ky =

√
Iyy
m

=
1√
3
a

finally about z axis is

Kz =

√
Izz
m

=
1√
3
a

Example 11.18.3. Find moment of inertia of a uniform rod of mass m lying along x−axis

with center at origin having length a about

(a) an axis passing through center and perpendicular to the rod.

(b) Coordinate axes.

(c) finding products of inertia, hence complete inertia matrix.

Solution: Let m be the mass of rod of length a and LM (parallel to y axis) be the axis
of rotation passing through one end and origin O and perpendicular to the rod.
Consider a small element mass dm of width dx at a distance x from LM axis. Since the

Figure 11.31: Axis of rotation passing through center and perpendicular to rod
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rod is uniform, the mass per unit length is a constant,

ρ =
dm

dl
=
mtotal

l

=
dm

dx
=
m

a
(11.18.5)

or the small element mass is

dm =
m

a
dx (11.18.6)

Hence the moment of inertia (M.I.) of small element about LM axis is

dILM =
m

a
dx x2

(a) and the moment of inertia of rod about LM axis is

ILM =

a
2∫

−a
2

m

a
x2dx

ILM =
m

a

[
x3

3

]a
2

−a
2

=
m

a

1

3

[(a
2

)3
+
(a

2

)3]
=

1

12
ma2

Hence moment of inertia about an axis passing through center and perpendicular to the
rod is

ILM =
1

12
ma2 (11.18.7)

(b) In (a) x axis is along the rod, see Fig 11.31. Then the distance of mass element dm
from x axis is zero, so its moment of inertia about x axis is zero. Hence the moment of
inertia of whole mass about x axis is

A = Ixx = m(0)2 = 0 (11.18.8)

Here y and z axes are perpendicular to the rod, so mass m has same moment of inertia
about both axes. In (a) LM axis, the axis of rotation is taken along y axis, so moment of
inertia about y axis

B = Iyy =
1

12
ma2
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and about z axis

C = Izz =
1

12
ma2

(c) Since the body is one dimensional, so y = 0 = z. Hence the products of inertia w.r.t.
pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively are as under

D =

∫
l

ρyzdl = 0

E =

∫
l

ρzxdl = 0

F =

∫
l

ρxydl = 0

Hence the inertia matrix for (a) is

[I] =



0 0 0

0 1
12ma

2 0

0 0 1
12ma

2


Example 11.18.4. Show that a uniform rod of mass m is equimomental to three particles

situated one at each end of the rod and one at its middle point, the masses of the particle

being 1
6m, 1

6m and 2
3m respectively.

Solution: Let m be the mass of rod AB of length 2a and CD be the perpendicular to
AB passing through middle and centroid G of it. This is the first system.
Let 1

6m, 1
6m and 2

3m are the masses at A, G, B respectively. This is the second system.
Its total mass is

1

6
m+

1

6
m+

2

3
m = m

1. Both systems have same masses.

2. Both systems have same centroid G.
Both systems are one dimensional, so we consider moment of inertia about AB axis.
For this see above example.

3. Both systems have the same moment of inertia (i.e. each zero) about AB axis, passing
through common centroid G.
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Figure 11.32: Equimomental systems

Hence all the three conditions are satisfied and the systems are equimomental Two systems
are said to be equimomental if they have equal moment of inertia about every line in space.

Example 11.18.5. Moment of inertia of a uniform rod of mass m and length 2a about an

axis passing through one end and making an angle θ with the rod.

Solution: Let m be the mass of rod of length 2a and OA be the axis of rotation passing
through one end and origin O, making an angle θ with the rod. Consider a small element
mass dm of width dx at a distance x from O axis. Then its distance from the axis OA is
d = x sin θ (see Fig. 11.33). Since the rod is uniform, the mass per unit length is a constant,

Figure 11.33: Axis of rotation passing through center and perpendicular to rod

ρ =
dm

dl
=
mtotal

l

=
dm

dx
=
m

a
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or the small element mass is

dm =
m

2a
dx

Hence the moment of inertia (M.I.) of small element about OA axis is

dIOA =
m

2a
dx d2

=
m

2a
dx (x sin θ)2

and the M.I. of rod about OA is

I =

2a∫
0

m

2a
(x sin θ)2 dx

=
m

2a

[
x3

3

]2a
0

sin2 θ

=
m

2a

(2a)3

3
sin2 θ =

4

3
ma2 sin2 θ

Hence

IOA =
4

3
ma2 sin2 θ (11.18.9)
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11.19 Two Dimensional Systems

In this section we will discuss the above concepts for two dimensional systems. We can
divide it two parts.

• System in Cartesian coordinate system.

• System in polar coordinate system.

11.19.1 System in Cartesian Coordinate System

Example 11.19.1. A square of side a has particles of masses m, 2m, 3m, 4m at its ver-

tices. Show that the principal moment of inertia at center of the square are 2ma2, 3ma2, 5ma2.

Also find the directions of principal axes.

Solution
Let us take an xy−coordinate system Oxy and ABCD a square of side a with center at
origin O. The coordinates of points are O (0, 0), A

(
−a

2 ,−
a
2

)
, B

(
a
2 ,−

a
2

)
, C

(
−a

2 ,
a
2

)
and

D
(
a
2 ,

a
2

)
. The particles of masses m, 2m, 3m, 4m are at A, B, C and D respectively. See

Figure 11.34: Four particles system

Fig. 11.35, the square is laminas in xy plane, with z = 0.

(a) Moments of Inertia about coordinate axes

Using (11.6.10) the moment of inertia about coordinate axes are calculated. First about
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x axis is

Ixx = A =

n∑
i=1

miy
2
i

= m1y
2
1 +m2y

2
2 +m3y

2
3 +m4y

2
4

= m
(
−a

2

)2
+ 2m

(
−a

2

)2
+ 3m

(a
2

)2
+ 4m

(a
2

)2
= m

a2

4
(1 + 2 + 3 + 4)

=
5

2
ma2

Similarly about y axis is

Iyy = B =
5

2
ma2

Finally about z axis can be calculated by using perpendicular axis theorem

Izz = C = Ixx + Iyy

=
5

2
ma2 +

5

2
ma2

= 5ma2

(b) Products of Inertia

The products of inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) are calculated by
using (11.6.11) respectively as under

D = 0

E = 0

F =
n∑
i=1

mixiyi

= m1x1y1 +m2x2y2 +m3x3y3 +m4x4y4

= m
(
−a

2

)(
−a

2

)
+ 2m

(a
2

)(
−a

2

)
+ 3m

(a
2

)(a
2

)
+ 4m

(a
2

)(
−a

2

)
= m

a2

4
(1− 2 + 3− 4)

= −1

2
ma2

(c) Inertia matrix
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The inertia matrix is

[I] =



5
2ma

2 1
2ma

2 0

1
2ma

2 5
2ma

2 0

0 0 5ma2


(d) Principal axes

The first principal axis can be determined by using (11.13.12)

AOx′ =
1

2

[
(A+B) +

√
4F 2 + (B −A)2

]
=

1

2

(5

2
ma2 +

5

2
ma2

)
+

√
4

(
1

2
ma2

)2

+

(
5

2
ma2 − 5

2
ma2

)2


=
1

2

[
5ma2 +ma2

]
= 3ma2

The second principal axis can be determined by using (11.13.14)

BOy′ =
1

2

[
(A+B)−

√
4F 2 + (B −A)2

]
=

1

2

(5

2
ma2 +

5

2
ma2

)
−

√
4

(
1

2
ma2

)2

+

(
5

2
ma2 − 5

2
ma2

)2


=
1

2

[
5ma2 −ma2

]
= 2ma2

The third principal axis can be determined by using (11.13.15)

COz′ = AOx′ +BOy′

= 3ma2 + 2ma2

= 5ma2

is the moment of inertia about zaxis

(f) Directions of Principle axes
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Directions of Principle axes can be calculated by using (11.13.7)

θ =
1

2
arctan

(
2F

B −A

)
=

1

2
arctan

(
2
(
1
2ma

2
)(

5
2ma

2 − 5
2ma

2
))

=
1

2
arctan (∞)

=
1

2

(π
2

)
=

π

4
(11.19.1)

(11.19.1) is the direction of principal axes relative to co-ordinates axes.

Figure 11.35: rectangular lamina

Example 11.19.2. Moment of inertia of a rectangular lamina about an axis (line) passing

through center and parallel to one side.

Solution

(a) Moment of inertia about x axis

Let ABCD be a rectangular lamina of mass m and LM parallel to AB be the line about
which moment of inertia is to be calculated. Let AB = 2a and AC = 2b, then area of
lamina is 4ab
Consider a small element of surface area dA = dxdy at a distance y from LM axis (x axis).
Since the lamina is uniform, the density of the lamina (the mass per unit area) is a constant
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Figure 11.36: rectangular lamina

ρ =
masstotal
areatotal

=
dm

dA

=
m

A
=
dm

dA

Mass of small element (small rectangle) is

dm =
m

A
dA

Hence the moment of inertia of small element about LM axis is

dI = dmy2

= y2
m

4ab
dydx

Using (11.2.6), the moment of inertia of rectangular lamina about LM is

ILM =

a∫
−a

b∫
−b

y2
m

4ab
dydx

=
m

4ab

a∫
−a

[
y3

3

]b
−b
dx

=
m

4ab

2b3

3

[
x
]a
−a

=
mb2

3

Since LM axis is along x axis, so moment of inertia about x axis is

Ixx =
mb2

3
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Second Approach

(b) Moment of inertia about y axis

Let LM parallel to AC be the line about which moment of inertia is to be calculated.
Consider an elementary strip PQ of length (BC = 2b) and breadth dx at a distance x from
LM − axis. Then area of the strip is dA = 2bdx

Figure 11.37: rectangular lamina

Mass of the strip = m
4ab2bdx = m

2adx
M.I. of small strip about LM is dI = x2(mass of the strip)

dI =
m

2a
x2dx

M.I. of rectangular lamina about LM

I =
m

2a

∫ a

−a
x2dx

=
m

2a

2a3

3

=
ma2

3

Since LM axis is along y axis, so moment of inertia about y axis is

Iyy =
ma2

3

(c) Moment of inertia about z axis
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Here z axis is perpendicular to lamina with center at origin. Hence moment of inertia
of rectangular lamina about a line perpendicular to lamina and passing through center is
same.
Let OL be the axis of rotation passing through center O and perpendicular to lamina
ABCD. Let AB = 2a and AC = 2b area of lamina is 4ab
Mass per unit area of lamina = m

4ab Consider a small element of surface area dA = dxdy at
a distance d from OL axis
Also the density of the lamina is ρ = m

4ab
Mass of small element (rectangle) = ρdA = m

4abdydx

Figure 11.38: rectangular lamina

Here perpendicular distance of small element dm from OL axis is

d =
√
x2 + y2

M.I. of small rectangle about OL is

dI = dmd2

=
(
x2 + y2

) m

4ab
dydx

M.I. of rectangular lamina about OL is

I =
m

4ab

∫ a

−a

∫ b

−b

(
x2 + y2

)
dydx

=
m

4ab
4

∫ a

0

∫ b

0

(
x2 + y2

)
dydx

=
m
(
a2 + b2

)
3

Since LM axis is along z axis, so moment of inertia about z axis is

Izz =
m
(
a2 + b2

)
3
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Second Approach - Perpendicular axes theorem
Since x, y and z axes are mutually perpendicular axes. Izz can be calculated as

Izz = Ixx + Iyy

=
mb2

3
+
ma2

3

=
1

3
m
(
a2 + b2

)
(d) Products of Inertia

Since the lamina is two dimensional body,in xy plane, so z = 0. Hence the products of
inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively are as under

D =

∫∫
A

ρyzdA = 0

E =

∫∫
A

ρzxdA = 0

F =

∫∫
A

ρxydA

=
m

4ab

∫ a

−a

∫ b

−b
xydydx

=
m

4ab

∣∣∣∣x22
∣∣∣∣a
−a

∫ b

−b
ydy

= 0

(e) Inertia Matrix

Hence the inertia matrix is

[I] =



1
3mb

2 0 0

0 1
3ma

2 0

0 0 1
3m
(
a2 + b2

)


(f) Directions Principle axes

Since the products of inertia are zero, hence coordinate axes are the principle axes.

(g) Radius of gyration
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The radius of gyration about axis of rotation can be calculated by using (11.4.3). First
about x axis is

Kx =

√
Ixx
m

=
1√
3
b

and about y axis is

Ky =

√
Iyy
m

=
1√
3
a

finally about z axis is

Kz =

√
Izz
m

=

√
a2 + b2√

3

Example 11.19.3. Moment of inertia of a rectangular lamina about an axis (line) passing

through one end.

Solution

(a) Moment of inertia about x axis

Let OABC be a rectangular lamina of mass m and OA (along x axis) be the line about
which moment of inertia is to be calculated. Let OA = 2a and BC = 2b Area of lamina is

A = 4ab

Mass per unit area of lamina = m
4ab Consider a small element of surface area dA = dxdy at

a distance y from x axis Also the density of the lamina is ρ = m
4ab

Figure 11.39: rectangular lamina
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Mass of small element (rectangle) = ρdA = m
4abdydx M.I. of small rectangle about LMdI =

y2(mass of the small element)

dI = y2
m

4ab
dydx

Using (11.2.6) the M.I. of rectangular lamina about x axis

Ixx =

2a∫
0

2b∫
0

y2
m

4ab
dydx

=
m

4ab

2a∫
0

[
y3

3

]2b
0

dx

=
m

4ab

8b3

3

[
x
]2a
0

=
4

3
mb2 (11.19.2)

Second Approach - Parallel axes theorem
Since the lamina has uniform distribution of mass, center of mass coincides with origin.
Hence x axis is the axis passing through center of mass and LM axis is parallel to it. The
distance between axes is d = b. Using Parallel axes theorem, ILM can be calculated as

Figure 11.40: rectangular lamina

ILM = Ixx +md2

=
mb2

3
+mb2

=
4

3
mb2
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(b) Moment of inertia about y axis

Iyy =
4

3
ma2 (11.19.3)

(c) Moment of inertia about z axis

To find moment of inertia about z axis, we can use perpendicular axis theorem.

Izz = Ixx + Iyy

=
4

3
mb2 +

4

3
ma2

=
4

3
m
(
a2 + b2

)
(11.19.4)

(d) Products of inertia

Since the lamina is two dimensional body,in xy plane, so z = 0. Hence the products of
inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) respectively are as under

D =

∫∫
A

ρyzdA = 0

E =

∫∫
A

ρzxdA = 0

F =

∫∫
A

ρxydA

=
m

4ab

∫ 2a

0

∫ 2b

0
xydydx

=
m

4ab

∣∣∣∣x22
∣∣∣∣2a
0

∫ 2b

0
ydy

=
m

4ab

4a2

2

4b2

2
= mab

(e) Inertia matrix

The inertia matrix is

[I] =



4
3mb

2 −mab 0

−mab 4
3ma

2 0

0 0 4
3m
(
a2 + b2

)


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(f) Directions of Principle axes

Directions of Principle axes can be calculated by using (11.13.7)

θ =
1

2
arctan

(
2F

B −A

)
=

1

2
arctan

(
2mab(

4
3ma

2
)
−
(
4
3mb

2
))

=
1

2
arctan

(
3ab

a2 − b2

)
(11.19.5)

(11.19.5) is the direction of principal axes relative to co-ordinates axes. Note For a square

Figure 11.41: rectangular lamina

of side a,

θ =
1

2
arctan

(
3aa

a2 − a2

)
=

1

2
arctan(∞) =

1

2

π

2

=
π

4
(11.19.6)

is the direction of principal axes relative to co-ordinates axes.

11.19.2 Moment of Inertia of a Uniform Triangular Disc (Lamina)

Consider ABC a thin uniform triangular disc of mass m in xy plane with base along x axis
of length a. Consider a strip EF of mass dm, length l and width dy at a distance y from x
axis, see Fig. 11.44. In similar triangles AEF and ABC
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Figure 11.42: Uniform triangular disc

EF

BC
=

AG

AO
l

a
=

h− y
h

l =
a(h− y)

h
(11.19.7)

Consider a strip of infinitesimal width dy and mass element dm at a distance y from x axis
show in the figure . The length element of mass element dm is

dA = ldy (11.19.8)

using (11.19.7) in (11.19.8)

dA =
a(h− y)

h
dy (11.19.9)

Since the disc is uniform, the mass per unit area is a constant,

ρ =
dm

dA
=
mtotal

A

=
dm

a(h−y)
h dy

=
m
ah
2

(11.19.10)
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From (11.19.10), we can write

dm = ρdA =
2m(h− y)

h2
dy (11.19.11)

Now moment of inertia of mass element dm about base (x axis) is

dIxx = dmy2

=
2m(h− y)

h2
dy y2

=
2m

h2
(h− y)y2dy

The moment of inertia of the disc about x axis is now an integral from y = 0 to y = h

Ixx =
2m

h2

h∫
0

(
hy2 − y3

)
dy

=
2m

h2

∣∣∣∣hy33 − y4

4

∣∣∣∣h
0

=
mh2

6
(11.19.12)

11.19.3 Moment of Inertia of a Uniform Isosceles Triangular Disc (Lam-

ina)

Consider ABC an isosceles triangular disc of mass m in xy plane with its symmetric axis
along the positive x direction and one of its vertex at origin. Let 2b its base and a be
its height (along x axis). If the z axis is the axis of rotation, passing through the origin
(one vertex). The isosceles triangle can be regarded as the combination of the differential
rod with the length 2y and the differential width dx (one dimensional) and consider a rod
(strip) EF of mass dm, at a distance x from z axis, see Fig. 11.44.
The moment of inertia of a rod of mass m and length a about an axis perpendicular to the
rod and passing through the center of mass is given (see example 1 b)

I =
1

12
ma2

Here

y =
b

a
x

Since the disc is uniform, the mass per unit area is a constant,
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Figure 11.43: Uniform triangular disc

ρ =
dm

dA
=
mtotal

A

=
dm

2ydx
=
m

ab
(11.19.13)

From (11.19.13), we can write

dm = ρdA =
2m

a2
xdx (11.19.14)

(a) Moment of inertia about z axis

Now moment of inertia of mass element dm about an axis perpendicular to the rod and
passing through the center of mass is

dI =
1

12
dm(2y)2

=
m

6a2
xdx 4

b2

a2
x2

=
2mb2

3a4
x3dx

Using parallel axis theorem, the moment of inertia of mass element dm about z axis is

dIzz = dI + dmx2

=
2mb2

3a4
x3dx+

2m

a2
xdx x2

=
2m

3a4
(
b2 + 3a2

)
x3dx
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The moment of inertia of the disc about z axis is now an integral from x = 0 to x = a

Izz =
2m

3a4
(
b2 + 3a2

) a∫
0

x3dx

=
2m

3a4
(
b2 + 3a2

) ∣∣∣∣x44
∣∣∣∣a
0

=
m

6a4
(
b2 + 3a2

)
a4

=
1

6
mb2 +

1

2
ma2 (11.19.15)

(b) Moment of inertia about x axis

Here again the same concept is used, the x axis is perpendicular to rod (strip) EF and
passing through its center, so the moment of inertia of mass dm about x axis is

dI =
1

12
dm(2y)2

=
m

6a2
xdx 4

b2

a2
x2

=
2mb2

3a4
x3dx

And the moment of inertia of mass m about x axis is

Ixx =
2mb2

3a4

a∫
0

x3dx

=
2mb2

3a4

∣∣∣∣x44
∣∣∣∣a
0

=
1

6
mb2

(c) Moment of inertia about y axis

In this case rod (strip) EF is parallel to y axis, so the moment of inertia of mass dm about
y axis is

dI = dmx2

=
2m

a2
xdx x2

=
2m

a2
x3dx
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And the moment of inertia of mass m about y axis is

Iyy =
2m

a2

a∫
0

x3dx

=
2m

a2

∣∣∣∣x44
∣∣∣∣a
0

=
1

2
ma2

Note: The moment of inertia about z axis can also be calculated by using theorem of
perpendicular axis.

Izz = Ixx + Iyy

=
1

12
mb2 +

1

2
ma2

11.19.4 Moment of Inertia of a Uniform Equilateral Triangular Disc (Lam-

ina)

The above triangle can be considered as equilateral triangle of length l by taking

l = 2b

or

b =
l

2

and

a =
√
l2 − b2

=

√
l2 −

(
l

2

)2

=

√
3

2
l

Then the moment of inertia about axes are

(a) Moment of inertia about z axis

Izz =
1

6
mb2 +

1

2
ma2

=
1

6
m

(
l

2

)2

+
1

2
m

(√
3

2
l

)2

=
1

24
ml2 +

3

8
ml2

=
5

12
ml2 (11.19.16)
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Figure 11.44: Uniform equilateral triangular disc

(b) Moment of inertia about x axis

The moment of inertia of mass m about x axis is

Ixx =
1

6
mb2

=
1

6
m

(
l

2

)2

=
1

24
ml2 (11.19.17)

(c) Moment of inertia about y axis

The moment of inertia of mass m about y axis is

Iyy =
1

2
ma2

=
1

2
m

(√
3

2
l

)2

=
3

8
ml2
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11.20 Polar coordinates

In this section moment of inertia will be calculated by using polar coordinates.

11.20.1 Moment of Inertia of a Circular Ring (Hoop)

Consider a circular ring of radius r, mass m and center at origin in xy plane. Let z axis be
the axis of rotation. Let P be a point on the ring making an angle θ with x axis. Then

x = r cos θ

y = r sin θ

The arc length of the circular ring is

L = 2πr

Consider a small mass dm with arc length s, having circular measure dθ, then

s = rdθ

The mass m has arc length 2πr, and the mass dm has arc length rdθ, so dm can be written
as

dm =
m

2π
dθ

Now moment of inertia about various axes can be determined as follows.

11.20.2 About the Diameter of the Ring or

About an Axis in the Plane of the Ring and Passing Through its

Center

Since the ring lies in xy plane having center at origin, so x axis or y axis can be considered
as the diameter of the ring/an axis in the plane of the ring and passing through its center.
Hence moment of inertia about x axis and y axis is the same. The moment of inertia of
mass dm about x axis is

dIxx = dmy2

=
m

2π
dθ (r sin θ)2

=
mr2

2π
sin2 θdθ
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Figure 11.45: Ring

Next the moment of inertia of the ring about x axis is

Ixx =
mr2

2π

2π∫
0

sin2 θdθ

=
mr2

2π

2π∫
0

(
1− cos 2θ

2

)
dθ

=
mr2

4π

∣∣∣∣θ − sin 2θ

2

∣∣∣∣2π
0

=
mr2

4π
2π

=
mr2

2

Similarly the moment of inertia of the ring about y axis is

Iyy =
mr2

2

Hence the moment of inertia about the diameter of the ring is

Id =
mr2

2
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11.20.3 About an Axis Perpendicular to Plane of the Ring and Passing

Through its Center

Since the ring lies in xy plane having center at origin, so z axis can be considered as an axis
perpendicular to plane of the ring and passing through its center. Then r be the distance
of mass dm from z axis, so its moment of inertia z axis is

dIzz = dmr2

=
m

2π
dθr2

Next the moment of inertia of the ring about z axis is

Izz =
mr2

2π

2π∫
0

dθ

=
mr2

2π
|θ|2π0

=
mr2

2π
2π

= mr2

Second Approach
Using perpendicular axis theorem, the moment of inertia of mass m about z axis is

Izz = Ixx + Iyy

=
mr2

2
+
mr2

2
= mr2

11.20.4 About a Line Tangent to Ring

Here two cases arise:

1. The tangent line is parallel to z axis

2. The tangent line is parallel to diameter i.e. parallel to x axis or y axis

(1) About a line tangent to ring and parallel to z axis
Let AB be the line tangent to ring and parallel to z axis. Then its distance from z axis is
r Using theorem of parallel axis, the moment of inertia of mass m about AB axis is

IAB = Izz +m(distance between axes)2

= mr2 +mr2

= 2mr2
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Figure 11.46: Ring

(2) About a line parallel to diameter of the ring
Let AB be the line parallel to diameter of the ring. Then its distance from diameter is r
Using theorem of parallel axis, the moment of inertia of mass m about AB axis is

IAB = Id +m(distance between axes)2

=
1

2
mr2 +mr2

=
3

2
mr2

11.20.5 Moment of Inertia of a Uniform Circular Disc

Consider a thin uniform disc of mass m and radius R and center at origin in xy plane. Let
z axis be the axis of rotation, perpendicular to the plane. Let P be a point on disc making
an angle θ with x axis at a distance r from the center. Choose cylindrical coordinates with
the coordinates (r, θ) in the plane and the z − axis. consider the mass element dm show
in the figure below. The area element of mass element dm is the product of arc length rdθ
and the radial width dr. That is

dA = rdrdθ (11.20.1)

Since the disc is uniform, the mass per unit area is a constant,

ρ =
dm

dA
=
mtotal

A
=

m

πR2
(11.20.2)

From (11.20.1) and (11.20.2)

dm = ρdA =
m

πR2
rdrdθ (11.20.3)
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Figure 11.47: Ring

When the disc rotates, the mass element dm traces out a circle of radius r ; that is, the
distance from the center is the perpendicular distance from the z − axis. Now moment of
inertia about various axes can be determined as follows.

11.20.6 About the Diameter of the Disc OR an Axis in the Plane of the

Disc and Passing Through its Center

Since the disc lies in xy plane having center at origin, so x axis or y axis can be considered
as the diameter of the disc/an axis in the plane of the ring and passing through its center.
Hence moment of inertia about x axis and y axis is the same. The moment of inertia of
mass dm about x axis is

dIxx = dmy2

=
m

πR2
rdrdθ (r sin θ)2

=
mr3

πR2
sin2 θdrdθ

The moment of inertia of the disc about x axis integral is now an integral in two dimensions;
the angle θ varies from θ = 0 to θ = 2π, and the radial coordinate r varies from r = 0 to
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Figure 11.48: Uniform circular disc

r = R . Thus the limits of the integral are

Ixx =
m

πR2

R∫
0

2π∫
0

sin2 θr3dθdr

=
m

πR2

R∫
0

2π∫
0

(
1− cos 2θ

2

)
r3dθdr

=
m

2πR2

R∫
0

∣∣∣∣θ − sin 2θ

2

∣∣∣∣2π
0

r3dr

=
m

2πR2
2π

∣∣∣∣r44
∣∣∣∣R
0

=
m

4R2
R4

=
mR2

4
(11.20.4)

Similarly the moment of inertia of the ring about y axis is

Iyy =
mR2

4

Hence the moment of inertia about the diameter of the ring is

Id =
mR2

4
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11.20.7 About an Axis Perpendicular to Plane of the Disc and Passing

Through its Center

Since the disc lies in xy plane having center at origin, so z axis can be considered as an axis
perpendicular to plane of the disc and passing through its center. Then r be the distance
of mass dm from z axis, so its moment of inertia z axis is

dIzz = dmr2

=
m

πR2
rdrdθr2

=
m

πR2
r3drdθ

Next the moment of inertia of the ring about z axis is

Izz =
m

πR2

R∫
0

2π∫
0

r3dθdr

=
m

πR2

R∫
0

|θ|2π0 r3dr

=
m

πR2
2π

∣∣∣∣r44
∣∣∣∣R
0

=
2m

R2

R4

4

=
mR2

2

Second Approach - Perpendicular axis theorem
Using perpendicular axis theorem, the moment of inertia of mass m about z axis is

Izz = Ixx + Iyy

=
mR2

4
+
mR2

4

=
mR2

2

11.20.8 About a Line Tangent to Disc - Parallel Axis Theorem

Consider a tangent line to disc passes through a point on the rim of the disc, so two cases
arise:

1. The tangent line is parallel to z axis

2. The tangent line is parallel to diameter i.e. parallel to x axis or y axis
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(1) About a line tangent to disc and parallel to z axis
Let AB be the line tangent to ring and parallel to z axis. Then its distance from z axis is
R. Using theorem of parallel axis, the moment of inertia of mass m about AB axis is

Figure 11.49: Uniform circular disc

IAB = Izz +m(distance between axes)2

=
mR2

2
+mR2

=
3

2
mR2

(2) About a line parallel to diameter of the ring
Let AB be the line parallel to diameter of the ring. Then its distance from diameter is R.
Using theorem of parallel axis, the moment of inertia of mass m about AB axis is

IAB = Id +m(distance between axes)2

=
mR2

4
+mR2

=
5

4
mR2

11.20.9 Moment of Inertia of a Uniform Elliptic Disc

Consider a thin uniform elliptic disc of mass m and center at origin in xy plane. Let its
major axis of length 2a along x axis and minor axis of length 2b along y axis. Let P be
a point on disc making an angle θ with x axis at a distance r from the center. Choose
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Figure 11.50: Uniform circular disc

cylindrical coordinates with the coordinates (r, θ) in the plane and the z − axis. Then

x = a cos θ

y = b sin θ

Consider a strip of infinitesimal width dy and mass element dm at a distance y from x axis
show in the figure 11.51. The area element of mass element dm is

Figure 11.51: Uniform elliptic disc

dA = 2xdy (11.20.5)
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Since the disc is uniform, the mass per unit area is a constant,

ρ =
dm

dA
=
mtotal

A
(11.20.6)

=
dm

2xdy
=

m

πab
(11.20.7)

From (11.20.6), we can write

dm = ρdA =
2m

πab
xdy (11.20.8)

Now moment of inertia of mass element dm about major axes (x axis) is

dIxx = dmy2

=
2m

πab
xdy y2

=
2m

πb
y2
(

1− y2

b2

)
dy

The moment of inertia of the disc about x axis is now an integral from y = −b to y = b

Ixx =
2m

πb

b∫
−b

y2
(

1− y2

b2

)
dy (11.20.9)

Next

y = b sin θ

dy = b cos θdθ
y

b
= sin θ
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When y = −b, then θ = −π
2 and when y = b, then θ = π

2 .
Using all above results, Eq. (11.21.79) becomes

Ixx =
2mb2

π

π
2∫

−π
2

sin2 θ cos2 θdθ

=
mb2

2π

π
2∫

−π
2

sin2 2θdθ

=
mb2

4π

π
2∫

−π
2

(1− cos 4θ) dθ

=
mb2

4π

∣∣∣∣θ − sin 4θ

4

∣∣∣∣π2
−π

2

=
mb2

4π

(π
2

+
π

2

)
=

mb2

4

Similarly the moment of inertia of the disc about minor axis (y axis) is

Iyy =
ma2

4π

The moment of inertia about an axis perpendicular to the plane and passing through the
center of the disc (z axis) is given by using perpendicular axis theorem

Izz =
ma2

4π
+
ma2

4π

=
m

4π

(
a2 + b2

)
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11.21 Three Dimensional

In this section some examples will be presented in the following categories.

1. Cartesian Coordinates.

2. Cylindrical Coordinates.

3. Spherical coordinates.

11.21.1 Cartesian Coordinates

In this section, the moment of inertia of a cube and cupid will be calculated.
Example Calculate the inertia tensor for a homogeneous cube of density ρ, mass m , and
side length a. Let one corner be at the origin, and three adjacent edges lie along the
coordinate axes (see Figure 11.52).
Solution. We use equation (9.20) to calculate the components of the inertia tensor. Because
of the symmetry of the problem, it is easy to see that the three moments of inertia Ixx, Iyy
and Izz are equal and that same holds for all of the products of inertia. So we calculate
only Ixx. Then volume of mass m is

Figure 11.52: A cube with edges along coordinate axis.

V = a3
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and the density is

ρ =
m

V

or

m = ρ a3 (11.21.1)

Consider a cube of infinitesimal volume dV and mass element dm at a distance d from x
axis show in the figure 11.52. This distance is

d =
√
y2 + z2

The volume of mass element dm is

dV = dxdydz (11.21.2)

Since the cube is uniform, the mass per unit area is a constant,

ρ =
dm

dV
=
mtotal

Vtotal

=
dm

dV
=
m

V
(11.21.3)

From (11.21.13), we can write

dm = ρdV =
m

V
dV (11.21.4)

Now moment of inertia of mass element dm about x axis is

dIxx = dmd2

= ρdV d2

= ρ
(
y2 + z2

)
dV

Using (11.6.4), the moment of inertia of the cube about x axis is now an integral from x = 0
to x = a, y = 0 to y = a and z = 0 to z = a

Ixx = A =

∫∫∫
V

ρ
(
y2 + z2

)
dV

= ρ

a∫
0

a∫
0

a∫
0

(
y2 + z2

)
dzdydx
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First integrating with respect to z

= ρ

a∫
0

a∫
0

[
y2z +

z3

3

]a
0

dydx

= ρ

a∫
0

a∫
0

(
y2a+

1

3
a3
)
dydx

= ρa

a∫
0

a∫
0

(
y2 +

1

3
a2
)
dydx

Next integrating with respect to y

= ρa

a∫
0

[
y3

3
+

1

3
a2y

]a
0

dx

=
1

3
ρa

a∫
0

(
a3 + a2a

)
dx

=
2

3
ρa4

a∫
0

dx

Finally integrating with respect to x

=
2

3
ρa4
[
x
]a
0

=
2

3
ρa5

=
2

3

(
ρ a3

)
a2

Using (11.21.1), (11.21.15) can be written as

A =
2

3
ma2 (11.21.5)

So we have

A =
2

3
ma2 = B = C (11.21.6)

Also using (11.6.7) the products of inertia w.r.t. pair of axes (oy, oz) are as

D =

∫∫∫
V

ρyzdV

= ρ

a∫
0

a∫
0

a∫
0

yz dzdydx
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First integrating with respect to z

= ρ

a∫
0

a∫
0

y

[
z2

2

]a
0

dydx

= ρ

a∫
0

a∫
0

y

(
a2

2

)
dydx

= ρ
a2

2

a∫
0

a∫
0

ydydx

Next integrating with respect to y

= ρ
a2

2

a∫
0

[
y2

2

]a
0

dx

= ρ
a2

2

a∫
0

(
a2

2

)
dx

= ρ
a4

4

a∫
0

dx

Finally integrating with respect to x

= ρ
a4

4

[
x
]a
0

= ρ
a4

4
(a)

= ρa3
(
a2

4

)
Using (11.21.1), (11.21.7) can be written as

D = m
a2

4
(11.21.7)

Similarly the products of inertia w.r.t. pair of axes (oz, ox) and (ox, oy) respectively are as
under

E = m
a2

4
(11.21.8)

F = m
a2

4
(11.21.9)
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The inertia matrix [I] can be written as

[I] =



2
3ma

2 − 1
4ma

2 − 1
4ma

2

− 1
4ma

2 2
3ma

2 − 1
4ma

2

− 1
4ma

2 − 1
4ma

2 2
3ma

2


(11.21.10)

If we define α = ma2, the above matrix can be rewritten as

[I] =



2
3α − 1

4α − 1
4α

− 1
4α

2
3α − 1

4α

− 1
4α − 1

4α
2
3α


The radius of gyration about axis of rotation can be calculated by using (11.4.3). First
about x axis is

Kx =

√
Ixx
m

=

√
2

3
a

and about y axis is

Ky =

√
Iyy
m

=

√
2

3
a

finally about z axis is

Kz =

√
Izz
m

=

√
2

3
a

Since the inertia matrix is not a diagonal matrix, the coordinate system cannot be the
principle axes system. We could find the principle axis system by diagonalizing [I]. Since
inertia matrix (11.21.21) is symmetric, using (11.11.13) its characteristic equation is

( α
12

)3
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

8− k − − 3 −3

−3 8− k −3

−3 −3 8− k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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This equation has three real roots.

(8− k)3 − 27(8− k)− 54 = 0

−k3 + 242 − 165k + 242 = 0

(2− k) (k − 11)2 = 0

the roots are k = 2 and k = 11
or k1 = 1

6α, k2 = 11
12α and k3 = 11

12α
Using (11.11.13), the inertia matrix for principal axes through O is



A∗ 0 0

0 B∗ 0

0 0 C∗


=



k1 0 0

0 k2 0

0 0 k3



=



1
6α 0 0

0 11
12α 0

0 0 11
12α


Hence the principal moment of inertia about O are

A∗ =
1

6
ma2

B∗ =
11

12
ma2

C∗ =
11

12
ma2

Here B∗ = C∗ i.e. two principal moment of inertia are identical, so there must be one
principal axis corresponding to A∗ through O.
To find the direction of the principal axis associated with A∗, we use k = k1 = 1

6α in
(11.11.6) (

2

3
α− 1

6
α

)
ωx −

1

4
αωy −

1

4
αωz = 0

−1

4
αωx +

(
2

3
α− 1

6
α

)
ωy −

1

4
αωz = 0

−1

4
αωx −

1

4
αωy +

(
2

3
α− 1

6
α

)
ωz = 0
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The above system can be written as

2ωx − ωy − ωz = 0

−ωx + 2ωy − ωz = 0

−ωx − ωy + ωz = 0

This system reduces to

2ωx − ωy − ωz = 0

+ωy − ωz = 0

Here ωz is free variable, let it be 1, then we have

ωx = ωy = ωz

and the desired ratios are

ωx : ωy : ωz = 1 : 1 : 1

As a result, when the cube rotates about an axis that has associated with it the moment
of inertia I = 1

6α = 1
6ma

2, the projections of ω on the three coordinate axes are all equal.
Hence this principal axis corresponds to the diagonal of the cube.
Since B = C, two moments are equal, the orientation of the principal axis associated with
these moments is arbitrary, need only lie in a plane normal to the diagonal of the cube.
Hence we have infinite sets of principal axes, with one fixed principal axis.

Example 11.21.1. Consider a uniform solid rectangular block of mass m and dimension

2a× 2b× 2c. Find moment of inertia about coordinate axes with O as center of mass.

Solution Consider OXY Z a regular trihedral system and PABC a solid rectangular
block (parallelepiped) with origin O as center of mass. Also

PA = 2a, PB = 2b and PC = 2c

Then volume of mass m is

V = 8abc

and the density is

ρ =
m

V

or

m = ρ 8abc (11.21.11)
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Figure 11.53: uniform solid rectangular block

Consider a cube of infinitesimal volume dV and mass element dm at a distance d from x
axis show in the figure 11.53. This distance is

d =
√
y2 + z2

The volume of mass element dm is

dV = dxdydz (11.21.12)

Since the cube is uniform, the mass per unit area is a constant,

ρ =
dm

dV
=
mtotal

Vtotal

=
dm

dV
=
m

V
(11.21.13)

From (11.21.13), we can write

dm = ρdV =
m

V
dV (11.21.14)
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Now moment of inertia of mass element dm about x axis is

dIxx = dmd2

= ρdV d2

= ρ
(
y2 + z2

)
dV

Using (11.6.4), the moment of inertia of the cube about x axis is now an integral from
x = −a to x = a, y = −b to y = b and z = −c to z = c

Ixx = A =

∫∫∫
V

ρ
(
y2 + z2

)
dV

= ρ

a∫
−a

b∫
−b

c∫
−c

(
y2 + z2

)
dzdydx

First integrating with respect to z

= ρ

a∫
−a

b∫
−b

[
y2z +

z3

3

]c
−c

dydx

= ρ

a∫
−a

b∫
−b

(
y2 (c+ c) +

1

3

(
c3 + c3

))
dydx

= 2cρ

a∫
−a

b∫
−b

(
y2 +

1

3
c2
)
dydx

Next integrating with respect to y

= 2cρ

a∫
−a

[
y3

3
+

1

3
a2y

]b
−b

dx

=
4

3
ρc

a∫
−a

(
b3 + c2b

)
dx

=
4

3
ρbc

a∫
−a

(
b2 + c2

)
dx

Finally integrating with respect to x

=
4

3
ρbc
(
b2 + c2

) [
x
]a
−a

=
8

3
ρabc

(
b2 + c2

)
=

1

3
(ρ 8abc)

(
b2 + c2

)
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Using (11.21.1), (11.21.15) can be written as

A =
1

3
m
(
b2 + c2

)
(11.21.15)

Similarly

B =
1

3
m
(
a2 + c2

)
(11.21.16)

and

C =
1

3
m
(
a2 + c2

)
(11.21.17)

Also using (11.6.7) the products of inertia w.r.t. pair of axes (oy, oz) are as

D =

∫∫∫
V

ρyzdV

= ρ

a∫
−a

b∫
−b

c∫
−c

yz dzdydx

First integrating with respect to z

= ρ

a∫
−a

b∫
−b

y

[
z2

2

]c
−c

dydx

= ρ

a∫
−a

b∫
−b

y
1

2

(
c2 − c2

)
dydx

= 0

Using (11.21.56), (11.21.26) can be written as

D = 0 (11.21.18)

Similarly the products of inertia w.r.t. pair of axes (oz, ox) and (ox, oy) respectively are as
under

E = 0 (11.21.19)

F = 0 (11.21.20)

The inertia matrix [I] can be written as

[I] =



1
3m
(
b2 + c2

)
0 0

0 1
3m
(
a2 + c2

)
0

0 0 1
3m
(
a2 + c2

)


(11.21.21)
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Example 11.21.2. Consider a uniform solid rectangular block of mass m and dimension

2a× 2b× 2c. Find M.I. about coordinate axes with Oas center of mass.

Solution Consider OXY Z a regular trihedral system and PABC a solid rectangular
block (parallelepiped) with origin as center of mass. Let G be the center of mass. Then
O = G. Also

PA = 2a, PB = 2b and PC = 2c

Then volume of mass m is

Figure 11.54: uniform solid rectangular block

V = 8abc

and the density is

ρ =
m

V

or

m = ρ 8abc (11.21.22)

Using (11.6.4) M.I of the block about x− axis is

Ixx = A =

∫∫∫
V

ρ
(
y2 + z2

)
dV

= ρ

2a∫
0

2b∫
0

2c∫
0

(
y2 + z2

)
dzdydx
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First integrating with respect to z

= ρ

2a∫
0

2b∫
0

[
y2z +

z3

3

]2c
0

dydx

= ρ

2a∫
0

2b∫
0

(
y22c+

8

3
c3
)
dydx

= ρ2c

2a∫
0

2b∫
0

(
y2 +

4

3
c2
)
dydx

Next integrating with respect to y

= ρ2c

2a∫
0

[
y3

3
+

4

3
c2y

]2b
0

dx

=
2

3
ρc

2a∫
0

(
8b3 + 4c22b

)
dx

=
16

3
ρbc

2a∫
0

(
b2 + c2

)
dx

Finally integrating with respect to x

=
16

3
ρbc
(
b2 + c2

) [
x
]2a
0

=
16

3
ρbc
(
b2 + c2

)
2a

=
4

3
(ρ 8abc)

(
b2 + c2

)
Using (11.21.56), (11.21.23) can be written as

A =
4

3
m
(
b2 + c2

)
(11.21.23)

Similarly

B =
4

3
m
(
a2 + c2

)
(11.21.24)

and

C =
4

3
m
(
a2 + c2

)
(11.21.25)
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Also using (11.6.7) the products of inertia w.r.t. pair of axes (oy, oz) are as

D =

∫∫∫
V

ρyzdV

= ρ

2a∫
0

2b∫
0

2c∫
0

yz dzdydx

First integrating with respect to z

= ρ

2a∫
0

2b∫
0

y

[
z2

2

]2c
0

dydx

= ρ

2a∫
0

2b∫
0

y

(
4

2
c2
)
dydx

= ρ2c2
2a∫
0

2b∫
0

ydydx

Next integrating with respect to y

= ρ2c2
2a∫
0

[
y2

2

]2b
0

dx

= ρ2c2
2a∫
0

(
4b2

2

)
dx

= 4ρb2c2
2a∫
0

dx

Finally integrating with respect to x

= 4ρb2c2
[
x
]2a
0

= 4ρb2c2 (2a)

= (ρ 8abc) bc

Using (11.21.56), (11.21.26) can be written as

D = m bc (11.21.26)
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Similarly the products of inertia w.r.t. pair of axes (oz, ox) and (ox, oy) respectively are as
under

E = m ac (11.21.27)

F = m ab (11.21.28)

The inertia matrix [I] can be written as

[I] =



4
3m
(
b2 + c2

)
− mab − mac

− mab 4
3m
(
a2 + c2

)
− mbc

− mac − mbc 4
3m
(
a2 + b2

)



=
m

3



4
(
b2 + c2

)
−3 ab −3 ac

−3 ab 4
(
a2 + c2

)
−3 bc

−3 ac −3 bc 4
(
a2 + b2

)


(11.21.29)

If the dimension of the rectangular block is a× b× c, then the above matrix is.

[I] =



1
3m
(
b2 + c2

)
−1

4 mab −1
4 mac

−1
4 mab

1
3m
(
a2 + c2

)
−1

4 mbc

−1
4 mac −1

4 mbc
1
3m
(
a2 + b2

)



=
m

12



4
(
b2 + c2

)
−3 ab −3 ac

−3 ab 4
(
a2 + c2

)
−3 bc

−3 ac −3 bc 4
(
a2 + b2

)


(11.21.30)

Example 11.21.3. Consider a uniform solid rectangular block of mass m and dimension

2a×2b×2c. Find the equation of the momental ellipsoid for a corner O of the block, referred

to the edges through O as co-ordinates axes and hence determine M.I. about OP , where P

is the point diagonally opposite to O.
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Solution Consider OXY Z a regular trihedral system and OABCDEFP a solid rect-
angular block (parallelepiped). Then

OA = 2a, OB = 2b and OC = 2c

Then volume of mass m is

Figure 11.55: Uniform solid rectangular block

V = 8abc

and the density is

ρ =
m

V

or

m = ρ 8abc (11.21.31)

The M.I of the block about coordinate axis are

A =
4

3
m
(
b2 + c2

)

B =
4

3
m
(
a2 + c2

)
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and

C =
4

3
m
(
a2 + b2

)
Also the products of inertia w.r.t. pair of axes (oy, oz), (oz, ox) and (ox, oy) are as

D = m bc

E = m ac

and

F = m ab

Using these results in (11.16.6) standard equation of momental ellipsoid, we get

Ir2 =
4

3
m
[(
b2 + c2

)
x2 +

(
c2 + a2

)
y2 +

(
a2 + b2

)
z2
]

− 2m [bcyz + cazx+ abxy] (11.21.32)

(11.21.32) is the required equation of momental ellipsoid.
Next M.I. about OP axis is:
From the Fig. we can write

~OP = ~r = 〈2a, 2b, 2c〉

then

r2 = 4
(
a2 + b2 + c2

)
Take

x = 2a, y = 2b and z = 2c

Using above values in (11.21.32), IOP is

4
(
a2 + b2 + c2

)
IOP =

4

3
m
[
4a2

(
b2 + c2

)
+ 4b2

(
c2 + a2

)
+ 4c2

(
a2 + b2

)]
− 2m [bc(4bc) + ca(4ca) + ab(4ab)]

4
(
a2 + b2 + c2

)
IOP =

8

3
m
[
4
(
a2b2 + a2c2 + b2c2

)]
− 8m

(
a2b2 + a2c2 + b2c2

)
IOP =

2

3
m

(
a2b2 + a2c2 + b2c2

)
(a2 + b2 + c2)

(11.21.33)

(11.21.33) is the M.I. about OP axis or diagonal.
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11.21.2 Cylindrical Coordinates

Moment of Inertia of a Cylinder about its Axis Consider a cylinder of mass m, the
origin coincides with center of mass and z axis as the axis of rotation. Let P be a point
on cylinder. Take r (distance of P from z axis) in xy plane making an angle θ with x axis.
Then cylindrical coordinates of P are

x = r cos θ

y = r sin θ

z = z

Let R be the radius of base and L be the height of the cylinder, then volume of mass m is

V = πR2L

Consider an infinitesimal volume dV having mass element dm at a distance d from origin
shown in the figure 11.56. The volume of mass element dm is

Figure 11.56: Cylinder

dV = dxdydz = rdrdθdz (11.21.34)

Since the cylinder is uniform, the mass per unit volume is a constant,

ρ =
dm

dV
=
mtotal

V

=
dm

rdrdθdz
=

m

πR2L
(11.21.35)
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From (11.21.35), we can write

dm =
m

πR2L
rdrdθdz (11.21.36)

(a) The moment of inertia of mass element dm about z axis is

dIzz = dmr2

=
m

πR2L
rdrdθdz r2

=
m

πR2L
r3drdθdz

The moment of inertia of the cylinder about z axis is now an integral from r = 0 to r = R,
θ = 0 to θ = 2π and z = −L

2 to z = L
2

Izz =
m

πR2L

−L
2∫

−L
2

2π∫
0

R∫
0

r3drdθdz

First integrating with respect to r

=
m

πR2L

∣∣∣∣r44
∣∣∣∣R
0

−L
2∫

−L
2

2π∫
0

dθdz

Next integrating with respect to θ

=
mR2

4πL
|θ|2π0

−L
2∫

−L
2

dz

Finally integrating with respect to z

=
mR2

2L
|z|−

L
2

−L
2

=
mR2

2

Hence the moment of inertia about z axis is

C =
mR2

2
(11.21.37)

(b) Moment of Inertia of a Cylinder about an Axis Normal to the axis of the
cylinder and passing through its Center of Mass - Ixx or Iyy
Here x axis and y axis both are normal to the axis of the cylinder and passing through its
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Figure 11.57: Cylinder

center of mass. Hence it is enough to find about any one axis. Let’s consider x axis. To
calculate moment of inertia about x axis, see Fig. 11.57. Here d is distance of point mass
dm from x axis, and can be calculated as the hypotonus of right angle triangle PAB

d2 = z2 + r2 sin2 θ

The moment of inertia of mass element dm about x axis is

dIxx = dmd2

=
m

πR2L
rdrdθdz

(
z2 + r2 sin2 θ

)
=

m

πR2L
r
(
z2 + r2 sin2 θ

)
drdθdz

The moment of inertia of the cylinder about x axis is now an integral from r = 0 to r = R,
θ = 0 to θ = 2π and z = −L

2 to z = L
2

Ixx =
m

πR2L

−L
2∫

−L
2

2π∫
0

R∫
0

r
(
z2 + r2 sin2 θ

)
drdθdz

=
m

πR2L

−L
2∫

−L
2

2π∫
0

R∫
0

(
rz2 + r3 sin2 θ

)
drdθdz
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First integrating with respect to r

=
m

πR2L

−L
2∫

−L
2

2π∫
0

∣∣∣∣r22 z2 +
r4

4
sin2 θ

∣∣∣∣R
0

dθdz

Next integrating with respect to θ

=
m

4πL

−L
2∫

−L
2

∣∣∣∣2z2θ +
1

2
R2

(
θ +

1

2
sin 2θ

)∣∣∣∣2π
0

dz

=
m

4πL

−L
2∫

−L
2

∣∣4z2π +R2π
∣∣ dz

Finally integrating with respect to z

=
m

4L

∣∣∣∣43z3 + zR2

∣∣∣∣−L2
−L

2

=
m

4L

(
4

3

[(
L

2

)3

−
(
−L

2

)3
]

+

[(
L

2

)
−
(
−L

2

)]
R2

)

= m

(
L2

12
+
R2

4

)
Hence the moment of inertia about x axis is

A = m

(
L2

12
+
R2

4

)
(11.21.38)

Also the moment of inertia about y axis is

Iyy = B = m

(
L2

12
+
R2

4

)
(11.21.39)

To calculate the products of inertia, i.e. the off-diagonal terms in the tensor of inertia, we
make use of orthogonal trigonometric relations. First the products of inertia w.r.t. pair of
axes (oy, oz) are as

Iyz = Izy =

∫∫∫
V

ρyzdV

D = ρ

h
2∫

−h
2

2π∫
0

R∫
0

r2 sin θz drdθdz
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Since

2π∫
0

sin θdθ =

2π∫
0

cos θdθ = 0 (11.21.40)

Hence

D = 0

Next the products of inertia w.r.t. pair of axes (ox, oz) are as

Ixz = Izx =

∫∫∫
V

ρxzdV

E = ρ

h
2∫

−h
2

2π∫
0

R∫
0

r2 cos θz drdθdz

Using (11.21.40)

E = 0 (11.21.41)

Finally the products of inertia w.r.t. pair of axes (ox, oy) are as

Ixy = Iyz =

∫∫∫
V

ρxydV

F = ρ

h
2∫

−h
2

2π∫
0

R∫
0

r2 sin θ cos θ drdθdz

Since

2π∫
0

sin θ cos θdθ = 0 (11.21.42)

Hence

F = 0

Also This is due to the symmetry of the cylinder (under consideration), the x, y and z axes,
coincide with its the principal axes, and hence the products of inertia are zero. The inertia
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matrix [I] can be written as

[I] =



m
(
L2

12 + R2

4

)
0 0

0 m
(
L2

12 + R2

4

)
0

0 0 mR2

2


(11.21.43)

Now let us assume that the cylinder rotates with angular velocity ω about the z axis. Thus
the angular velocity vector for the solid is

~ω = 〈0, 0, ω〉

Using (11.11.14) the angular momentum of the system is

Lx

Ly

Lz


=



A 0 0

0 B 0

0 0 C





0

0

ω


~L = C ωk̂

Using (11.21.37)

~L =
mR2

2
ωk̂ (11.21.44)

represents the rotational motion about a fixed axis.
The kinetic energy of the system is

K =
1

2
~ω · ~L

=
1

4
mR2ω2

Since ~L is a vector constant, so the torque vanishes,

~N =
d~L

dt
= 0

Hence the system can continue spinning about its axis of rotation (z axis) without the need
to apply any torque to maintain it in this state.
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Example 11.21.4. Consider a uniform solid right circular cone of mass m with hight h

and base radius r. Find moment of inertia about its axis of symmetry.

Solution Consider a regular trihedral system and a solid right circular cone of mass m
with height h and vertex at origin O. Let x axis be the axis of symmetry. Then

OA = h, and AB = r

Then volume of mass m is

Figure 11.58: uniform solid right circular cone

V =
1

3
πr2h (11.21.45)

and the density is

ρ =
m

V

or

m =
1

3
ρπr2h (11.21.46)

Consider a disc of mass element dm and infinitesimal width dx having radius y, at a distance
x from O, shown in figure 11.58. From similar triangles OAB and OCP , we can write

OA

AB
=

OC

CP
h

r
=

x

y

and y can be written as

y =
r

h
x (11.21.47)
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The volume of mass element dm is

dV = πy2dx (11.21.48)

Since the cone is uniform, the mass per unit area is a constant,

ρ =
dm

dV
=
mtotal

Vtotal

=
dm

dV
=
m

V
(11.21.49)

From (11.21.49), we can write

dm = ρdV =
m

V
dV

From (11.21.45) and (11.21.48), dm can be written as

dm =
3my2

r2h
dx

Using (11.21.47), dm is

dm =
3m

h3
x2dx (11.21.50)

Using (11.20.5), the moment of inertia of mass element dm about x axis is

dIxx =
1

2
dmy2

Using (11.21.47) and (11.21.50), dIxx is

dIxx =
3

2

mr2

h5
x4dx

Using (11.6.4), the moment of inertia of the cone about x axis is now an integral from x = 0
to x = h.

Ixx = A =
3

2

mr2

h5

h∫
0

x4dx

=
3

2

mr2

h5

[
x5

5

]h
0

=
3

10
mr2

Hence

A =
3

10
mr2 (11.21.51)
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2. About y axis
Using (11.20.5), the moment of inertia of mass element dm about its diameter is

Id =
1

4
dmy2 (11.21.52)

Since the diameter is passing through the center of mass of small disc, so we can use parallel
axis theorem to find moment of inertia about y axis, by taking CP axis (diameter) parallel
to y axis.

dIyy =
1

4
dmy2 + dmx2

Using (11.21.47) and (11.21.50), dIxx is

dIyy =
3

4

mr2

h5
x4dx+ 3

m

h3
x4dx

=

[
3

4

mr2

h5
+ 3

m

h3

]
x4dx

Using (11.6.4), the moment of inertia of the cone about y axis is now an integral from x = 0
to x = h.

Iyy = B =

(
3

4

mr2

h5
+ 3

m

h3

) h∫
0

x4dx

=

(
3

4

mr2

h5
+ 3

m

h3

)[
x5

5

]h
0

=
3

20
m
(
r2 + 4h2

)
Hence

B =
3

20
m
(
r2 + 4h2

)
(11.21.53)

Similarly about z axis

C = Izz =
3

20
m
(
r2 + 4h2

)
(11.21.54)

Example 11.21.5. Consider a uniform solid paraboloid of mass m. Find moment of inertia

about its axis of symmetry.

Solution Consider a regular trihedral system and a paraboloid of mass m with vertex
at origin O. Let x axis be the axis of symmetry. Then

OA = h, and AB = r
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Figure 11.59: solid paraboloid

Then volume of mass m is

V =
1

2
πr2h (11.21.55)

and the density is

ρ =
m

V

or

m =
1

2
ρπr2h (11.21.56)

For y consider the Fig 11.60, from the definition of a parabola, we have

y2 = 4ax (11.21.57)

and

|BF | = |BE| (11.21.58)

From Fig 11.60, |BE| can be written as

|BE| = |AO|+ |OD| = h+ a (11.21.59)

For |BF |, consider right angle triangle BAF ,

|BF |2 = |BA|2 + |AF |2

= r2 + (h− a)2 (11.21.60)
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Figure 11.60: Parabola

Using (11.21.59) and (11.21.60), (11.21.58) can be written as

(h+ a)2 = r2 + (h− a)2

2ah = r2 +−2ah

4a =
r2

h
(11.21.61)

Using (11.21.61), (11.21.57) can be written as

y2 =
r2

h
x (11.21.62)

Consider a disc of mass element dm and infinitesimal width dx having radius y, at a distance
x from O, shown in figure 11.59. The volume of mass element dm is

dV = πy2dx (11.21.63)

Since the cone is uniform, the mass per unit area is a constant,

ρ =
dm

dV
=
mtotal

Vtotal

=
dm

dV
=
m

V
(11.21.64)

From (11.21.64), we can write

dm = ρdV =
m

V
dV
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From (11.21.55) and (11.21.63), dm can be written as

dm = 2
my2

r2h
dx

Using (11.21.62), dm is

dm = 2
m

h2
xdx (11.21.65)

Using (11.20.5), the moment of inertia of mass element dm about x axis is

dIxx =
1

2
dmy2

Using (11.21.62) and (11.21.65), dIxx is

dIxx =
mr2

h3
x2dx

Using (11.6.4), the moment of inertia of the paraboloid about x axis is now an integral from
x = 0 to x = h.

Ixx = A =
mr2

h3

h∫
0

x2dx

=
mr2

h3

[
x3

3

]h
0

=
1

3
mr2

Hence

A =
1

3
mr2 (11.21.66)

2. About y axis
Using (11.20.5), the moment of inertia of mass element dm about its diameter is

Id =
1

4
dmy2 (11.21.67)

Since the diameter is passing through the center of mass of small disc, so we can use parallel
axis theorem to find moment of inertia about y axis, by taking CP axis (diameter) parallel
to y axis.

dIyy =
1

4
dmy2 + dmx2
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Using (11.21.47) and (11.21.50), dIxx is

dIyy =
3

4

mr2

h5
x4dx+ 3

m

h3
x4dx

=

[
3

4

mr2

h5
+ 3

m

h3

]
x4dx

Using (11.6.4), the moment of inertia of the cone about y axis is now an integral from x = 0
to x = h.

Iyy = A =

(
3

4

mr2

h5
+ 3

m

h3

) h∫
0

x4dx

=

(
3

4

mr2

h5
+ 3

m

h3

)[
x5

5

]h
0

=
3

20
m
(
r2 + 4h2

)
Hence

B =
3

20
m
(
r2 + 4h2

)
(11.21.68)

Similarly about z axis

C = Izz =
3

20
m
(
r2 + 4h2

)
(11.21.69)

11.21.3 Spherical Coordinates

Moment of Inertia of a Thin Spherical Shell (Hollow sphere) about an Axis/Diameter
Consider a thin spherical shell of mass m and radius R, the origin coincides with center of
mass. Since the spherical bodies are completely symmetrical in all directions about their
center, so the moment of inertia about all coordinate axes is same. Select any one axis as
the axis of rotation. Let it be z axis. Let P be a point on sphere, such that OP vector
makes an angle θ with y axis. Then the distance d of P from z axis is

d = R cos θ

Let the shell be of infinitesimally thin wall of uniform density. In this case the volume
density of the mass has to be replaced by the surface density of mass ρ. Then the surface
area of mass m is

A = 4πR2

Consider an infinitesimal mass element dm at a distance R from origin between angles θ
and θ + dθ, shown in the figure 11.61. The mass element dm is a circular ribbon of radius
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Figure 11.61: Hollow sphere

R cos θ, having width Rdθ, spread out over the area of the sphere.
Then length of the ribbon = 2π(R cos θ)
and width of the ribbon = Rdθ
And area of the ribbon is

dA = 2π(R cos θ)Rdθ

= 2πR2 cos θdθ (11.21.70)

Since the sphere is uniform, the mass per unit area is a constant,

ρ =
dm

dA
=
mtotal

A

=
dm

2πR2 cos θdθ
=

m

4πR2
(11.21.71)

From (11.21.71), we can write

dm =
m

2
cos θdθ (11.21.72)
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The moment of inertia of mass element dm about z axis is

dIzz = dmd2

=
m

2
cos θdθ(R cos θ)2

=
m

2
R2 cos3 θdθ

The moment of inertia of the mass m about z axis is now an integral from θ = 0 to θ = π

Izz =
m

2
R2

π∫
0

cos3 θdθ

=
m

2
R2

π∫
0

[
cos θ

(
cos2 θ

)]
dθ

=
m

2
R2

π∫
0

[
cos θ

(
1− sin2 θ

)]
dθ

=
(m

2
R2
)

2

π
2∫

0

(
cos θ + sin2 θ cos θ

)
= mR2

∣∣∣∣(sin θ − 1

3
sin3 θ

)∣∣∣∣π2
0

= mR2

(
1− 1

3

)
= mR2

(
2

3

)
=

2

3
mR2 (11.21.73)

The moment of inertia of the mass m about diameter or x axis or y axis is

Ixx =
2

3
mR2

11.21.4 Moment of Inertia of a Solid Sphere About z Axis

Consider a solid sphere of mass m and radius R, the origin coincides with center of mass.
Since the spherical bodies are completely symmetrical in all directions about their center,
so the moment of inertia about all coordinate axes is same. Select any one axis as the axis
of rotation. Let it be z axis. Let P be a point on sphere, such that OP vector makes an
angle θ with x axis. Then the distance d of P from z axis is

d = r sinφ
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Since the sphere is of uniform density, so the volume density of the mass m is ρ. Then the
volume of mass m is

V =
4

3
πR3

Consider an infinitesimal mass element dm at a distance r from origin between angles θ and
φ, shown in the figure 11.62. The volume of mass element dm is

Figure 11.62: Solid Sphere

dV = r2 sinφdrdθdφ

Since the sphere is uniform, the mass per unit area is a constant,

ρ =
dm

dV
=
mtotal

V

=
dm

r2 sinφdrdθdφ
=

m
4
3πR

3
(11.21.74)

From (11.21.74), we can write

dm =
3

4

m

πR3
r2 sinφdrdθdφ (11.21.75)
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The moment of inertia of mass element dm about z axis is

dIzz = dmd2

=
3

4

m

πR3
r2 sinφdrdθdφ(r sinφ)2

=
3

4

m

πR3
r4 sin3 φdrdθdφ

The moment of inertia of the mass m about z axis is now an integral from r = 0 to r = R,
θ = 0 to θ = 2π and φ = 0 to φ = π

Izz =
3

4

m

πR3

2π∫
0

π∫
0

R∫
0

r4 sin3 φdrdθdφ

=
3

4

m

πR3

(∣∣∣∣r55
∣∣∣∣R
0

|θ|2π0

) π∫
0

sin3 φdφ (11.21.76)

The integral can be solved as

π∫
0

sin3 θdθ =

π∫
0

[
sin θ

(
sin2 θ

)]
dθ

=

π∫
0

[
sin θ

(
1− cos2 θ

)]
dθ

=

π∫
0

(
sin θ − cos2 sin θdθ

)
=

∣∣∣∣(− cos θ +
1

3
cos3 θ

)∣∣∣∣π
0

=

(
2− 2

3

)
=

4

3
(11.21.77)

=
3

4

m

πR3

R5

5
(2π)

4

3

=
2

5
mR2 (11.21.78)

The moment of inertia of the mass m about diameter or x axis or y axis is

Ixx =
2

5
mR2
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11.21.5 Moment of Inertia of a Hemisphere About Coordinate Axis

Consider a hemisphere of mass m having center of circular base at origin O with radius r.
Let y axis be the axis of symmetry. Then

OA = r, CP = x and OC = y

Then volume of mass m is

Figure 11.63: Hemisphere

V =
2

3
πr3 (11.21.79)

and the density is

ρ =
m

V

or

m =
2

3
ρπr3 (11.21.80)

Consider a disc of mass element dm and infinitesimal width dy having radius x, at a dis-
tance y from O, shown in figure 11.63. The equation of the circle (along the boundary of
hemisphere) is

x2 + y2 = r2

and x2 can be written as

x2 = r2 − y2 (11.21.81)
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The volume of mass element dm is

dV = πx2dy (11.21.82)

Using (11.21.83), (11.21.84) can be written as

dV = π
(
r2 − y2

)
dy (11.21.83)

Since the cone is uniform, the mass per unit area is a constant,

ρ =
dm

dV
=
mtotal

Vtotal

=
dm

dV
=
m

V
(11.21.84)

From (11.21.84), we can write

dm = ρdV =
m

V
dV

Using (11.21.79) and (11.21.83), dm can be written as

dm =
3mx2

r2h
dy

Using (11.21.47), dm is

dm =
3

2

m

r3
(
r2 − y2

)
dy (11.21.85)

Using (11.20.5), the moment of inertia of mass element dm about y axis is

dIyy =
1

2
dmx2

Using (11.21.85) and (11.21.83), dIyy is

dIyy =
3

4

m

r3
(
r2 − y2

)2
dy

Using (11.6.4), the moment of inertia of the hemisphere about y axis is now an integral
from y = 0 to y = r.

Iyy = B =
3

4

m

r3

r∫
0

(
r4 − 2r2y2 + y4

)
dy

=
3

4

m

r3

[
r4y − 2

3
r2y3 +

1

5
y5
]r
0

=
3

4

m

r3
r5
[
1− 2

3
+

1

5

]
=

2

5
mr2
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Hence

B =
2

5
mr2 (11.21.86)

Similarly about x axis

A =
2

5
mr2 (11.21.87)

and z axis

C = Izz =
2

5
mr2 (11.21.88)

11.21.6 Moment of Inertia of a Ellipsoid About x Axis

Consider an ellipsoid of mass m having center at origin O with a along x axis, b along y
and c along z axes (see figure 11.64 ). Then

OA = a, OB = b and OC = c

The parametric equations of ellipsoid are

x = ar sinφ cos θ

y = br sinφ sin θ

z = cr cosφ

satisfying

x2

r2
+
y2

r2
+
z2

r2
= 1

Then volume of mass m is

V =
4

3
πabc (11.21.89)

and the density is

ρ =
m

V

=
3m

4πabc

or

m =
4

3
ρπabc (11.21.90)
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Figure 11.64: Ellipsoid

Consider an infinitesimal mass element dm at a distance r from origin between angles θ and
φ, shown in the figure 11.64. Its volume is

dV = dxdydz = abcr2 sinφdrdφdθ (11.21.91)

where J = abcr2 sinφ is the jacobian of the transformation. Using (11.6.4), the moment of
inertia of the ellipsoid about x axis is now an integral from 0 ≤ r ≤ 1, −π

2 ≤ φ ≤ π
2 and

−π ≤ θ ≤ π. These limits of integration can also be chosen as 0 ≤ r ≤ 1, 0 ≤ φ ≤ π and
0 ≤ θ ≤ 2π.

Ixx =
3

4

m

πabc

2π∫
0

π∫
0

1∫
0

(
b2r2 sin2 φ sin2 θ + c2r2 cos2 φ

)
abc r2 sinφ drdφdθ

=
3

4

m

π

2π∫
0

π∫
0

1∫
0

r4
(
b2 sin3 φ sin2 θ + c2 cos2 φ sinφ

)
drdφdθ

=
3

4

m

π

∣∣∣∣r55
∣∣∣∣1
0

2π∫
0

π∫
0

(
b2 sin3 φ sin2 θ + c2 cos2 φ sinφ

)
dφdθ (11.21.92)

The integrals

π∫
0

cos2 φ sinφdφ =
2

3
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see (11.21.77)

π∫
0

sin3 φdφ =
4

3

and

2π∫
0

sin2 θdθ = π

Using them in (11.21.92)

Ixx =
3

20

m

π

(
b2

4

3
π + c2 2π

2

3

)
=

1

5
m
(
b2 + c2

)
(11.21.93)

The moment of inertia of the mass m about x axis is

Ixx =
1

5
m
(
b2 + c2

)
Similarly about y axis is

Iyy =
1

5
m
(
a2 + c2

)
and about z axis is

Izz =
1

5
m
(
a2 + b2

)
To calculate the products of inertia, we make use of orthogonal trigonometric relations.
First the products of inertia w.r.t. pair of axes (oy, oz) are as

Iyz = Izy =

∫∫∫
V

ρyzdV

D = ρ

2π∫
0

π∫
0

1∫
0

bcr2 sinφ sin θ cosφabc r2 sinφ drdφdθ

= ρab2c2
2π∫
0

π∫
0

1∫
0

r4 sin θ sin2 φ cosφ drdφdθ

Since (11.21.40) is

2π∫
0

sin θdθ =

2π∫
0

cos θdθ = 0
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Hence

D = 0

Next the products of inertia w.r.t. pair of axes (ox, oz) are as

Ixz = Izx =

∫∫∫
V

ρxzdV

E = ρ

2π∫
0

π∫
0

1∫
0

acr2 sinφ cos θ cosφabc r2 sinφ drdφdθ

= ρa2bc2
2π∫
0

π∫
0

1∫
0

r4 cos θ sin2 φ cosφ drdφdθ

Using (11.21.40)

E = 0 (11.21.94)

Finally the products of inertia w.r.t. pair of axes (ox, oy) are as

Ixy = Iyz =

∫∫∫
V

ρxydV

F = ρ

2π∫
0

π∫
0

1∫
0

abr2 sinφ cos θ sinφ sin θ abc r2 sinφ drdφdθ

= ρa2b2c

2π∫
0

π∫
0

1∫
0

r4 cos θ sin θ sin3 φ cosφ drdφdθ

Since (11.21.42) is

2π∫
0

sin θ cos θdθ = 0

Hence

F = 0

Also This is due to the symmetry of the ellipsoid (under consideration), the x, y and z axes,
coincide with its the principal axes, and hence the products of inertia are zero. The inertia
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matrix [I] can be written as

[I] =



1
5m
(
b2 + c2

)
0 0

0 1
5m
(
a2 + c2

)
0

0 0 1
5m
(
a2 + b2

)


(11.21.95)

11.21.7 Moment of Inertia of a Prolate Ellipsoid About x Axis

If a sphere is squash to make a shorter fatter shape (a bit like a burger). In such case it is
called an prolate ellipsoid. If we chop it through the middle to get a circle, then the volume
is the area of the circle times 2/3rd of the minor axis.
Consider an ellipsoid of mass m having center at origin O with a along x axis and b along
y and z axes. Then

OA = a, OB = b and OC = c = b

Figure 11.65: Prolate Ellipsoid

Then volume of mass m is

V =
4

3
πabc =

4

3
πab2 (11.21.96)

and the density is

ρ =
m

V
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Figure 11.66: Prolate Ellipsoid

or

m =
4

3
ρπab2 (11.21.97)

Consider a disc of mass element dm of infinitesimal width dx at a distance x from O, shown
in figure 11.65. The equation of the ellipse (along the boundary of ellipsoid) is (see figure
11.66)

x2

a2
+
y2

b2
= 1

and y2 can be written as

y2 = b2
(

1− x2

a2

)
(11.21.98)

The volume of mass element dm is (area of circle × height)

dV = πy2dx (11.21.99)

Using (11.21.98), (11.21.99) can be written as

dV = πb2
(

1− x2

a2

)
dx (11.21.100)

Since the ellipsoid is uniform, the mass per unit volume is a constant,

ρ =
dm

dV
=
mtotal

Vtotal

=
dm

dV
=
m

V
(11.21.101)
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From (11.21.101), we can write

dm = ρdV =
m

V
dV

Using (11.21.96) and (11.21.100), dm can be written as

dm =
3

4
m
b2

a

(
1− x2

a2

)
dx (11.21.102)

Using (11.20.5), the moment of inertia of mass element dm about x axis is

dIxx =
1

2
dmy2

Using (11.21.98) and (11.21.102), dIxx is

dIxx =
3

8

b2

a
m

(
1− x2

a2

)2

dx

Using (11.6.4), the moment of inertia of the ellipsoid about x axis is now an integral from
x = −a to x = a.

Ixx = A =
3

8

mb2

a5

a∫
−a

(
a4 − 2a2x2 + x4

)
dx

=
3

8

mb2

a5
2

a∫
0

(
a4 − 2a2x2 + x4

)
dx

=
3

4

mb2

a5

[
a4x− 2

3
a2x3 +

1

5
x5
]a
0

=
3

4

mb2

a5
a5
[
1− 2

3
+

1

5

]
=

2

5
mb2

Hence

A =
2

5
mb2 (11.21.103)

Example 11.21.6. Four particle of masses m, 2m, 3m and 4m are located at (a, a, a),

(a,−a,−a), (−a, a,−a) and (−a,−a, a) respectively. Complete its inertia matrix and hence

determine its principal moments of inertia.
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Figure 11.67: Four particles system

Solution: See the Fig. 11.67, the masses m1 = m, m2 = 2m, m3 = 3m and m4 =
4m are located at D = (a, a, a), A = (a,−a,−a), B = (−a, a,−a) and C = (−a,−a, a)
respectively. Here the origan of regular trihedral system can be considered as the center of
the cube formed by these points. For Ixx, the distance of m1 from x axis is

d1 = a2 + a2 = 2a2 (see Fig. 11.68)

Similarly

d2 = 2a2 = d3 = d4

Using (11.1.3), the moment of inertia about x axis is

Ixx = A =

4∑
i=1

mid
2
i

= m1d
2
1 +m2d

2
2 +m3d

2
3 +m4d

2
4

= m2a2 + 2m2a2 + 3m2a2 + 4m2a2

= (m+ 2m+ 3m+ 4m) 2a2

= 20ma2
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Figure 11.68: Four particles system

Ixx can also be calculated by using (11.5.7) as

Ixx = A =
4∑
i=1

mi

(
y2i + z2i

)
= m1

(
y21 + z21

)
+m2

(
y22 + z22

)
+m3

(
y23 + z23

)
+m4

(
y24 + z24

)
= m

(
a2 + a2

)
+ 2m

(
a2 + a2

)
+ 3m

(
a2 + a2

)
+ 4m

(
a2 + a2

)
= 20ma2

Similarly

Iyy = B = 20ma2

and

Izz = C = 20ma2

The product of inertia Iyz can be calculated by using (11.6.1)

Iyz = D =

4∑
i=1

miyizi

= m1y1z1 +m2y2z2 +m3y3z3 +m4y4z4

= ma2 + 2ma2 − 3ma2 − 4ma2

= −4ma2
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The product of inertia Iyz can be calculated by using (11.6.2)

Ixz = E =

4∑
i=1

mixizi

= m1x1z1 +m2x2z2 +m3x3z3 +m4x4z4

= ma2 − 2ma2 + 3ma2 − 4ma2

= −2ma2

The product of inertia Ixy can be calculated by using (11.6.3)

Ixy = F =

4∑
i=1

mixiyi

= m1x1y1 +m2x2y2 +m3x3y3 +m4x4y4

= ma2 − 2ma2 − 3ma2 + 4ma2

= 0

The inertia matrix [I] can be written as

[Iij ] =



20ma2 0 2ma2

0 20ma2 4ma2

2ma2 4ma2 20ma2



= 2ma2



10 0 1

0 10 2

1 2 10


(11.21.104)

Since inertia matrix (11.21.104) is symmetric, using (11.11.13) its characteristic equation is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

10− k 0 1

0 10− k 2

1 2 10− k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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This equation has three real roots.

(10− k)
(
(10− k)2 − 5

)
= 0

the roots are k = 10 and k = 10±
√

5
or k1 = 20ma2, k2 = 2ma2

(
10 +

√
5
)

and k3 = 2ma2
(
10−

√
5
)

Using 11.11.13, the inertia matrix for principal axes through O is



A∗ 0 0

0 B∗ 0

0 0 C∗


=



k1 0 0

0 k2 0

0 0 k3



=



20ma2 0 0

0 2ma2
(
10 +

√
5
)

0

0 0 2ma2
(
10−

√
5
)


Hence the principal moment of inertia about O are

A∗ = 20ma2

B∗ = 2ma2
(

10 +
√

5
)

C∗ = 2ma2
(

10−
√

5
)

Example 11.21.7. For the body shown in Fig. 11.69, IAB = 34.65 kg − m2 and M =

0.875 kg. Find the radius of gyration of the body with respect to the AB axis.

Solution: Here IAB = 34.65 kg −m2 and M = 0.875 kg. using (11.4.3), the radius of
gyration

K =

√
I

m

=

√
34.65

0.875
=
√

39.6 m

= 6.293 m
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Figure 11.69: Rigid body

Example 11.21.8. :- A rigid body is free to rotate about its centroid G, the principal

moment of inertia about G are 7, 25, 32 units respectively. The body has an angular velocity

ω about a line through G, whose direction ratios are 4 : 0 : 3. Show that after time t, the

angular velocity about the principal axis of inertia about G is

~ω =

〈
4

5
ω cosφ,

4

5
ω sinφ,

3

5
ω cosφ

〉
Where

tan

(
φ

2

)
= tanh

(
3ωt

10

)
(11.21.105)

Solution Consider OXY Z a regular trihedral system, with O coincides with G. Let

~ω = 〈ωx, ωy, ωz〉

be the angular velocity about principal axis at any time t. At t = 0, the angular velocity is

~ω(0) =

〈
4

5
ω, 0,

3

5
ω

〉
(11.21.106)
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Figure 11.70: Rigid body rotates about its centroid G

Here A∗ = 7, B∗ = 25 and C∗ = 32
Since the body is free to rotate (no torque), then Euler’s dynamical equations (11.15.4) are

7ω̇x − (25− 32)ωyωz = 0

25ω̇y − (32− 7)ωxωz = 0

32ω̇z − (7− 25)ωxωy = 0


or

ω̇x + ωyωz = 0 (11.21.107)

ω̇y − ωxωz = 0 (11.21.108)

16ω̇z + 9ωxωy = 0 (11.21.109)

To solve this system, we try to find a relation in one variable i.e. in ωx, ωy or ωz and solve
it. Let we find a relation for ωy.
From (11.21.108), we can write

ω̇y = ωxωy
dωy
dt

= ωxωz

dωy
ωxωz

= dt (11.21.110)

Now try to find ωx and ωz in term of ωy. For this, multiplying (11.21.107) by ωx and
(11.21.108) by ωy and then adding, we have

ωxω̇x + ωyω̇y = 0 (11.21.111)
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Integrating (11.21.111), we have

ω2
x + ω2

y = C (11.21.112)

Using initial condition (11.21.106), C = 16
25ω

2, then (11.21.112) becomes

ω2
x + ω2

y =
16

25
ω2

or

ω2
x =

16

25
ω2 − ω2

y

Hence ωx in term of ωy is

ωx =

(
16

25
ω2 − ω2

y

) 1
2

(11.21.113)

Next multiplying (11.21.108) by 9 ωy and (11.21.109) by ωz and then adding, we have

9 ωyω̇y + 16ωzω̇z = 0 (11.21.114)

Integrating (11.21.111), we have

9 ω2
y + 16ω2

z = C (11.21.115)

Using initial condition (11.21.106), C = 16
25ω

2, then (11.21.115) becomes

9 ω2
y + 16ω2

z =
144

25
ω2

or

ω2
z =

9

25
ω2 − 9

16
ω2
y

Hence ωz in term of ωy is

ωz =
3

4

(
16

25
ω2 − ω2

y

) 1
2

(11.21.116)

Using (11.21.113) and (11.21.116) in (11.21.110), we have

dωy(
4
5ω
)2 − ω2

y

=
3

4
dt (11.21.117)
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(11.21.117) is separable first order differential equation in ωy and its solution is

5

4 ω
tanh−1

(
5

4 ω
ωy

)
=

3

4
t

tanh−1
(

5

4 ω
ωy

)
=

3

5
ωt

5

4 ω
ωy = tanh

(
3

5
ωt

)
ωy =

4

5
ω tanh

(
3

5
ωt

)
(11.21.118)

Next consider the trigonometric relation

tanh 2θ =
2 tanh θ

1 + tanh2 θ

or

tanh

(
3

5
ωt

)
=

2 tanh
(

3
10 ωt

)
1 + tanh2

(
3
10 ωt

)
Using (11.21.105), right side becomes

tanh

(
3

5
ωt

)
=

2 tan
(
φ
2

)
1 + tan2

(
φ
2

)
= 2 sin

(
φ

2

)
cos

(
φ

2

)
= sinφ (11.21.119)

Using (11.21.119) in (11.21.118), we have

ωy =
4

5
ω sinφ (11.21.120)

Using (11.21.122) in (11.21.113) and (11.21.116) in (11.21.110), we have

ωx =
4

5
ω cosφ (11.21.121)

and

ωz =
3

5
ω cosφ (11.21.122)

Hence the angular velocity about the principal axis of inertia about G is

~ω =

〈
4

5
ω cosφ,

4

5
ω sinφ,

3

5
ω cosφ

〉
Hence the proof.
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Exercises

1. In example 11.18.1, find the moment of inertia about an axis passing through one end
of the system and perpendicular to the rod.

2. Find moment of inertia of a uniform rod of mass m making an angle π
3 with x− axis

with one end at origin having length a about

(a) an axis passing through center and perpendicular to the rod.

(b) Coordinate axes.

(c) finding products of inertia, hence complete inertia matrix.

3. Find moment of inertia of a uniform rod of mass m making an angle π
4 with x− axis

with center at origin having length a about

(a) an axis passing through center and perpendicular to the rod.

(b) Coordinate axes.

(c) finding products of inertia, hence complete inertia matrix.

4. Calculate the moment of inertia about the diagonal of a rectangular lamina.

5. Calculate the moment of inertia about the y-axis of the square lamina.

6. Calculate the moment of inertia about the diagonal of the square lamina.



382 BIBLIOGRAPHY

Bibliography

[1] The International System of Units (SI), NIST Special Publication 330, 2008 Edition,
B.N. Taylor, editor. United States Department of Commerce, National Institute of
Standards and Technology Gaithersburg, MD 20899.

[2] Q.K.Ghori, Introduction to Mechanics, West Pak Publishing Co. Ltd., Lahore 1971.

[3] D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics,John Wiley & Sons,
lnc., 8th ed. extended, 2008.

[4] D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems,
7th Edition, 2009.

[5] Richard Bronson and G. B. Costa, Schaum’s Outline of Differential Equations,
McGraw-Hill Companies, Inc., 3rd Edition, 2006.

[6] H. Anton, I. Bivens and S. Davis, Calculus, John Wiley & Sons, lnc., Early Transcen-
dentals 10th edition, 2012.

[7] L. D. Landau, E. M. Lifshitz, Mecanics, Pergamon Press, Oxford: butterworth, 3rd
edition, 15 2005.

[8] K. Singh, Mechanics, Department of Mathematics, Directorate of Distance Education,
Guru Jambheshwar University of Science & Technology Hisar-125001.

[9] S.S. Bhavikatti, A textbook of Classical Mechanics, New Age International Publishers,
Second Edition Reprint, 2009.

[10] R.G. Takwale and P.S. Puranik, Introduction to Classical Mechanics, Tata McGraw-
Hill Publishing Company Ltd. 39th reprint 2009.

[11] Lecture notes of Mechanics MIT, USA.

[12] Wikipedia.



Index

λ, µ theorem, 41, 81
2-space, 9
3-space, 9

addition of vectors, 31
Angle between two vectors, 18
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C.G.S., 7
center of gravity, 219, 222
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central impact, 168
centroid, 228, 239, 284
CIPM, 3
closed system, 157
coefficient of friction, 144, 152, 153
coefficient of kinetic friction, 143
coefficient of restitution, 170
coefficient of static friction, 143
collinear forces, 63
collinear vectors, 16
collision, 157, 163
concurrent and coplanar vectors, 46, 96
concurrent and non-coplanar forces, 103
concurrent and non-coplanar vectors, 50
concurrent forces, 63
concurrent vectors, 16

condition of equilibrium, 146
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cone of friction, 145
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continuous distribution, 229, 248, 257
converse perpendicular axis theorem, 261
coplanar, 285
coplanar forces, 63
coplanar vectors, 16, 43, 66, 71, 93
cross product of two vector, 28
curl, 55

density, 219
derived unit, 1
dimension, 5
direct impact, 168
direction angles, 20
divergence, 55
dot product of two vectors, 17
dry friction, 141
dynamics, 63

eccentric impact, 168
eigen value, 276
eigen values, 276
elastic bodies, 167
elastic collision, 163, 165
energy, 187
equilibrium, 123
equimomental systems, 282
Euler’s dynamical equations, 290

first condition of equilibrium, 124
fixed axis, 264
fixed point, 264, 269
fluid friction, 141
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flux, 55
force, 61
friction, 141

gradient of a function, 54
gravitational field, 192

head to tail method , 66
horizontal plane, 146

impact, 163, 167
impulse, 157, 160
impulse-momentum principle, 170
impulsive force, 163
inelastic collision, 163
inertia matrix, 267
isolated system, 157

kinetic energy, 162, 187, 188, 190, 206, 269
kinetic friction, 142

lamina, 221
law of conservation of angular momentum,

181
law of conservation of energy, 206
law of conservation of linear momentum, 159
laws of dry friction, 143
least force, 147, 149
limiting equilibrium, 144, 146, 151
limiting friction, 144
line of impact, 168
linear momentum, 157, 158, 162, 177

magnitude of a vector, 14
mass, 283
mechanical energy, 206
moment arm, 106
moment of a force, 105, 106, 138
moment of inertia, 288
moment of mass, 221
momental ellipsoid, 292
moments of inertia, 247, 248, 255–257
moments of inertia about coordinate axes,

255

moments of inertia of one dimensional parti-
cle, 249

moments of inertia of three dimensional par-
ticle, 251

moments of inertia of two dimensional parti-
cle, 250

Newton’s second law of motion, 158
non-coplanar forces, 63
non-coplanar vectors, 17
normal reaction, 144, 151
normalizing of a vector, 15

oblique impact, 168
open system, 157
orthogonal components of a vector, 23

parallel axis theorem, 258
parallelogram law , 71
parallelogram law of vector addition, 34
period of deformation, 169
period of restitution, 169
perpendicular axis theorem, 260
Polygon law of vector addition, 32
Polygon method, 68
potential energy, 189, 190, 192, 195, 206
prefix, 3
principal axes, 271, 280, 285, 288
principle of gyroscopic compass, 291
principle of virtual work, 217
products of inertia, 247, 277

radius of gyration, 253
ratio theorem , 81
rectangular components of a vector, 23
role of friction, 145
rough horizontal plane, 148
rough inclined plane, 146, 149

scalar, 9
scalar product of three vectors, 30
scalar product of two vectors, 17
SI unit, 1
spherical top, 277
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static friction, 142
statics, 63
symbol, 3
symmetrical top, 277
symmetry, 238

tractive force, 148
triangle law of vector addition, 32
triangle method, 67
types of friction, 141

uniform circular motion, 179
unit, 1
unit vector, 13
upward normal, 148

variable force, 191
vector, 9, 193
vector field, 54
vector product of two vectors, 28
virtual displacement, 215
virtual work, 215, 216

work, 185, 186, 188, 191
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