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HISTORICAL BACKGROUND AND FUNDAMENTAL
CONCEPTS OF SPECIAL THEORY OF RELATIVITY

Special theory of relativity developed by Einstein in 1905, after the failure of
Newton’s laws, when he was dealing with the relative motion in space. The theory
of relativity deals with relations which exist between physical quantities (such as
mass of a particle, length of a rod, electric field at a point etc.) as they appear to
different observers in relative motion. The observers considered in this book are
restricted to those in inertial frames of reference. The theory is then called
restricted theory or Special Theory of Relativity (STR). When no such
restriction is made, the theory is called the General Theory of Relativity. In 1915,
Einstein developed General Theory of Relativity.

Relativity: The study of motion of one body with respect to another body.
Relative motion (Absolute motion)
A motion of particles relative to the reference point without any external source.

Law of Universal Gravity: This law was given by Newton, according “Every
body attracts every other body with a force proportional to the product of their
masses and inversely proportional to the square of the distance between them.”

Frame of Reference

The system in which the clock and the meter scale used for the measurement are at
rest. Such coordinate system is called a frame of reference.

There are two types of frame of references

= |nertial frames of reference
= Non — inertial frames of reference

Newton’s first law of motion (Galileo’s Law)

An object continues its state of rest or of uniform motion in a straight line provided
no net force or external force act on it. It is also called Law of inertia.
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Inertial Frames of Reference

Inertial frame of reference is that in which the law of inertia (Newton’s first law of
motion) holds, that is a frame in which a body that is acted upon by zero net
external force moves with a constant velocity.

The law of inertia holds in any frame of reference, which happens to move with a
constant velocity relative to a given inertial frame. Therefore, any frame of
reference, which moves with a constant velocity relative to an inertial frame, is
also an inertial frame. These frames are non — accelerated. i.e. @ = 0

Examples

= A frame of reference fixed with respect to the stars is an inertial frame.

= A spaceship drifting in outer space without spinning and with its engines
shut off would be an ideal inertial frame.

= However for all practical purposes, any frame of reference fixed to the earth
such as a railway station or a laboratory can be taken as an inertial frame.
Thus a railway station is an inertial frame and a train travelling at constant
velocity with respect to the railway station is also an inertial frame.

Non — Inertial Frames of Reference

Non — Inertial frame of reference is that in which the law of inertia (Newton’s first
law of motion) does not holds, that is a frame in which a body that is acted upon by
zero net external force does not moves with a constant velocity. i.e. velocity
remains change. E.g. person sitting in a moving train.

The Principle of Relativity (Galilean Invariance)

The Principle of Relativity (PR) applies to inertial frames of reference. This
principle states that the laws of Physics take the same mathematical form in all
inertial frames.

Or the basic laws of Physics are identical in all frames of reference which are
moving with uniform velocity (unaccelerated) relative to one another.

Or Itis impossible by using any physical law to distinguish between inertial
frames.
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GALILEAN TRANSFORMATION (G.T) / NEWTONIAN
TRANSFORMATION

This is the set of equations in classical physics that relate the space and time
coordinates of two systems moving at a constant velocity relative to each other.
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Consider two inertial frames S and S’. Frame S’ is moving with a uniform velocity
¥ in the x — direction with respect to frame S while S is at rest. Originally both
frame of references were at rest.

Suppose a particle is present at point P. Let the coordinates of P be denoted by
0P =7 = (x,y,7) inframe Sand by O'P = #' = (x',y', z") in frame .

When both frames coincide then t = t’

Since S frame is at rest and S’ is moving with a uniform velocity v then 0’ be the
position of origin of S’ at some time t, so 00" = it

By using head to tail rule we get 0P =00'+0'P
S7F=vt+7 =7 =7 -1t

Since motion is only along x — direction, therefore v = (v, 0,0)
=y, z")Y=(,y,2z) — (v,00)t =(x —vt,y,2)

= x'y',z")=(x—-vty2z)
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After comparing coordinates we get the transformation equations which relate the
time and space coordinates in frames S and S’ and are called Galilean
Transformations (G.T.) as follows;

x' = x — vt, y =y, zZ'=z, t'=t
Nature of time and Space:  According to G.T.

= the concept of time is absolute (invariant) (t' = t)
= the concept of space that is the concept of distance or length is also absolute
(invariant) (L' = L).

Absolute (Invariant) Space

Space that is not affected by what occupies it or occurs within it and that provides
a standard for distinguishing inertial system from other frames of references. For
example, Bob on Earth, sitting at his telescope, catches sight of Alice in her rocket
ship streaking at 9/10 the speed of light right towards the sun.

Application of G.T. to Mechanics (all Results will be explained later)

On the basis of G.T., it is possible to obtain relations between physical quantities
measured by two inertial observers in relative motion. Some of these are merely
listed below:

(a) If u and u’ are the velocities of a particle as observed from frames S and
S’ respectively, then #' =u — v
Where ¥ is the velocity of S’ relative S. This is the familiar ‘common sense’
formula of relative velocity.

(b) Acceleration of a particle as measured in S and S’ is the same. That is say
a=da

(c) The mass of a particle has the same value in different inertial frames. If m’
and m are the masses of a particle as determined in frames S’ and S

respectively, then m’ = m.

Hence equation of motion such as F = md in frame S is transformed into

F' =m'd’ in frame S'. Not only this equation but in fact Newtonian Mechanics has
the same form in different inertial frames according to pre-Einstein relativity.
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Application of G.T. to Electromagnetism

Fundamental laws of Electromagnetism can be expressed in a very elegant set of
mathematical equations called Maxwell’s Equations (M.E.). From these equations
Maxwell deduced that electromagnetic waves (light, radio waves etc.) travel in
empty space (and for all practical purposes through air) with a constant speed.

¢ =—— = 3%x108ms!

vV Eoko

where €, = permitivity of free space and u, = permeability of free space.

On application of G.T., it is found that the form of M.E. changes, that is M.E. are
not form invariant as required by the Principle of Relativity. This can be seen in a
different but easier way by using the idea of relative velocity.

If ¢ isthe velocity of a light pulse as measured by an observer in S, then the
velocity of the same light pulse as measured by an observer in S’ is by Equation;
¢=¢-v

where v is the velocity of S’ relative to S.

It is obvious that magnitude of ¢’ will in general be different from that of ¢.

Einstein Twin Hypothesis / Einstein Twin Paradox / Einstein Twin Bases

Tow twins are born, one is put on a rocket ship and sent out into space at near the
speed of light. The other lives on Earth. When the spaceship returns home, that
twin as younger than his brother.

What is an Interval?

In the theory of relativity, a quantity that characterizes the relation between the
spatial distance and the time interval that separate two events. It is the distance
between two events in 4 — dimensional space — time.
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Absolute Motion in Space
According to Newton “it is a motion of an object w.r.to the absolute space”

Newton thought that at any time every object has particular location in absolute
space.

Absolute Motion Analysis

= A body is said to be at absolute rest when that object is in state of
stationary.

= Absolute motion means a motion that does not depends on anything
external to the moving object for its existence or specific nature.

Example

Let us take our universe in which earth is moving around sun, sun is moving
around its bary system (moon and star system) and even galaxy also revolves and
everything in universe is under motion. So there can be no absolute rest and
absolute motion is possible.

Absolute Motion Vs Relative Motion

Absolute motion is nothing but the motion of a body from one absolute place to
another. Where the Relative motion is defined as the motion of body from one
relative place to another.

The Einstein velocity equation v =c¢ |1 — ! > = ¢/ 1 — 2% where E is kinetic
1+(E—i)

energy of mass m due to its relative velocity and E, = mc? is the rest mass
energy of the object. This equation improved the Newton’s Law of motion to the
point where it can be precisely describe the behavior of with high relative
velocities such as found in high energy particles accelerators.

The absolute velocity by Newton’s equation relative to the rest of the universe is

Vaps = C - =
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Effect of velocity of a medium on the motion of the particle

Consider a swimmer swimming in the water with speed v’ and v be the uniform
speed of water in a stream.

Case —I:
L.
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When swimmer moves towards the direction of flow of water, then we get relative
speed v’ + v. And if swimmer moves to the opposite direction of flow of water,
then we get relative speed v’ — v. Then total time from A - Band B - A is

d d . S
t1 7 + 7 sinces =vt=>t =-
v'+v v'—-v v
2dvr
bh="r;

This is the time taken to complete one round trip between A and B.

Case — II:
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In right triangle ACP by Pythagoras Theroem we have

_— = ——

AC = PC + AP

AP=AC-PC=7V —v

[
|4P| = v —v?

When swimmer swims perpendicular to the direction of flow of water, then we get

relative speed v v'* — v2 in both up and downward motion. Then total time from
A-CandC - Ais

d d . S
t, = = = sinces =vt =t =-
Vo't—vz  Jp?p2 v
2d
tz - vlz_vz

This is the time taken to complete one round trip between A and C.
We conclude that t; # t,.

And the difference between two intervals is

2dv’ 2d
At - tl tz % _y2 - vlz 2
v’ 1
ﬁ At —_ Zd (U’Z_vz - '%UIZ_UZ)

Covariant

Laws which remain same in all inertial frame of references are called covariant
laws. e.g. Newton law F = mad is covariant in all inertial frame of references.

Invariant (Absolute)

Quantities which remain same in all inertial frame of references are called
Invariant quantities. e.g. mass, length, time etc.

Visit @ Youtube “Learning with Usman Hamid”



10

Example

Use G.T. to show that the distance measured is independent of the frame of
reference. i.e. Distance (Length) is invariant.

Solution

Let (x1,y1,2;1) and (x5, y5,2,) be the coordinates of some two points P; and P,
respectively at some instant of time t'(= t) as observed in S’. (P; and P, could be
the end points of a rod.)

The distance between P; and P, as measured in S’ is

1
2

L' =[(xz —x1)* + (72 —y1)* + (25 — z1)?]
L' = [((xz —vt) — (x1 — Vt))z + O —y1)* + (2, - Z1)2]E by G.T.

U= =22+ 0=y )2 + (= z) =L =L =L
where L = distance as measured in frame S.

The distance (Length) is thus independent of the frame of reference.
Example

Show that mass is invariant relative to Galilean Transformations (G.T.) between
inertial frames.

Or The mass of a particle has the same value in different inertial frames. If m’
and m are the masses of a particle as determined in frames S’ and S respectively,
thenm’ = m.

Solution

Consider a collision of two particles in an inertial frame S. Let 1, and 1, denote
the velocities of the two particles of mass m, and m, before the collision. Let 7,
and v, denote velocities after the collision. Then from conservation of linear
momentum,

mlﬁl + mzﬁz == mlﬁl + mz’l_}z
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— my, - - my; -
Uy + 22Uy =0, + =0
1 m, 2 1 my 2

m — - - —
= (U — V) =V, — 1

my

— —
mp; |U1—Uq|
—_— = 15 —
my |uy—v;|

This eqn. allows the ratio of masses to be determined from collision experiments.
If one mass is chosen as unit, the mass of the other particle can be determined.
Thus equation serves to provide a measurement of mass.

1 2

Consider the same collision as observed in frame S'. If m}, mj,d}, Uy, vy, U, are
the corresponding quantities in S’, then

my _ [p1-t]
my iy
!/
. m m
Implies —2 ==
miq m1

If m; = my = 1 by choice of unit mass. Then m, = m,
Thusm =m'’
That is the mass of a particle has the same value in all inertial frames.

Hence mass is invariant relative to Galilean Transformations (G.T.).

Can Galilean Transformations be used in Special Relativity? Justify.

In general It cannot be used because it cannot satisfy the constancy of speed of
light.

In special case Galilean Transformations can be used in Special Relativity. A G.T.
between the coordinates of reference frames which differ only by constant of
Newtonian Physics without the transformation in space and time. The group is the
homogenous Galilean group.
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POSTULATES OF SPECIAL THEORY OF RELATIVITY
a) The Principle of Relativity

All the laws of physics are identical (remain same) in all inertial frame of reference
which are moving with uniform velocity ( non — accelerated) relative to one
another. This is called Galilean Invariance. (It is impossible by any physical
measurements to trace an essential distinction between any two inertial frames
which are in relative motion.)

b) The Principle of Constancy of Speed of Light (‘c’ is invariant)
The speed of light in free space has the same value in all inertial frames of
reference (speed of light is constant for all observers).
It is denoted by ‘c’ and ¢ = 3 x 108ms™1

Relative Velocity Expression / Galilean Transformations in terms of velocity

If i and u’ are the velocities of a particle as observed from frames S and S’
respectively, then U’ = u — v Where ¥ is the velocity of S’ relative S. This is the
familiar ‘common sense’ formula of relative velocity.

Or  Show that if S is inertial frame then S’ is also inertial frame using G.T.

Solution  If 4 and ' are the velocities of a particle as observed from frames S
and S’ respectively, then according to Galilean Transformations
dx’ dx! _dx  dt

x’=x—vt=>—=i(x—vt)=> = v— iNnG.T.t'=t
at’ dt dat’ dt dt

>u'=u—-v=>@,00)=w00)—-w00)=>uU=u-v
DU = Uy =V, Uy =Uy—V, Uy =U,— D, L' =t

Question
Acceleration of a particle as measured in S and S’ is the same. Thatis say a’ = a

Solution  If u and ' are the velocities of a particle as observed from frames S
and S’ respectively, then 4’ = © — ¥ With ¥ = Constant is the velocity of S’
relative S.

:d—w—i(ﬁ’—ﬁ):
dt’  dt

ai'/ dd dv  du | -, -
= =—>=a=a

dt’ — dt  dt  dt
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Question

On the basis of G.T. show that the force acting on a particle is independent of the
inertial frame in which it is measured. i.e. F' = F

Or  Show that Newton’s 2" Law of motion is Covariant.
Solution

If i and u’ are the velocities of a particle as observed from frames S and S’
respectively, then according to Galilean Transformations

x! dx'" _ dx dt .
x—x—vt=>—,=—(x—vt)=> — =—=—p— inG.T.t'=t
dt at’ ~ dt dt

—

s>u=u—-v=>wW,00)=w00)— 00 >u =u—7v

ai’ dd dv  du | -, -
=g@-P) == =0d =3
dt dt dt dt

dTZ’
dt’

Multiplying m’ on both sides we get = m'a’ = m'a

=>m'd =md In inertial frame m’ = m

>F =F

Question

Why Galilean Transformations failed to satisfy 2" Postulate of relativity?
Solution

Galilean Transformations failed to satisfy 2™ Postulate of relativity because speed
of light does not remains same in S and S’ frames. As by using G.T.

x' —x—vt=>—,=—(x—vt)=>dx, =Y s =u—v

dt dt dat dt
>c =c—v If we consider ray of light (Photon) instead of particles.
=>c #c That is speed of light does not remains same in both frames.

Hence According to Galilean Transformations 2™ Postulate of relativity (Principle
of Constancy of Speed of light) does not satisfy the invariant property.
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Ether

Sound waves need a medium to carry them, so by analogy it was believed that a
medium with mechanical properties (density, elasticity etc.) must exist to transmit
light waves. That medium was called ether filled all space.

Its Characteristics are as follows:;

= Ether was supposed to be present in vacuum, in the space between atoms,
molecules and so on.

= Ether was thought to be the softest of all substances because matter can
move through it without any friction or resistance.

= Earth and other planets travel through this medium year after year without
any reduction in speed.

= Ether was actually at rest.

= Ether was move with the motion of object.

= Light travels through ether at such a fantastically high speed that extremely
strong restoring forces are set up in ether when it is disturbed by propagation
of light. This requires that elastic constants of ether must be the highest of all
materials. In other words, ether must be the hardest of all materials.

= The hypothesis of ether is clearly self-contradictory and absurd. But the
scientists did not give it up because they thought a wave cannot travel
without a mechanical medium.

The concept of ether with its self-contradictory properties is obviously absurd. We
now know that light consists of oscillating electric and magnetic fields that can
travel in vacuum or free space with speed ¢ and does not need ether or any
mechanical medium whatsoever for its propagation. Ether is just a myth—in truth,
what the scientists earlier called ether is just empty space. It may be added here
that the null result of Michelson-Morley experiment does not by itself disprove the
existence of ether—the null results means that the speed of light is always the same
in all directions and is independent of the relative uniform motion of the observer
and the source. In retrospect one may say, the concept of ether clouded the
thinking of the scientists and a lot of scientific effort was wasted in retaining the
concept. Scientific progress is not unimpeded!
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MICHELSON MORLEY EXPERIMENT (1887)

It was done to conform the presence of hypothetical medium called Ether. If ether
exists it should be possible to detect the motion of the earth through the ether and
in particular to determine the speed of earth (v) relative to ether. This is what
Michelson and Morley tried to find out using an instrument called Michelson’s
interferometer.
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In this experiment a light beam from a source ‘S’ is split up into two parts by a
glass mirror M which makes an angle of 45° with direction of light beam. These
two parts of the light fall on the two fully reflecting mirrors M, and M, at right
angle. After the reflection of light beam (rays) finally enter the telescope as shown
in figure.

The mirrors M; and M, placed at the same distance ‘d’ from the glass mirror
M. In such a way their planes are perpendicular to each other.

Let velocity of ether wind = v
And velocity of light = v’ = ¢ =3 x10%ms™?!

Then, There are two cases appears;
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Case - I:
We get a time taken by beam to complete one trip from M — M; and M; - M

S

sinces=vt=>t=v

d d 2dc
tl = +' = > >
c+v cC—Vv ce—v
2
tl = vz
1=z
Case - II:

N

We get a time taken by beam to complete one trip from M — M, and M, - M
sinces=vt=>t=v

d 2d

d —
Vez—v2  c2—p2

tz = Ve2—p2

<ae=22[(1-2)" - (1-2)

= At = 2% (1 + :—z + higher terms) — (1 + %Z—z + higher terms)]

afl v? . 1v2 .
= At = 2—-|1+ — + higher terms — 1 — -— — higher terms]
clL c 2c¢
Sincev K¢ implies% « 1 so we may neglect higher terms
d v? 1v? d[v? dv?
sac=251+5-1-25] =25 s ar =2
As d and c are known, so it was expected that by measuring time At we can find

the value of v.
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Negative (Null) Results of Michelson Morley Experiment

Michelson Morley Experiment failed by the following ways;

Ether Drag Hypothesis(The concept of ether to be stationary is wrong)
Ether drag hypothesis thus explains the null result of Michelson-Morley
experiment and at the same time it retains the privileged either frame. This
negative result was explained by assuming that earth drags the ether along
the direction of its motion as it is always stationary with respect to ether.
The speed of light is constant equal to ¢ with respect to ether; but according
to this hypothesis, a body moving through the ether drags or carries the ether
in its neighbourhood alongwith it.

The above explanation is contradicted by the phenomenon of aberration.
Aberration is variation in the apparent position of a star due to the motion
of the observer along with the earth.

Elastic Corpuscles Hypothesis (The speed of light does not depend on
the motion of the source observer)

According to this hypothesis, light consists of extremely small elastic
corpuscles emitted with speed c relative to the source of light. The velocity
of these corpuscles is assumed to be independent of the state of motion of
the medium (such as ether) transmitting the light. The light corpuscles are
reflected from mirrors as per laws of reflection of elastic particles. By using
pre-Einstein relativity (G.T.) it can be shown that speeds of such corpuscles
of light would be the same along longitudinal and transverse paths in the
Michelson-Morley experiment. The null result of the experiment is thus
explained. And this is not true in actual, like ghost stars not exists.

The Lorentz — Fitzgerald Contraction Hypothesis

(The velocity of earth relative to ether is zero)

The Michelson-Morley Experiment was explained by Lorentz and Fitzgerald
who made the assumption that all material objects are contracted by a factor

V2 — v2, However this contraction cannot be calculated as it also applies to
measuring rods.
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Example

In the Michelson-Morley experiment, (I; + ;) was 22 m and the
wavelength of light used was 6000 A°. They assumed that ether is fixed relative to
the sun so that the earth and the interferometer move through the ether at a velocity
v = 3 x 10* ms~! which is the orbital speed of the earth about the sun. Calculate

the fringe shift they expected to observe.

Solution
A=6000 x 100" m=6 x 107 m.

3x 104

Z = = 10

¢ 3xI0°
L+ 2

M=(] 2)["’ ]= 22 (0% = 037
A\ ) 6x107

The experiment was sensitive enough to detect a shift as small as 0.01.
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Question
Why we need to prove Lorentz Transformations over Galilean Transformations?
Answer

We need to prove Lorentz Transformations because Galilean Transformations
failed to solve the problem of constancy of speed of light but Lorentz
Transformations satisfy the 2" postulate of special theory of relativity.

LORENTZ TRANSFORMATIONS / RESTRICTED GALILEAN
TRANSFORMATIONS /3D LORENTZ TRANSFORMATIONS

Lorentz Transformations is a set of observations made by two observers in
different frame of references which preserve the constancy of speed of light in all
system. It is the set of equations which relates coordinates of a single event in two
different frames.

Consider two inertial frames S and S’ as shown in Figure. Initially both frames
coincide. i.e. t = t’. S" moves relative to S at a constant speed v along the x-axis.
Both axis remains parallel to each other.

Az \H'
.;~ frame - frame L) z;t)
- ’ !
A A s
4 !
= o f( ;1’
P
i L,// ﬁ
Since S || S’ therefore
¥ =k(x—vt) (1) and  x =k(x' +vt) ....... (ii)

Now consider a ray of light instead of particle, then instead of s = vt we use

x=ct inS—frame and x' =ct’ inS’ — frame and here we use ¢ = ¢’ then
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ct' = k(ct—vt) and ct = k(ct' + vt')

Implies ct' =k(c—v)t and ct=k(c+v)t

Multiplying both c?tt' = k?(c — v)(c + v)tt' = c? = k?(c? — v?)
2
= k? = Sk2=— s g2=-1
(CZ—UZ) C2<1_Z_§) 1_1;_;
2
=k = — - = y (Lorentz’s factor). Here fl — Z—Z is called Clock Paradox
v . 1
If g = -isa speed parameter then y = Nier
() =>x"=yx—vt)
Now for value of t' we solve (ii)
x =k(x' + vt')
X r I X r_ I} ¢ x—kxt
=>E—(x +vt)=>k x'=vt' >t =——
>t = W since x’ = k(x — vt)
_ 12 2 2 2 2 2_
ﬁt’=x k“x+k“vt t—k[x kx+kvt] t_k[kvt (k l)x]
kv
’ _ -1
¢ =k[e- ()3
P — v2\ x . K2 = 1 . I k?2-1 v
>t = [t — (C—Z) ;] since k* = — implies —— = —

-z

=t =y(t-3)

Hence the Lorentz Transformations are

xX=yx—-vt), y=y 2z =z

(e
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INVERSE LORENTZ TRANSFORMATIONS

We know that x' = y(x — vt)........ () and t'=y (t — ’:—'27) ........ (ii)

@)=t =y(t-%5)

pay t pay
=>—_t—c—2=>t—7+; ........ (111)
() =>x’=y<x—v(t7+f—:)> using t

2
=>x’=yx—vt’—y’:—:=>x’+vt’=y(1—Z—2)x

=>x’+vt’=y(yi2)x usingy=\/%
1-=
(o

=>x=yx'+vt)

t v .
(i) >t =—+ S (& +vth) using x
ot vx! vitr I A A s 7
ﬁt—7+]/c—2+)/cz =>t—]/[)7+c—2+ CZ]
_ v\ ., vxr | vitr . 1
:t—y(l—c—z)t +—=+ CZ] usmgy—\/ﬁ
Tz

vx/!
St=y (t’ + C—Z)
Hence the inverse Lorentz Transformations are

x=yx'+vt)

y=y,z=12
= ()
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Remark:

(i)  There is an appreciable quantitative difference between L.T. and G.T.
only when % Is appreciable, that is only at high speeds.

(ii)  Inthe limiting case = oo, L.T. reduce to G.T. and in particular t = t'.
(ili) Equations, x"' = y(x —vt),t' =y (t - i—:) ,x =y(x"+vt')and

t=y (t’ + %7) show that space and time get ‘mixed up’ in going from
one inertial frame to another. Distinction between space and time is
apparently less rigid or a little blurred in relativity.

(iv) If v > c, theny is imaginary and we face the problem of imaginary
spaces and imaginary times. It is impossible therefore to think of two
inertial frames relative to each other (in real space and time) at a speed
v >cC.

Question

Show that Lorentz Transformations obey the postulate of constancy of speed of
light.

Solution

According to Lorentz Transformations we have

dx’ d dx’ d dt
!
X =yx—vt) >—=y—x—vt) > —=y—(x —Vt) —
¥( )= = =v—( )= —==v—( )
dx’ (dx dt) dt dx’ (dx ) dt
> —= —_—— )| — = —— Vv |—
dat’ dt dt/ dtr dat’ dt dtr

By considering the light ray instead of particle, we have

d
x=ct and x' =ct’ then ==c and = =¢
dt dt

/ dt .
=>c =y(c—v)$ ............ (1)

Also using t' =y (t — ’:—Z)

=>dtr_ d(t xv):dtr_ (dt vdx)idtl_ (1 v C)
a Y c2 a Y\at " 2ar a7 :
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N at’ (1 v) N at’ (c—v) N at ¢
at 4 c dt 14 c dtr y(c—v)

()= =y(c—-v) (y(cc_v)) >c =c

Hence the Lorentz Transformations satisfy the 2™ postulate of STR that speed of
light remains constant in all inertial frames.

Question

Show that a material object can never move with an equal or greater than the
velocity of light. Or  Speed of an object can never exceed the speed of light.

Solution

Sincex' =y(x—vt),y =y,z' =zt =y (t — ’:—Z) where y =

1=z
Ifv=ctheny = 1 = = 11_1=oo
Ifv>ctheny = . =Complex Number

VZ
N
It shows that material object cannot move with an equal or greater than the velocity
of light. Transformations should be in Real numbers, not complex and undefined.

Question
Show that G.T. is limiting case of L.T

Solution

In the limiting case ¢ = co then = = 0 then

x’=y(x—vt)=(x—vt),y’=y,z’=z,t’=y(t—j—§)=(t—0)

Hencet' =t (G.T. is limiting case of L.T)
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Fundamental equation of Special Theory of Relativity

Co’ﬁ'si‘@& two observers in two different inertial frames S and S'.

’ ' pc"‘"b.n‘_-g
' 4}
. . . . . . —s", s

Frame S is at rest and S’ is moving with uniform velocity v along P G )

’ ;
. . . . 1 4
x-axis with respect to frame S. Suppose att = (, the origins of . L
two frames coincide.
NEa e ——

Both the observers observe the same event. The position
and time of event observed by S is denoted by (x,y,z1t) and

position and time of the event observed by S’ is denoted by

(x',y',Z',t"). Consider a wave of light starts from O and O at t = 0 with speed c¢. Let the wave
reaches a point P after time t from O and takes the time t’ to reach at P from point O’. Then the
distance covered by light ray from point O to point P:

|OP| = ct

= TR F R =t

= x2 + y? + 22 = %12
=x2+y2+z2—c?*?=0 ————— (1)
And the distance covered by light ray from point O’ to point P: @f

|0'P| = ct’ @
= Jx?+y?+z7%=ct T’\Jo

= x"2 +y? + 2% = c?t'? @

=x?+y?+z2 =2t =0 ————— (2) %
Comparing these equations, we get: %

x2+y2 422 —c22 = x4 y? 4 7% — 2t — ’\\— 3

This is the fundamental equation of special theory of relat1v1ry glven by Einstein in 1905.

S
Galilean Transformations Doesn 't Satisfy the Fﬁnd&;}@}a! Equation of Relativity
A\ ©
Applying the values of x',y', 2, t' ﬁ'(/){l:?(}fmlean Transformation in Fundamental Equation of

Relativity ﬂ
x2+y2 422 -2 = (x—vt)2 y? + 2% — c%t?

= x? = (x — vt)? %
This is clearly impossible UHA}L? 0. Hence Galilean Transformation fail to satisfy Fundamental

Equation of Relativi
d xty\,\
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Question L.T. Satisfy Fundamental equation of STR
Show that L.T. leaves the expression x? + y2 + z% — ¢2t? invariant.

Solution  using Lorentz Transformations

x, = y(x - Ut)’ y’ = y 1 Z’ = Z’ t, = y(t _JCC_IZJ)
2yt = (o) + 02+ - ey (- 2))
X y Z c =(yx—v y 7 c?ly =

2
X2 4+y% 4 2% = 22 =y - vt)? + () + (2% - 32 (e - 5)

2

X2+ y?+27'% —c?t'? = y?(x? + v?%t? — 2xvt) + y? + z% — c%y? (t2 + Xt 2x—w)
C4-

c2

12

2 2 2 2 — 2.2 2.,242 2 2 2 2.,242 2 x*v? 2
X“+yc+ze—ct'" =y xc+yvet® —2y°xvt +yc +z° —ciyctt —vy C—2+2y xtv

2,2

12 _ yzxz + y2v2t2 + y2 + 72— c2y2t2 _ ),2 xclz’

x?+y?+27%—c%t
2 2 2 2402 _ 2,2 242 2,2 _ x*v? 2 2
XCFYySHzt -t =yt XA ettt - ) h YTtz
X2 4924 52 _ 2t12_ 2[,2 1_f _ 242 1_£ 2 2
y z c =r°|x 2 cet 2 +y“+z

i 2
X2 +y? 422 — 2% = y? _(1 _ 1:_2) (x2 — Cth)] +y? + 22

X2 +y? 422 — 2 = y? (y_lz) (x2 — Cztz)] +y2 + 72

72

X2 + yIZ 472 24 = 2 4 yz + 72 — c2¢2 pI’OVEd.

Question  When an observer records an event x = 3.2 X 108mand t = 2.5sina
rest frame S. find its respective coordinates in frame S’ moving with velocity 0.38c

Solution  using Lorentz Transformations x' = y(x — vt), t' =y (t - g)

I 1 1 8
x' = == (x —vt) = ==—=(3.2x 10° - 0.38 X 3 10? X 2.5) = 35 x 10°
/1—C—2 /1—C—2
8
t' =y (t _ g) __1 (t _ E) _ 1 (2.5 _ 3.2X1(22><0.38c> — 23
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Question (Length of 4 — Vector is invariant)
Show that (ds)? = gocﬁdx“dxﬁ invariant under Lorentz Transformation.

Solution

Metric Tensor: Dot product of two tangent vectors is called metric tensor.

We have (ds)? = gugdx™dx? where g.g is metric tensor

Wlth gll = ;a_ia_F_ 1 and glz =

a7 oF
= — = 0 then
6u1

a_711.3112
(ds)? = g11(dx1)? + gop(dx?)? + g33(dx®)? + gaa(dx*)?

using Lorentz Transformations x'=yx—-vt),y =y, 2=zt =y (t — —)

c2

X2 4y 422 — 22 = (y(x —v0)’ + ()% + (2)? — 2 (y (t - ﬂ))2

2
xlz + ylz + le _ Cztlz — VZ(x _ vt)z + (_')7)2 + (Z)Z _ CZ]/Z (t _ ﬂ)

c2

x?2+y'2+ 2% —c?t"? = y?(x? + v3t? — 2xvt) + y? + z? — c?y? (tz + Xt Zx—w)
C4

c2

12

2 2 2 2 — 2.2 2.,242 2 2 2 2.,242 2 x*v? 2
X“+y“+ze—ctT =y xc+y vt =2y xvt+y +z°—cyt- —y C—2+2y xtv

X% + y'z + 72— czt’z — yzxz + y2v2t2 + yz + 72— Czyztz _ yz x%v?

c2
x’2+y'2+z'2—czt’2 = y2 (x2+v2t2 _Cztz_x2”2)+y2+22
c2
12 L2y 2 _ 22 2 8 242 (1 7 24,2
x“+y“+z°—ct =y |x —=)—ct —=Z)| Ty Fz
i 2
X2 +y? 422 — 2% = y? (1_167_2) (xz—cztz)]+y2 + 22

X2 + yrz + 72 — Cztrz — )/2

(y_12) (x? — Cth)] + y? + z2
x'2 +y’2 + 72 — CztIZ = x2 +y2 + 72 — c2¢2

= (dx)? + (dy")? + (dz")? — c2(dt’)? = (dx)? + (dy)? + (dz)? — c?(dt)?

= (dx1')2 + (de')Z + (dx3')2 - cz(dx“')2 = (dx1)? + (dx?)? + (dx3)? — c?(dx*)?
= (ds")? = (ds)?
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Two events occur simultaneously at points (21,2,1) and (1,0,0) of a frame S.
determine the time interval between then in a frame S’ moving with speed 0.6¢

relative to S along the direction of their common x — axis.

Solution
Given that P = (21,2,1) and Q = (1,0,0)
Here x, = 21 and x, = 1 also v = 0.6¢ or% =0.6

using Lorentz Transformations

" — _ r=Y(ep =2
t —]/(t cz)=>t C(Ct c)

Y

>t = E(Ctl — %xl) and t," = %(ctz — %xz)

>t =t =% C(t1_t2)_%(x1_x2)]
l; /_Y_ v

=l — i —;_(CQ—Ctz)_g(?ﬁ_xz)]
Al v

=>t' -t = ;. _(x1 —X3) _;(x1 - xz)]

:tll_tzl :%(1_5) (xl_xz)

1 +1-06
>t =t = (2
3x108/1+0.6

1-1)

= tll - tzl - 03 X 10_75
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LENGTH CONTRACTION /SPACE CONTRACTION /LORENTZ
CONTRACTION

Consider two frames S and S’. S’ is moving with uniform speed v in x — direction.

Let arod place in a frame S’ along x’ - axis.

AY AY
S g
—»V
—€-——— [ >

Z Z'

Let the two end of the rod be lebelled x; and x; in S’ frame and x; and x, in S
frame. Then the length or the rod in both frames is given by;

Lo =X —X{  oveviiriinnns (1) (Rest Length)

By using inverse Lorentz transformations,
x =y +vt)

At positions x; and x, we get

x, =y +vty) (3)
X, =y(xy +vty) 4)
Subtracting (iii) and (iv) we have

X —x1 =y[(xg —x1) +v(ty —t))] oo (5)
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Since observer is sitting in S’ frame to measure the length of the rod at the same
timesot, =t; =t

(5) = x2 —x; = y[(xz —x1) + v(t' = t)]

= x, —x1 = y(x; —x1) > Lo = yLg

=Ly = A Sincey =

/ v?
=>L0=< 1—C—2>L0

Suppose v = ‘/Z—Ec where v < c then

v2 (\/Z_EC)Z ’ 3 1 . . v2
1_C_2= 1—C—z= 1—Z=E<1|mplles 1_C_Z<1
. v2 !
Due to this factor /1 — — We get Ly <L

This shortening of length for moving objects is called length contraction or space
contraction or Lorentz contraction. It is the phenomenon that a moving object’s
length is measured to be shorter than its proper length.

Remarks

2

2
= In classical mechanics v << ¢ then% << 1 implies (g) — 0 using :—2 =0

soy =1then Ly = Ly

= Length of an object is not absolute but depends upon the relative velocity of
the object and the observer.

= Proper Length of an object is defined as its length measured in a reference
frame in which the object is at rest.

= All observers who are moving with respect to the object (or with respect to
whom the object is moving) will find that its length is shorter than its proper
length.
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Example

A 100-MeV electron, for which v = 0.999987¢, moves along
the axis of an evacuated tube thaf has a Tength of 2.86 m as

measured by a laboratory observer S with respect to whom

the tube is at rest. An observer S’ moving with the electron,
however, would see this tube moving past with speed v. What
length would this observer measure for the tube?

Solution

Givenv=099987¢  L[,=28m L=

Formula used L=1, ’1——— 2.86 \/1 (0.999987)%=1.4 cm

Example

A 1od lies parallel to the x axis of reference frame S, moving

~along this axis at a speed of 0.632c. Its rest length is 1.68 m.
What will be its measured length in frame 7

Solution

Givenv=0632c L[L,=168m L=

Formulaused L =L, /1———168\/1 (0.632)*=130m
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Example

Calculate the speed with which a car move in order that length may be shortened to
half of its proper length.

Solution

Proper Length = L,

Given that L=%2 (1)
2
By length contraction formula L= Ly—" ............... (2)
From (1) and (2) L2—°=Ly—°=>y=2
Sincey = . — therefore L=
1-% 1-%

_vi_l v 1 v, 1 vi_ 3. 2_3 2
= |1 C2—2=>1 c2_4:>c =1 4=>Cz_4=>v =¢
> v = gc required
Example

A car moves at a speed 160 kmh~1. If the length of the car is 2.4m, calculate the
decrease in length as noted by a stationary observer.

Solution

- 160x1000 _ 400 -
Speed of car =v =160 kmh™1 = o0 S 1= —-ms 1

length of thecar =1 =2.4m  and decrease inlength=1" = %

Y P P ) (2.4) = (1)(2.4) = 2.4

l
Y c? (3x108)2

>Al=1'-1=24-24=0m
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Example

What is the velocity of a meter scale if its length is observed to be shortened by a
centimeter?

Solution
Let original length = 1m
shortened length = 1cm = 0.01m

length difference = AL =1 - 0.01 = 0.99m

By using formula L=—

L_ ¥ _ _vi_ 2 v _ 4 _ 2
»>-= [1-2=099>1-%=(099)?=2% =1-(0.99)

(0]

=2 =1-(099)2=v=1-(099)% = v =0.141c

Example

Find the velocity of a moving rod when its moving length is quarter of its proper
length.

Solution
Proper Length = L,

Given that L:%"=>i=1

Lo 4

By length contraction formula Lo =yL
L 11 v 1 v? 2 1 v? 15
>—==-== [l—==-]l-=-=—>==]1—-——> ===
0 4 2 4 c? 1 c? 16 c? 16

15
= p? = =¢?

16

15 15 _ _ .
:vzgc:vzgx3x108ms 15 v =12905x108ms~! required
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A rocket is moving at such a speed that its length as measured by an observer on
the earth is only half of its proper length. How fast is the rocket moving relative to

the earth?

Solution

Proper Length = L,

Given that L= LZ—" ............... (1)

By length contraction formula L= Ly—" ............... (2)

From (1) and (2) LZ—" = Ly—‘) >y =2

Sincey = \/7 therefore — \/7

S L N G SN G N G
c c? 4 c? 4 c? 4

> v = gc = 0.866¢ required
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TIME DILATION

Consider two inertial frames S and S’. S’ moves relative to S with speed v along
the positive x — direction.

A H \n'
A X A 6___
L= ffawn.t. Q"" F\'qmg /P( ’U’ %
Lad Y
=== Pt /"‘PC"‘—T 57w o
. 7z Z
re e >

(@} o) ’ _,( 7(,,

& i

=z =

Suppose a clock at rest at (x’,0,0) in frame S’ sends one light flash at time t; and
the next one at a later time t;. In S’, the time between the two events (consecutive
flashes) is

to =1ty —t1 e, (1)

If the observer is in S — frame, then the time between the two events (consecutive
flashes) is

to - tz - tl ............... (2)

Since the observer is in S — frame, then by using inverse Lorentz transformations

t=y(t’+%”)

ti =Yy (t{ + xcl—zv) ............... 3) Attime t;
t, =Yy (té + xcz—z”) ............... 4) Attime t,

Subtracting (3) and (4) we have

to=ty—t, =y ((tg )+ (xh — x{):—2> ............... )
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!

Since events take at the same place so x; = x; = x

(5) =t = y(tz — t1)

=ty = ¥ty

>ty =

[
o~
o~
U
o~
o~
I
-~
[N
[
|t:
N
~_
ﬁ
o
%2
>
O
@D
~<
[l

1 _ 1
’ v2 v2

Suppose v = \/Z_gc where v < c then

. ‘UZ ’
Due to this factor fl ——weget ty <t

Time interval as recorded by an observer in S between two ‘moving events’ in S is
longer than the time interval recorded by the observer in S’ on a clock which is at
rest with respect to where the events occur.

The smallest value for the time interval between two events is measured in the
frame where the two events occur at the same location. All observers moving with
respect to this frame will measure the time interval to be longer. This relativistic
effect is called time dilation.

According to this phenomenon clocks moving relative to an observer run more
slowly compared to the clocks that are at rest relative to the observer.

A moving clock always appears to run more slowly than an identical clock at rest
with respect to the observer. The time interval dilates, that is expands for a clock in
motion. This effect is called time dilation.

2
Remember: In classical mechanics v << ¢ then% << 1 implies (g) — 0 using

2

:—2 = 0soy = 1then ty = ty,. When watch is fixed in frame then we have in S

frame t, = vty andin S’ frame t;, = (1/y) t,.
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Example

How fast must a space ship travel if a traveller in the space ship ages at only half
the rate we are ageing on the earth?
Solution

Given that t = %0 and we have to find v

t t
By formula t = yt, :>?°= =y =
-5
C
1 2 1 2 1 2 3
> [1-Z=s1-Z =L =1--aZ=2op2=2(2
2 2 c? 4 c 4 c? 4
3 .
> v = gc = 0.866¢ required
Example

A particle moving at 0.8 ¢ in a laboratory is observed to decay after travelling 3 m.
What is its life span in its rest frame?

Solution

Given that L, = 3m, v = 0.8¢ then we have to find t.

2
v
3X ’I_C_Z

L L 3%X4/1—(0.8)2
By formula =tV o o ¢ = 2XV1-(08)°
1 v 0.8¢ 0.8¢c
g V06 V036 108 ¢t =26 108
0.8X3X%X10 0.8 0.8

=t=0.75%x10"8
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RECIPROCITY BETWEEN OBSERVERS

Just as a rod at rest in S’ appears to be contracted to an observer in S, so also it can
be shown that a rod at rest is frame S appears to be contracted by the same amount
as measured by the observer in S’

Similarly, to an observer in frame S, clocks at rest in S’ appear to go slow and to an
observer in S’, clocks at rest in S appear to go slow. There is thus a complete
reciprocity between the observers in frames S and S’ as regards contraction in
length and dilation of time.

COMPOSITION OF VELOCITIES /LORENTZ TRANSFORMATION
LAW OF VELOCITIES/ LORENTZ VELOCITIES

Consider an object moving with a constant velocity u" in an inertial frame S’. The
object has velocity components uy, uy, u; in S'.

Let us find the velocity of the object as observed by an observer in frame S
if S’ is moving with a constant speed v along x — axis relative to frames S as
shown in Figure. Where the space time coordinates are (x,y, z, t) and (x,y', Z', t").

! —,

d
&'a— ﬁ' o Fveme P32 ¢
—=7 PC %)

&%
Y
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By using Lorentz Transformations

x'=y(x—vt)

=y, z'=z (A)
‘(-3

Taking differential of set of equations (A)

dx' =y(dx—vdt) .................. (1)

dy' =dy .................. 2) and dz'=dz .................. (3)

dt' =y (dt—dxZ) ... (&)

Dividing (1) and (4)

y(dx — vdt) dx dt
dx'  y(dx-vdt) lae v (F-v3)

dt’ y (dt - dxc%) - y (dt - dx%)/dt - y(%—%:—z)

dy' dy _ Vat %

ac - y (dt - ax ) - y (dt - dxcv—z)/d y(% _%%)
t

Uy =L e, (6)
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Dividing (3) and (4)

dz
d
dz’_ dz B /dt B d_i
T N P 59
dt
u, = y(1—uxcz) .................. (7)

Thus uy, uy, uy are our required velocity transformations. In vector form, we can
write as & = (u}, uy, up).

Deduction (Lorentz Velocity Transformations under Non-Relativistic Limit)

If v << c then % << 1implies :—2 — 0 then we get

! ! !

U, = Uy — U, Uy, = U
Which give us the Galilean Transformations of velocity.

INVERSE LAW OF TRANSFORMATION OF VELOCITIES
By using inverse Lorentz Transformations

x =y +vt)

y=y' ,z=2 (B)
(e +3)

Taking differential of set of equations (B)

dx =y(dx"+vdt) .................. (1)
dy=dy .................. 2) and dz=dz .................. (3)
dt =y (dt’ +dx’ Ci) .................. 4)
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Dividing (1) and (4)

dx  y('+vt)

40

ar tVar

y(x' +vt) / dx'  dt
dt’ 14

dt ' AN , ' v Codt’  dx' v
y(dt + dx cz) y(dt + dx cz)/ ) Y(W_I_Wc_z)
u+v

u, = Tra G (5)

Dividing (2) and (4)

dy' dv'

dy  dy ar =

dt ' ' v B ’ 'V dt'  dx' v
y (dt’ + dx c2) y(dt +dxc2)/ | Y(FJFFC_Z)

dt
w
Uy = 55 ceernieeanieaanns 6
Y y(1+u,’rclz) ©)
Dividing (3) and (4)
dz' ) dz;
dz . dZ, /dt dt’

dt’ " dt’ ¢?

E_y(dt’ +dx' ) y(de +dx'f—2)/ ) y(d_t'+dX' V)

uy

r(ts)

u, =

Thus u,, u,, u, are our required inverse velocity transformations. In vector form,

we can write as % = (uy, uy, u,).
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COMPOSITION OF ACCELERATION /LORENTZ TRANSFORMATION
LAW OF ACCELERATION

By using Law of Transformation of velocities

Uy = g (1)
w, = - (:Lytxc%) .................. )
ul = y(l_”;xc%) .................. (3)
t' =y (t — ’C‘—’z’) .................. (4)
dt' =y (dt —dx %) (5)

Taking differential of (1)

du. = (1—ux612)d(ux—v)—(ux—v)d(l—uxc%) _ (1—uxciz)(dux—0)—(ux—v)d(o—duxclz)
v = =

(1-us) (1-u)
duy(1-
duy = it vczz)
(1)
2 2
oniog) (i)
2 dt
du; (1 — Uy :_2)
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Ay

a, =

r(

3
v
1-u3)

Taking differential of (2)

du'. = 1 -(1—uxclz)d(uy)—uyd(l—uxciz)] 1 [(1—uxclz)duy—uy(0—duxclz)
Uy =7 o\ 2 = 2
’ (l—uxc—z) 4 (1_uxc_2)
dy = duyv N uyduxc%]
YT ud) T ()
1 duy N Uy du"ci2 2}
Y
du;, Y _uxc_z) (l—uxc%)
dt’ y (dt - dx )
1| duy +uyduxclz
M| () (1)
dt
duy,
der y(dt—dxclz)/
dt
duy duy v v
dat Uy dqt 2 ay 4 UyQx 2
1— ﬂ) V2 (1—u£) N2
( U, c2 (1 — Uy ?) X ;2 (1 — U, C_z)
Uyy = dt dxv - 5 v
v (G~ ) r2(1-wz)
v
/ 1 n uyax? “
ay = 2| A T oy
)/2 (l—uxc%) (l_uxc_z)
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Taking differential of (3)

du = 1 _(1—uxclz)d(uz)—uzd(1—uxciz) _1 (1—uxc%)duz—uz(0—duxc%)
S I
uzduxi
du; = l duzv + 17622]
Y _(1—uxc—2) (1—uxc—2)
v
1 du, N uzdux?
/ 4 (1 —Uu 1) 1— l 2
du, i X c2 Ux 2
7 =
dt y (dt —dx %)
1 duy iuzduxci2
Y (1—uxciz) (1_uxclz>2
dt
duy
dtr y(dt—dxclz)/
dt
du, y du, v wa
dt + z dt Cz a’Z + z sz
v 2 v 2
(-wz) (-wg) (-wa) (1-wg)
u;Z = p =
t dxv 2 v
2 (2= 2~ — —
v (G a2 r*(1-ue)
v
, 1 s
a, = Sz |t Ty
v? (1_uxc_2) (1—ux?)

Thus ay, ay,, a; are our required acceleration transformations. In vector form, we
can write as d = (ay, aj, ay).
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INVERSE LORENTZ TRANSFORMATION LAW OF ACCELERATION

By using inverse Lorentz Transformations of velocities

u, = 1"‘+u—+"_ .................. 1)
= - (:i%) .................. )
u, = m .................. 3)
t=y (t’ + ’2—2”) .................. (4)
dt =y (dt’ + dx’ Cl) .................. (5)

Taking differential of (1), (2) and (3)

(1+u§cciz)d(u;+v)—(u;+v)d(1+u;clz) (1+u§cciz)(du;+0)—(u;+v)(0+du,’cclz)

du, =

v\2 o\ 2
(1+u;‘c_2) (1+u§cc—z)
2
du. = du;+du;u;c%—du;ukciz—vdukciz _ <1—Z—2)duk
x = N2 = )
(1+u§cc—2) (1+u§cc—2)
dul
du, = 2 o2
V4 (1+uxc—2)
dugc
d y2(1+u’l)2
u X2 L
== < dividing by (5)

dat y(dt’+dxlclz)
dugc

2 du
(1+u§cciz) / Taer
dats

2
1V
_ 1 (1+uxc—2)

’ v 3 (dt' dxrv
14 (dt +dx,cz)/ 4 (E-thlcz)

17
Uy

1
Y 2
y3 ( '1( rv

1+uxcz) 1+uxcz)
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!

a, = —=
* y3(1+u;612)3
du. = 1 _(1+ukclz)du5,—ug,d(1+ukciz)] _1 [(1+u§cciz)du§,—u§,(0+du;ciz)
Y ] (142 ”2)2 14 (1_,_%;2)2
du/, ul dugcl
du, = 1| _ W
b=y (1+us5) (1+uss "2)2]
1 dus, u;du&%‘
(142 v \2
duy, (1+uxcz) (1+u£c 2) o
at ~ y(at’+axy) dividing by (5)
P L e
duy, 1 Y (1+ ;C"Z) B ) dtr (+ ;Ciz)
(O B T R Cor Ry Ty
!V
a;}_ uyax >
@ = 1 (1+u§ci2)

1 [ uyaz— ]
a,=— |la, - —=<
g yz(”“%)z Y (1)

Similarly

o d et
a,=——— |la, ———5~
o) L ()

2
Remember: In classical mechanics v << ¢ then% << 1implies (g) — 0 using

2
r !

'C’_z:oSoyz1thena;=ax,ay—ay,az=az

Acceleration remains same in all inertial frames.
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Question
Show that the speed of light c is the same in all directions in all inertial frames.
Solution

Consider a light signal travelling with speed ¢ along the x" —axis in frame S’.
According to Galilean theory the speed of light as observed in S would be (¢ + v).

] ul+v
Now using formula u, = ——
1 uxc—z
c+v c+v c+v
= U, = = = Su, =c

= v — T .U — 1
T+ez 1+ E(c+v)

Consider next the case of observers moving at right angles to the direction of light
propagation.

Suppose a ray of light travels along 0'Y" in frames S’. Then

Uy = O,u;, =cu,=0

ul+v ]
Now u, = —— =v since u,, =0

1 uxc—z

uﬁ, C - ! !
U, = ——~=- sinceu, =0,u, =c
Y y(l+u§cciz) 14 x Y
w,=—% __—¢ since ul, = 0
y(l+u§cc—2)

CZ
su= Juz+uf+uZ=Jui+ul= v2+y—2

2
=>u=\/v2+c2(1—';—2)=\/v2+cz—v2

S>UuU=c
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Question
Show that ¢ + ¢ = ¢! c!
Solution is actually the

) '+ values which
Using formula u, = u"—,vv

1+uf— are less or
u, = <x¢ uttingu, = c,v=-c caualtoc
x 1+ci2 p g xo

Uy =C

Thus relative velocity of two objects or two frames or an object and a frame cannot
exceed c.i.e.c+c =c!

Example

L
Calculate (1 — :—2)2 when (@) v = 10 2cand (b) v = 0.9998c.
Solution

According to the binomial expansion

n(n-1)

(1+x)"=1+nx+ x>+ ... =1+ nx when x < |

1-’2

(a) Setting x = — -~ = 10* and n = %, we have

5 112
[1_"_2] (1 - 102 =1+ % (=107 = 1 - 0.00005 = 0.99995

c

112
(b) [1 ‘%J = (1 -(0.9998)")"” = [1 - (1 - 0.0002)]"”

C

Now (1 — 0.00027% = 1 + 2(-0.0002) = 1 — 0.0004

2 )2 .
(1 _v_2] = [1 — (1 - 0.0004)]"2 = (0.0004)"? = 0.02.

C
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Example

What is the velocity of a meter scale if its length is observed to be 0.99 m?

Solution

2 \V? 2 2
L=1, (I_Z_ZJ or [1—2—2){&) = (0.99Y?

r -1- (0.99)2 =1—-(1- {:I_O]_)2z 1 —[1 =2 (0.01)] =0.02
C
v=0.141¢

3

Example

How long does it take for a meter scale to pass you if it is travelling with a speed of
0.6¢ relative to you along the direction of its length?

Solution
_ o length | ) .
The time required 1s = ———, where length L is the contracted length [.= [y |1-—
velocity i
9 112
Ly (1 B v_z] 2112
= o) MO0 08 0
v 0.6x3x10°  1.8x10°
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Example

Two particles approach one another. Calculate their relative speed if each has a
speed of 0.9 ¢ with respect to the laboratory.

Solution

v; = 0.9¢, v, = 0.9c then we have to find v.

- +
Using formula v = ~57%

c2

_09c+09c __ 2(09c) _ 2(09c) _ 1.8
B 1+7(°-953§0-9C) 4 +(0-9CC;202 T 14081  1.81
v =0.99447c
Example

Two bodies are moving in opposite directions with speeds c relative to an inertial
frame. Show that their relative velocity is c.

Solution

v, = ¢,v, = ¢ then we have to find v.

. +
Using formula v = :ivffz

c2

c+tc _ 2c __ 2¢ _ 2
©© . & 111 2
c2

1+

c2
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Example

An astronaut is travelling in a space vehicle with velocity 0.6¢ relative to the earth.
The astronaut measures his pulse rate to be 75 per minute. Signals generated by
astronaut’s pulse are radioed to earth when the space vehicle is moving
perpendicular to a line that connects the vehicle with an earth observer. What is the
pulse rate as measured by the observer on the earth? Hence comment on the life
span of the astronaut from point of view of the earth observer.

Solution

The time interval between two consecutive pulses as measured by the astronaut is
60

T, = e 0.8s. The interval between the pulses as measured by the earth observer
IS
T = T, = 0.80 _ 1.0s

1 1

(1_1;_;)2 (0.64)2
The earth observer measures a pulse rate of 60/1.0 = 60 pulses per minute. The
pulse rate measured by the earth observer is less than that measured by the
astronaut. Hence the life span of the astronaut determined by the total number of
his heartbeats is longer as measured by the earth clock than the life span measured

by a clock aboard the space vehicle.

Note that beating of the heart is a kind of clock mechanism. The repetitive radio
signal from the space vehicle is subject to time dilation as well as Doppler Effect.
We have eliminated the usual Doppler Effect by choosing to calculate the pulse
rate at the instant when the vehicle is travelling perpendicular (transverse) to the
line connecting the vehicle and the earth observer. The time dilation still brings
about a shift in the frequency. Hence time dilation brings about a transverse
Doppler shift.
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Example

Show that the velocities U’ and U measured in frames S’ and S are related by

U
| U c? c?
c (l_vaT
2

where v is the velocity of §” relative to S. What is the inverse relation?

—

_../)ﬂz

—! / 4 /
—— = __.QQ'Z__)- U __)_ _____
a2 B

1

- / AT
_._._..__.._..._u.__.._-.h_Ui_,.f-._. 0:“._1;-% =

@

o u_s'r.a__.l_a.m of

T.:l’ﬁ.vﬁ_{a {mation G{ VEQ""-‘. {'a

1 u, -V
. __.__ut_:, - —
[ - v dx
— == _
| u ! u
Uy, = 4 % y= .=
1
X ( REAN EERA=
e e et e L . e
SR W— ﬂﬂ__d__ R
— e e e L, R —_—— -
&‘l_ - 7z ‘E—-‘! =
L
e L P W TNt
Y _____________—-—» —
| u
e | T e ) e
e E SR P . ':_1"_..-_- SRS — - _c_l — J;-
R - ( u_. ‘_"\ - ( L ,_._U.l-_\‘_,_':.:—.._ 132 2 2
FE — - - -,
u', & ) -+ UU-!' 2)7 .u..u_l+uau
. ————— — ———— e B S 2
/ = Vi Yy *u::u-‘ﬁ:
T il _“.._-_———'__-m.__.-__f_‘_'.- )

-
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b 8 1§ y 58
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C
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Question

A rocket is moving at such a speed that its length as measured by an observer on
the earth is only half of its proper length. How fast is the rocket moving relative to
the earth?

Solution
-ﬁ_— .
pPYepe~ \ cv\a‘H‘ = Lo
Caiven . .;‘ L = L Lo ¢
Whev e L S He Haa;w“e"l' bt] {'{‘f‘-—wob"“!f

ow Hie QQYK\.

. Co v\{'\'o; c Liowa

Le."_a

TN

—= =~ ‘—L:, e
— =

NSV
_ |
— R = =2
VL
S i — Le C‘L e
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e R T UL - SSUL =SS
Y
_A-,,.‘f?..._,-_-,!.:.j*l.._,-.-.cf_‘_ ..... b dasicab.
1
L1 \Y,
= 7,,___-_7-—'""‘."“-,._" SR

-+ L
edipion E - —

| = " L’ e ———
_— seih T‘l—; = ¥ a3 866 c “
= Vv = 6.7% = e

Question

What is the velocity of a metre scale if its length is observed to be shortened by a
centimeter?

_Solubiont ¢

P,“r,..‘ ke.\ ‘H,\ ‘:'Lc.\" \wa o laoc.\:«\ - )
«_“w_fn%awikﬁmwﬂm,-Ww_uuﬁm_n*"u B
Lo Qeom o= Qlem v

W oy TN —— —— —

q“l

\°€>

...__..-(_"_ﬂ U 91'_"}0 Lew a‘Hﬂ Co _o\_Jf voue How

L

_'_..—'_l:——
U g Lq

i -'.:‘_':.':T_E: R, v S (- S ' .
JQ Y} = e
- (_ e r 7 L —

9
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C'?_

' "
__.Tal":ﬁ_.._sufkwqfﬂ.:z ..... __-:._':-'_i‘_ =_(e by ) I
2 L
e .__._____..___L_._...-l__:__ @_-0’(}3_..:. V/ZC'L. O —

2
— e - QB e
et :
b N
v - o.2199
e = ——

e \’;‘; o dUlle | , e

Question

A space ship is observed to cover 90 min 5 x 10~7s. What is the distance
travelled and time taken as measured by an observer in the space ship?

- .Sf!:_/__‘f_’_‘_j _ Givn L = Down' o 5y t, = S¥lo &

v o=y Cs=xt = ¥=5%)
o
g
Y o an 5 1-Rxte = V=o0.0 c\
¢ = ———
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Example

It takes 10° years for light to reach us from the farthest part of our galaxy. Is it
possible for a man to travel out to that part of our galaxy at a constant speed in a
reasonable time of say 50 years?

Solution The distance travelled by light in 10° years is according to an observer on earth given by L, =
10° Nc, where ¢ is the speed of light (3 x 10% m/s) and N is the number of seconds in one year.
For the traveller who observes the farthest part of the galaxy approaching him at a speed say v, the

distance is
2 12 2 112
L= Lu[l -‘—J =105Nc(1 -”—}
CZ C2

Total time available for the journey is 50 N seconds. Hence the speed necessary is given by

22
10°Ne|1-—

L c?

V= =
50N 50N

2
Y o4 x 108 {1-”—}
2 2

C

I-::
[2%]

2 4x10° y 1 n
= ¥ =1
& 1+4x10° ¢ {1+2.5x%x1077

=(1+25 x 107y = 1 - 1.25 x 107" using binomial theorem.
v = 0.99999975c.
A traveller travelling at above speed will be able to complete the trip in 50 years. The traveller ages by
50 years in the course of the journey. The time for the journey as measured on the earth will be more than
10° years!
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RELATIVISTIC LAW OF ADDTION OF VELOCITIES/ VELOCITY
ADDITION FORMULA / COMPOSITION OF TWO LORENTZ
TRANSFORMATIONS IS AGAIN LORENTZ TRANSFORMATION

Consider a frame of reference S’ moving with uniform velocity v with respect to a
frame S. Also suppose that there is another frame S’ moving with uniform velocity
w with respect to a frame S,

"

J
4 g
T}-Fvwo ’rus‘_ - IF.:"L Frews.

= 1

> v —

4 ”
0 f 4 ”

o
o

" S AT 4

Z z ; ”

N

Then
Lorentz Transformations of S" with respect to S is
x" =y (x —vt)

y'=y z'=z (1)
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And Lorentz Transformations of S" with respect to S’ is

x" = y,(x" —wt')

y'=y', Z'=2 )
Where y, = -
1-=

Using Set of equation (1) in (2)
=>x" =y,(x' —wt)
=>x" =y, [V1(x —vt) —wy; (t - 9:_:)]

xwv]

=y1)/2[x—vt—wt+c—2

=>x" =y7, [x (1 + %) —(v+ W)t]

no__ wv v+w
=X _yly2(1+_2)x_ wo [l e
C 1+—2
C
1 1 1 _ 1
ViYa = = — = = — = ———
n i J()(E) e
— 1 _ 1
Yive v2w2  _vw _vw w2 v2 1Ivzwzlsz wzlvzlsz
W t2z22 2"z et ToZ (222
Vive = . = : = .
172 — > = = -
VW\S (v W vw 1 2 vw 1 (v+w)
Jo) =) o) e (1) 220
(1)
1
YVivV2 = = 4)
vw 1 viw
(1) -3 25%)
C

60
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=>t'=v, [7/1 (t_%) _V1(x_17t)c£2

[ Xv  Xw . vw
=t =Y1Y2 _t-;-c—2+c—2t]

ov <y 2)e- (G 2)

c

= t” =Y1Y>2 (1+12_‘:)t_
Using (4) in (5)

12

=t =
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1

+
and u = =

’ uz 1+—2
1_C_2 C

this implies that Composition of two Lorentz Transformation is again Lorentz
Transformation and the frame of reference S moves with the uniform velocity

withy =

u= % relative to S. It is the reason that the law is called relativistic law of

c2

velocities.

Note: u is not an algebraic sum of velocities due to relative motion.

World Line

The world line of an object is the path that an object traces in 4 — dimensional
spacetime. It is distinguished from the concepts such as an “orbit” or a trajectory
by the time dimension.
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EVENT

An event is defined as an occurrence which takes place at some point (x, y, z) at
some instant of time t.

Examples: Arrival of a particle at a point (x, y, z) at time t, a bulb located at
(x,y, z) flashing at time t, a gun at (x, y, z) firing at time t are examples of events.
An event is thus described by the set of four numbers (x, y, z, t).

Remark

» An event has a meaning in an inertial frame but the numbers describing its
position and time (x, y, z, t) are different in different inertial frames of
reference. Their transformations are given by L.T.

= |f two events happen at the same place and at the same time, they are called
coincident events.

= |f two events happen at the same place but not necessarily at the same time,
they are called colocal events.

= |f two events happen at the same time but not necessarily at the same place,
they are called simultaneous events.

Question (coincident events are not relative)

Show that if two incidents are coincident in one inertial frame, they are coincident
in every inertial frame.

Solution

Consider two events (x1, vi, 21, t;) and (x3, v3, z5, t5) are coincident in frame S’
Then Ax" = (x; — x1) = 0, similarly Ay’ = Az’ = 0 (same place).
Also At" = (t; — t;) = 0 (same time).

In frame S, the above two events are described by (x4, y;, z1, t1) and (x,, y,, Z,, t5)
From L.T. we get Ax = (x, — x;) = y(Ax" + vAt") = 0. Also Ay = Az = 0.
Similarly At = (t, — t;) =y (At’ + :—zAx’) = 0. Thus the events are coincident

in frame S also. In other words if two incidents are coincident in one inertial
frame, they are coincident in every inertial frame. The statement that two events
are coincident is thus true in all inertial frames, that is, it is universally true.
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Question (colocality is relative)

Show that if two incidents are colocal in one inertial frame, they are not colocal in
every inertial frame.

Solution

Consider two events (xj, y;, 21, t;) and (x5, y3, Z5, t;) are colocal in frame S’
Then Ax" = (x; — x1) = 0, similarly Ay’ = Az" = 0.
ButAt' = (t, —t;) # 0.

In frame S, the above two events are described by (x;, y4, z1, t1) and (x5, y,, Z, t5)
From L.T. we get Ax = (x, — x;) = y(Ax" + vAt') = yvAt'. Also Ay = Az = 0.

And At =(t, —t;) =vy (At’ + C%Ax’) = yAt'.

We see that the two events which happened at the same point in S’, do not happen
at the same point in frame S .They happen a distance yvAt’ apart.

Question (simultaneity is relative)

Show that the two events are not simultaneous. Or show that two events which are
simultaneous to an observer may not be simultaneous to another observer.

Solution

Consider two events (x1, y1, z1, t1) and (x3, ¥, Z3, t5) are simultaneous in frame
S'. Then Ax' = (x5 — x1) # 0, similarly Ay’ = Az' = 0.
and At' = (t; —t;) = 0.

In frame S, the above two events are described by (x4, y4, z1, t1) and (x5, y,, Z,, t5)
From L.T. we get Ax = (x, — x;) = y(Ax" + vAt') = yAx'. Also Ay = Az = 0.

And At = (t, —t) =y (At’ + C"—ZAx’) =y 5Ax'.

Thus simultaneity is not an absolute property of a pair of events. It depends upon
the state of motion of the observer.
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Example 1 A frame §’ is moving uniformly relative to an inertial frame S along their common X-direction
with a speed of v = 0.5 c. Identical clocks at both origins are set to zero when the origins coincide. Two
simultaneous light flashes are observed in S at (x; = 100 m, y, =20 m, z; =20 m, ¢, = 10®s) and (x, =
200 m, y, =30 m, z, =30 m, ¢, = 10®s). At what space time coordinates are these observed in S?

Solution  Since v=05¢ vc=05 and v=05x3 x10®=15 x 10® m/s.
Also r-— 1 U 1 55
2 /Y2 [1-(0572]2  (0.75)"
C
By L.T, x’ =T, — vt)) = 1.155 [100 — (1.5 x 10%)107]

= 1.155 (=50) = =57.75 m.
W=y =20m z =z, =20 m;

, o 15%10% x100
tf = T(t, — vr,/) = 1155 | 1076 - ———
16
9x 10

= 1.155 [1 -%) 10 = 1.155 (1 - 0.166)107° = 0.962 x 107s.

Similarly, X, =5775m, y, =30m, z; =30m, £, =0.770 x 10%s

Therefore in S’ the two flashes are observed at (-57.75 m, 20 m, 20 m, 0.962 x 107 s) and (57.75 m,
30 m, 30 m, 0.770 x 10®s). The flashes are simultaneous in S but NOT simultaneous in §".

Example 2 In an inertial frame one event occurs at x; = 00 at ¢, = 0 and another event occurs at x, = 12
(3 x 10%) m at t, = 20 s. Show that it is possible to find an inertial frame §” in which the above two events
are observed at the same place. What is the time interval between the two events in §?

Solution In frame S, ds® = (x, — x,)* — ¢%di* = [(12)* - (20)’]¢* = —256¢°. The interval between the two
events is timelike. It is therefore possible to find a frame §” in which the two events occur at the same place.
Let " move with speed v along the X-axis relative to frame S§. Then

5 =T — vty x = T(xy — vty)
x?.’ - xl’ = I0r =) — vt — 1)]

For events to occur at the same place in §’, we must have x" = x, or (xl' - xz') = (). This will happen when

X, — X
po 270 e 00

Thus in frame §” moving with speed v = 0.6 ¢ along the X-axis relative to frame S, the two events occur
at the same place.

The factor I'= 1 = 1 =125

(1 - )” [1-(06))
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Then x =T —vt))=0, x, =x"=0
t) =Tt — vx,/c?) =0

06cxl12c

1) = T(ty — vxy/c?) = 125 [20- ] =125(20-72)=16s

c

In 8, the events are (0, 0) and (0, 16 s). In §’, the time interval between the two events is 16s. This result
could have been derived from time dilation or from invariance of ds?.

Example 3 In an inertial frame S event A occurs at x =0 at £ = 0 and event B occurs at x = 20 c and
t = 12 s. Find a frame S in which the two events are simultaneous.

Solution In frame S, ds* = (x, — x,)* — c*(t, — £,)* = (20 c)* = ¢*(12)* = 256 c* The interval ds = 16 ¢
is spacelike. Let v denote the velocity of S relative to S. In &

(tz' —tI') =Il(t, — t,) — v(x, — x,)/*] and the two events will be simultaneous if (rz’ —tl') =0
2 (4 —1)) c*(12)

That is if v = P— = 20c =06c

Thus in frame S moving with velocity v = 0.6 ¢ relative to frame S, the two events 4 and B are
simultaneous.

Example 4 In an inertial frame S event 4 occurs at x =0 at 1 = 0 and event B occurs at x = 20 ¢ at ¢
=12 s. In a frame §" moving with uniform velocity v = 4/5 ¢ relative to frame S, show that event B occurs
earlier to event A.

Solution The factor I' = ! = L = é

(1_‘;702 )lfz [1_(45)2][.-'2 3°

In S, the events 4 and B occur respectively at #’ = T (¢, — wx,/c®) =0 and t, = T (¢, — vxy/c ?)

_ 5(jp_4e 20e)_5 20
3 5 o2 ) 3 3

Thus tz' <t1'. Hence event B occurs earlier to event 4 in frame 5.

Example 5 An observer 4 is situated on the X-axis of frame § at x = @ and an observer 8 is situated on
the X'-axis of §" at x" = a. Show that in both frames, the events (i) O passes (" and (ii) 4 passes B are

2
separated by a time E{l - (1 - "'Zz ) ] but that the occurrence of the two events is different.

v

Solution  Since the clocks are set (as usual in this book) so that t = ¢ = 0 when O passes (', the events
are described as

(0, ) and (x= q, f) in frame §

and (O, 0) and (x" = a, ) in frame §".

Here ¢ is the time noted by observer 4 when the observer B passes him and ¢ is the time noted by
observer B when observer 4 passes him.

From L.T., X=a=Tkx-v)=T(a- vi)
Or a=T(a— vi) (D
Similarly = (t—w/c?)T=T(r—vafc?) )
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From eqgn. (1),

r= 5[1 —%]:%[1— (1-v2 /)" ] - (3)

Substituting this value of ¢ in eqn. (2) and simplifying we get

r=-21-(-v/e)" ]

Thus though the time intervals are equal, the orders of occurrence of the two events are different. That
is in frame S, the event O passes O’ occurs earlier than the event 4 passes B because ¢ is positive, whereas
in frame §’, the event A passes B occurs earlier to the event O passes O'.

Example 6 An observer notes that two events are separated in space and time by 3.6 x 10® m and 2 s.
What is the proper time interval between these events?

Solution Proper time interval between two events is the time interval measured by an observer in frame
say 8" for whom the two events are colocal.

By LT, Ax” =I'"(Ax — vAf) where Ax =36 x 108 mand At =2
3.6x10°
Since AX'=0, v= Ax _ZOX7 L 1.8 x 10% m/s.
At 2
1 1
T= = = 5/4

(l _ vz /CZ )L-"Z [l _ (6 )2 ]I.-"2
Proper time At = F(Ar —wx/c? )

1.8x 108 x3.6x10° | 5
- =2[2-072]=16s
9 x 10' 4

_ 50,
4
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Question

Observer A notes that two simultaneous events occur 40 m apart. What is the time
separation of this pair of events as observed by B who finds that the events
occurred 50 m apart? Find his velocity relative to the observer A.

Solution
Ax =40m, Ax' =50m, At =0, v =?

From L.T. we get Ax" = y(Ax — vAt) = yAx

2

= —=— = p? =22 p=2c>v=06C

c 25 25 5

r v _ v _ 1 v
And At' =y (At — C—zAx) = —yC—ZAx =T (C—ZAx)
2

r_ 1 0.6¢ - _ -7

At" = (0.66)2(62 40) 107%s
1 py;

At' =1077s Since time is non — negative scalar quantity.

Question

Frame S’ travels along the common X-X'- axis with speed v = 0.8 c relative to the
frame S. Clocks are so setthatt = t' = 0 when x = x’ = 0. Two events A and
B as described in frame S are: A(60 m,10~7 s) and B(10 m,10~7s). What is the
time interval between the events in frame S'?

Solution

Ax = (x, —x;) = 60 — 10 = 50m. Also y = —— = = —
ro__ v _ -7 _ 3 _7
And At _V(At_C_ZAx)— (10 —C—X40)—?X10 S

1
0.6
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Question

Two events are separated in space and time by 600 m and 8 x 10~7s as observed
by an observer in frame S. Find the velocity of the frame S’ relative to the frame S
if the two events are simultaneous in S’.

Solution

Ax = 600m, At' =0, At =8x10"7s, v =?
r v
At —y(At—C—ZAx)

Atc?

O=y(At—C12Ax)=>At=:—2Ax=>v= o => v =04c

Question

Two colocal events in frame S are separated by a time interval of 4 seconds. What
is the spatial separation between these events in frame S’in which the two events
are separated by a time interval of 6 seconds?

Solution

Ax = 0m, At' = 6s, At =4s, Ax' =?

1 At 4
At’=y(At——2Ax)=yAt=>6= =6 = ——
v v
ez e
1 4 V2 6 v2 16 V2 20 5
= =-2 [l-==-"21-—=="s—-=="s1?="Cc?31v="C
6 c? 4 c? 36 c? 36

Ax' = y(Ax — vAt) = —yvAt

Ax' = —-2L — 13416 x 109m

’ 2
v
1—0—2
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Question

Two simultaneous events in frame S are separated by a distance of 1 km along the
X-axis. What is the time interval between these two events as measured in frame S’
in which the spatial separation between the two events is observed to be 2 km?

Solution
Ax = 1000m = 1km, At' =?, At =0s, Ax' = 2km = 2000m
Ax' =y(Ax —vAt) = yAx = Ax' = yAx =y =2

V2 1 v2 1 V2 3 3 V3
=2 [l-——==->2]1—-——=-25—=-v =-c">v=—CC
c? 2 c? 4 c? 4 4 2

At =y (At - ZAx) = =y S Ax = At' = 5.77 X 10~°s

Question

Two light bulbs in frame S situated at x; = 0 and x, = 10 km. flash
simultaneously at t = 0. An observer in S’ travelling with speed 0.6 ¢ relative to
frame S in the positive X-direction also observes the flashes. What is the time
interval between the flashes according to the observer in $'? Which bulb flashes
first according to him?

Solution
x; =0andx, = 10 km=10*m

Ax = 10*m, At' =2, At =0s, v = 0.6C
At' =y (At - ZAx) = =y S Ax = A’ = 2.5 X 1075

Where the bulb x, = 10 km flashes first according to him because it is near.
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PROPER TIME INTERVAL / PROPER TIME / WORLD TIME

The time shown by a clock which is moving with body is called proper time. It is
denoted by 7.

For example a clock is fixed in a train and moving with the train, then time
measured with this clock is called proper time.

Explanation

Consider a pair of events such as the arrival of a particle in motion at two
neighbouring points P and P’. These two points consider as two event of emission
of light in space time.

Let the space — time coordinates of the two events be (x, y, z,ict) and (x + dx,y +
dy,z + dz,ic(t + dt)) in an inertial frame S. Let the space — time coordinates of
the pair be (x',y',z',ict") and (x' + dx,y' + dy',z' + dZ’,ic(t' + dt")) in frame
S’. Consider interval of two events (ds) which is the distance between two points
Is given as follows;

(ds)? = dx? + dy? + dz? + (icdt)?

(ds)? = dx? + dy?* + dz? — c*dt? S — 17 — frame
(ds"H? = dx'? + dy'? + dz'? — c?d't? S' —t — frame
As x% + y? + z% — c?t? is invariant then

X2+ y?+2%—c?t? =x2+y% + 2% - c?t?

= dx"? +dy'? +dz'? — c?d't? = dx? + dy? + dz? — c?dt?

= (ds")? = (ds)? Length is invariant.

Suppose —k? = dx? + dy? + dz* — c?dt?

k* _ dx* dy* dz® 2
=>—C2 =2 2 + dt

k2 _ g2 1 2 2 2
== =dt® ——(dx" +dy*” +dz*)
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= G=a[i-5(@) + (@) + (&)

> =ar1 -5+ +u2)]

> =art[1-3 )

=>’C‘_§=dt2(1—‘c‘—j) S — t — frame
=>’c‘—j=dt’2 (1—’:—'22) S’ — t — frame
= dt'? (1 — Lé—'j) = dt? (1 — 1:—2) equating both

= dt? = dt? (1 — Z—z) for proper timeu' = 0,t' =1

1

= dt =dt (1 — Z—z) or >=dr=dt (1 — u—j)E (May use)

c

N |-

N =

2
s>t=| (1 — :_2) dt required formula for proper time.

1 1
2\5 2\5
From Equation dt = dt (1 — 1:—2)2 = dt’' (1 —~ 1:—2)2 we see that the quantity dt has
the same value in all inertial frames. It is therefore an invariant for all inertial
observers. This invariant is called proper time interval.

It is seen that dt = dT, = time interval measured in the frame in which the
particle is at rest, that is u = 0. Therefore proper time interval can be defined to be
the time shown by a clock which is moving with the body.

Remember

1
2

u 1

2 dt
) we may use later — = =y(u)
dat 1_£
w’ c2

2 2
" Whenu << cthen= << 1 implies (%) — 0 using= = 0 then 7 = ¢,

= From formula dt = dt (1 —

c?2

under this condition proper time become ordinary.
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Question

A particle travels at speed v for a time interval At as observed by an observer in the
inertial frame S. Show that the proper time elapsed in the particle frame is T = %.

Hence find the proper time elapsed for a particle travelling at 0.99 c for a time of
V2 x 10765,

Solution

1

since dz = dt (1 - %) = dr = At (1-3)

c2

1
2

1

.
_(0.99¢) )2 = 2 %1075

= dr =V2x 1076 (1- 25
C
Question

Space-time coordinates of a pair of events in frame S are: event A(a,0,0,a/c),
event B(2a, 0,0,a/2c). Find the speed of frame S’ in which the two events are
observed to be simultaneous. When do these events occur according to the
observer in §'?

Solution

Ax =a, At' =0, At:—i, v=?,t{ =?,t£ =7?
2c

At! =y(At—C12Ax):>0=y(At—clex) = At == Ax

v 2 a ac 2 a a a
i=v(n-gn)=t=50-5)=u=50("%)=4="3()

v 2 a 2ac 2 a a a
t=y(t-gn)2u=¢(G-55)26=5G7)=1="3()
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SPACE - TIME CONTINUUM (MINKOWSKI SPACE)

o
RE
| b (S=v8)

/" 7‘\ rect

r ! . S““

Minkowski Space concept was given by Minkowski in 1908.
Consider a sphere of radius r and origin O, then the equation of sphere is
x2+yi+zi=r2 (1)

If this sphere is a sun then the rays emitted from origin O with the speed of light c.
therefore we take r = ct using s = vt, then(1) becomes

x4+ y? + 2% = c*t?

x2+y?+z22 -2 =0=>x2+y2+2z%2+i%c%?=0
x2+y2+z2+ (ict)>=0 ... (2)

Now naming these coordinates we get x; = x,x, =y ,x3 = 2Z,x, = ict
Q)=2xf+xi+xi+xf=0

Then x, = (x1,x,,%3,x,) is called Minkowski Space.

Visit @ Youtube “Learning with Usman Hamid”



75

ROTATION OF AXES

\ 9 0("2”7 P
AR g
APC*-ZI |

A

\ 57 e
\8 d#a / B

8) * S

o A %

In Xy — plane AOAP is a right angle triangle at A. So
x=1rCosxX ; y=rS5inX .........ccceenn. (1)

After rotating xy — plane we get new plane, x'y’ — plane which makes an angle 6
with xy — plane.

In x'y" — plane AOBP is aright angle triangle at B. So
x'=rCos(x —0) ; y' =rSin(c—0) ................... (2)
(2) > x" =rCos x CosO + rSin « Sinb

= x' = xCos6 + ySinf

(2) =y’ =7rSin « Cosf —rCos < Sinb

= y' = yCosH — xSin6

Hence following equations are called the rotation of the axe;

x' = xCosO + ySin®

y' = yCosO — xSinf
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Question

iv

In x;x, — plane show that by using Lorentz transformations Tan@ = -

Solution Tanh «= >

= . iv
.t . ; 4. L Since Tanf = "

u

AL - l
\ ! .
j\ TU /i'l,_—-———-— =>Tan(ioc)=%
\ /‘ 2 v
£ P - ﬁiTanhoc=?
W —7

o ’ = Tanh x= %

In Lorentz transformations x,, x5 remains same and just x;, x, changed w.r.to
angle 6, so x;x, — plane used as a rotating axes plane.

By using rotating axes

x' = xCosO + ySinf

y' = yCosO — xSinb

Changing first of above equation we have  x; = x,Cos6 + x,Sin6
Using Minkowski space coordinates x; = x; and x, = ict

x; = xCosO + ictSinf ............ (1)

By using Lorentz transformations

x;=yx—vt)=yx—yvt ............ (2)

Comparing (1) and (2) we gave

. o . -yv  i%yv . iyv

Cos@ =y and icSind = —yv = Sinf = % = l_]c/ = Sinf = VT
Sin6 __ iyv
Cos® cy

iv

= Tanf = "
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Question
Express Lorentz Transformations in terms of Minkowski space coordinates.
Or  Express Lorentz Transformations in terms of rotation.
Solution
Since from Lorentz Transformations
x'=y(x—vt)
=y, z'=z Q)
o=r(e-3)
By using Minkowski Space coordinates
X1 =X,X; =Y,X3 =2Z
X,

X, = ict=>t=% andt' == ==% inL.T.wehavec' =c¢

icr ic

Then we get

x i2 v
x1 =y(x—vt) = V(x1 - vl_z) =YX F YV Xy =YX Y X
x7 = CosOxq + Sinfx, also x, = x5; x3 = X3

Ast’=y(t—’:—'2’)

iyv

! X v .
=== y(—‘*—c—le) = Xy =YXy X > x4 = CosOx, — SinBx,

ic
x7 = CosOx; + SinBx, also x, = x5; x3 = x3
x, = CosOx, — SinBx,

Are called Lorentz Transformations in terms of Minkowski space coordinates or in
terms of rotation.
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In matrix form

X1 Cos® 0 0 Sind
af_| o 1.0 o0
x5 0 01 0
X4 —-Sin6 0 0 Cosf
Question

Show that AA* =1 where A =

Cos6
0
0

—Sin6

_o O

78

Sin6
0
0
Cos6

Or  Show that set of Lorentz transformation equations in terms of Minkowski
space system is orthogonal.

Solution
Cos6 0 0 Sin@
. _ 0 1 0 0
Giventhat A = 0 0 1 0
—Sin8 0 0 Cosf
Cos6 0 0 Sinol Cos6
At = 0 1 0 0 0
0 0 1 0 0
—Sin@ 0 0 Cosf Sin6
[ Cos@ 0 0 Sin@][CosO
t _ 0 1 0 0 0
Ad" = 0 0 1 0 0
—Sin8 0 0 CosO@1LSin6
1 0 0 O
¢ 01 0 O
AA" = 0O 0 1 0
0 0 0 1
Thus AAt =1

Available at MathCity.org

then

—Sin@

Cos@
—Sinf

CosO
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Question

Prove that Lorentz transformation in terms of rotation leaves the expression
x? + x2 + x5 + xZ is invariant.

Solution

For this we have to prove

X2+ x5+ x5+ x'%=xF+xF+x2+x3
LHS=x%?+x5+x%+x"3

= (CosBOx; + Sinfx,)? + x5 + x% + (CosOx, — Sinfx,)?

= Cos?0x} + Sin?0x2 + 2x,x,Sin0CosO + x2 + x3 + Cos?Ox + Sin?0x? —
2x,x,4Sin6Cos0O

= (Cos?0 + Sin?0)x? + x2 + x% + (Cos?0 + Sin?0)x;
=x?+x2+x3+x2=R.H.S

2+ xi+x2+x"2 =x2+x5+xF+x2 proved.
Question

Define a parameter o« such that Tanh <= Eand find Lorentz and inverse Lorentz
transformations in terms of hyperbolic funcitons.

Solution

. iv . iv . iv v
Since Tanf = —= Tan(i x) = —= iTanh <= —= Tanh «<= -

. 2
Since Sech x= V1 — Tanh* x= /1—”—2::» Cosh x= = Cosh x=y
C 1_1:_2
Also Cosh? « —Sinh? x= 1 = Sinh? x= Cosh? x —1 = Sinh = vVCosh? « —1

= Sinh <= %—1:Sinh x= = Sinh <= y—
1=z 1—1:—;
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Since from Lorentz Transformations

x'=y(x—vt)

y'=y z'=z

‘=(-2)

-2
Let x'=y(x—vt)=yx—yvt =yx —y%ct
x' = xCosh « —ctSinh « also y' =y, z' =z
Now t’ =y(t—i—§) =yt—y§§

t'" = tCosh x —%Sinh «

By using inverse Lorentz Transformation
x=y(x"+vt")

y=y,z=7

= (e +3)

Now x = y(x"+vt') =yx' +yvt' =yx' + y%ct’

X = x'Cosh « +ct'Sinhx also y' =y, z' =z

Now t =y (' +25) = yt’ +y"c—’§’= yt' +y22

t = t'Cosh « +x?’5inh x

Hence required transformations in hyperbolic function are

x' = xCosh « —ctSinh < also y' =y, z' =z ,t' = tCosh x —%Sinh x

X = x'Cosh « +ct'Sinh < also y' =y, z' =2z ,t =t'Cosh x +x?’5inh x
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Question

Prove that resultant of two velocities each of which is less than c is itself less than
c. Or Is it possible to obtain velocity of light by adding velocities which are less
than c?

Solution

Consider S,S" and S”' are three inertial frames. S’ frame is moving with velocity ‘v’
and with respect to S frame and S’ frame is moving with velocity ‘w’ and with
respect to S’ frame.

Giventhatv <c¢ and w < ¢

In STR the resultant of velocities is defined as U= —w

We havetoshowu <c or c—u <0

. v+w
Consider c—u=c-— oW

Sincev<c:>§<1:>1—g>0 also w<c=>%<1:>1—%>0

(1—-)(1——)>0

>sc—u=—wl|(1—2)(1—=)|>0=>c—u>0=>u<c
nl(1-9)(1-3)]

Hence
Resultant of two velocities each of which is less than c is itself less than c.
Or

It is possible to obtain velocity of light by adding velocities which are less than c.
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82

According to STR the resultant of two velocities v and w cannot be added
algebraically in relative motion. i.e. u # v + w. In STR the resultant of velocities

+ . . . .
can be expressed as u = L—vﬁ To overcome this deficiency , we define a term

c2

rapidly or pseudo velocity as

y, = cTanh™1 (2)

c

X = Tanh™1! (E)

Cc

v~ Yv
o= Tanh ( ; )
Similarly

% = Tanh (yTW)

v
Now we have == -<5
c 1+
cc
= Tanh (ﬁ) _ Tanh(j%)+Tanh(yTW)
c 1+Tanh(y7”)Tanh(yTW)

:Tanh(y—cu) = Tanh(y?"+y7w)

=Yu—=Yv 4w
c c c
iyuzyv-l_yw

This is the algebraic sum of velocities.

v
Tanh <= —
c

o= Tanh™?! (g)
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GENERAL LORENTZ TRANSFORMATIONS FIXED WITHOUT
ROTATION /RESTRICTED LORENTZ TRANSFORMATIONS

Consider a system of two inertial frames S and S’ coincident at origin O, which
makes an angle o« with horizontal and moving with uniform velocity along a fixed
horizontal direction.

Consider 7 and 7' are two position vectors at same point P with respect to S and S’
frames respectively.

Resolve 7 into components 77 (Transversal component) perpendicular to v and 7,
(Horizontal component) parallel to ¥ or in the direction of ¥. Then by head to tail
rule using for 7 = (x,y,z),7' = (x',y',z")

T=Tr+7 i, (1) and 7' =7r"+71" . (2)

By using Lorentz Transformations in Vector form

¢ =y (¥ — Dt)
ST =y(FL =P oo 3)

For 7, using AORP

base T
Cosf =— ==L
hyp r

=1, =1rCosf = =—=snb=
v
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=T, =

T i, ()

§N|

@) =7 =y(F —vt) =y (577 - t)

— —

:ﬁ, =y(%—t)?

84

Since from figure 77 = 77’ (Transversal component is perpendicular to the line)
where 77, 77" are same transversal vectors to the horizontal line. Then

WV)=27=rr+7,=277=7—7,
>7p =T — gﬁ ............... (6) using (4) and 7y = 7"
Using (5) and (6) in (2)

S o o Vo VF N\ PP, BFo
=>r =rr +rp,=r v—v+y(ﬁ t)v—r v—v+yv—v ytv

VT

=7 =?+(y—1)?v—yt§

!

>7 =?+[(y—1)¥—yt]f7’

Now for t’ in vector notation we have

St = y(t v(?cjﬁ)

— —.

In vector notation

(A) and (B) represent the general Lorentz Transformations.
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GENERAL INVERSE LORENTZ TRANSFORMATIONS FIXED
WITHOUT ROTATION / RESTRICTED INVERSE LORENTZ
TRANSFORMATIONS

——

Consider a system of two inertial frames S and S’ coincident at origin O, which
makes an angle o« with horizontal and moving with uniform velocity along a fixed
horizontal direction.

Consider 7 and 7' are two position vectors at same point P with respect to S and S’
frames respectively.

Resolve 7 into components 77 (Transversal component) perpendicular to v and 7,
(Horizontal component) parallel to ¥ or in the direction of ¥. Then by head to tail
rule using for 7 = (x,y,z),7' = (x',y',z")

R 1) and P =7 47 e, 2)

By using inverse Lorentz Transformations in Vector form

7 =y({@ + vt)
>r =y, +0t) (3)
For 7" using AO'R'P

base 1yt vr'Cos@ VI ~ VT CAdAY
==>=1r'=1r'Cosd = =—=n'D=
hyp T/ v 1% 1% v v

CosO =
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Since from figure 77 = 77’ (Transversal component is perpendicular to the line)
where 77, 77" are same transversal vectors to the horizontal line. Then

Q=7 =77 +7' =7 =7 -7

using (4) and 77 = 77’

ST=F+|y-D+yt'|5 ... (A)
Now for t in vector notation we have In vector notation
t=y(t’+clz.x’) X =7

:t=y(t'+z.r_’L')

C

st=y (t’ _ ﬁ.(?’—ﬁ’))

2
st=y(t — S+ ) =y (¢ - )
st=y(t'-%) (B)

Also
2)=>7=r"+1
>1 =7 -7
And v L7,

> 0.1 =0

(A) and (B) represent the general inverse Lorentz Transformations.
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Question

Prove that if two vectors perpendicular in frame S then these two vectors are not
perpendicular in frame S’. Under what conditions these two vectors are
perpendicular in frame S'?

Solution

ft

S"'f'*(:vv\c_ S‘

PG A()

e >——y
7D P
P72

[ - —a
R S
b::rr——-H—
,_Aro_ n%(: x l,

Let 7, and 7" be the position vectors at a point P with respect to S and S’ frames
respectively and 7, and 7,” be the position vectors at a point Q with respect to S
and S’ frames respectively. Then suppose

-7 =%=P0Q (S — frame)
7 —F'=%=P0 (S —frame)

By using general Lorentz Transformations

Fll == Fl + [(y - 1) Ul.;;l - yt] 1_7) ............... (1)
' =7+ [(y -1) v;zz — yt] 172 (2)
=Ty =1 =7, — 71+ [y — DT — 0] Subtraction (1) from (2)

S¥ =%+ @ - 1SV
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Let X; and X, are two vectors then

—

=>% =%+ @y — 1)”1“ ............... (3)

:>XZ —x2+(y 1)17x2—> ............... (4)

Taking dot product of (3) and (4)

1-X2 =

> o

X1. %y + (,y _ 1) (@. xll)J(v X3) + ( ) (CEDICES) + (y _ 1)2 (Uvil) (UI;Z) (ﬁ 1}))

2

4 A4 |

X1.%5 = X1.%, +2(y — 1) SENCE) + (y — 1)2 '(v:;l) (v::Z)' (v?)

2

=1 20

XXy =%.%4+2(y — 1) (”xll)]# +(y — 1)2 BEEL)

‘UZ

Since in S — frame ¥; 1 X, therefore ¥;.%, = 0

Butin S’ —frame x,’ £ ¥, therefore ¥,".x," # 0

Under the following conditions ;' and X, becomes perpendicular in in S’ — frame

» Ify—1=0=y =1 (Classical Mechanics)
= IfX, LUv=>Xx,.0=0
u |f)_C)2J_13:~)_C)2.1_7)=0

In all cases ¥;.X, = 0 and we get X, and X, perpendicular in in S’ — frame
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Question

Prove that if two vectors parallel in frame S then these two vectors are not parallel
in frame S’. Under what conditions these two vectors are parallel in frame S'?

0 (R
IF:— 'ﬁ(?w;c_ " 5‘ (1’> )(, &(Y‘)
PED TP

x Za

R S
3 i—gé.:’==rr———+-¢__
A A % 2

Let 7, and 7’ be the posmon vectors at a point P with respect to S and S’ frames
respectlvely and 75, and 7" be the position vectors at a point Q with respect to S
and S’ frames respectively. Then suppose

#,—# =%=PQ (S — frame)
7' -7 =% =P0  (S'-frame)

By using general Lorentz Transformations

Fll == Fl + [(y ............... (1)
7 =7+ [(y ]17 ............... 2)
=Ty~ =T, — 71+ [y — DET - 0] Subtraction (1) from (2)

S¥ =%+ @ - 1S
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Let X; and X, are two vectors then

=>% =%+ @y — 1)”1“ ............... (3)

=>X) =X+ (y— 1)”2—) ............... (4)

Taking cross product of (3) and (4)

B x iy = 3 x G+ - DERExE) + (- DER @ x5 +
(v — 1?2 E2R R (5 < )

. X1)

B x @ =d x T+ (- DER G xE) + ¢ - DI (G x 7,)

Since in S — frame ¥, || X, therefore ¥; x X, = 0

Butin S’ —frame x," ¥ X, therefore ¥;' x ¥, # 0

Under the following conditions x;’ and X, becomes parallel in in S’ — frame

» Ify—1=0=y=1 (Classical Mechanics)
u |f)_C)1J_1_7)$)_C)1.1_7)=03.nd9_C)2J_l_7>:>J_C)2.1_7)=0
 fX VX, Xxv=0andX, V=X, XU =0

In all cases x¥; x ¥, = 0 and we get ¥," and X, parallel in in S’ — frame

90
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FOUR - VECTOR

A four — vector A, is a set of four quantities (4;, 4,, A3, A4) which transform

under a Lorentz Transformation in the same way as the x;, x,, x5, x, coordinates of
a point in the four dimensional space-time continuum.

Thus Ay =y (Ay+24,) Ay = Ay Ay = Ay, Ay =y (A, — 2 4y)

The first three components (4,, A,, A) are the components of an ordinary three —
dimensional vector.

Position four — vector

The four-vector x with components x; = x,x, = y,x3 = z,x, = ict is called
position four-vector.

FOUR - VELOCITY / MINKOWSKI VELOCITY
In Minkowski space we have x, = (x1, X3, X3, X4)

Where x; = x,x, = y,X3 = Z,X, = ict

d N - -
S = L (1,22, X3,X4) diff.w.r.to proper time
dx, _d dt

27 = 7t X1, X2, X3, X4) o

dt’ dt’ dt’ dt

dx, (dx1 dxy dx3 dx4) dt _ (dx dy dz . dt) dt
dr

dr — dt’de’dt dr

dt’ dt’dt’ " dt
) dt
= U = (ux; uy» Uy, lc)r (u lc)r dt - c?

Comparing with 4 —velocity U, = (uy, u,, u3, us) We have

u1=
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TRANSFORMATION LAW OF 4 - VELOCITY

By using law of transformation of 4 — vectors A, = (A4, A;, A3, A4) Where

A=y (Ay+24,), Ay = Ay Ay = A Ay =y (A, —Z A1) o (1)

Change these terms in term of 4 —velocity vector U, = (uy, uz, Uz, uy)

u =y (ul + %u4) ............. (2)
Uy = Uy ererennnnnn, (3) UZ = Uz ceenrenennnns 4)
Uy, =y (u4 — l—ul) ............. (5)

! C2
=2 Ux = (ux - 17)
122 ]y
CZ C2
ur
Yz
SU =AU — V) e, (6) where we use 1 = ————
v u
-1
! u u
(2)$u2—u2:,~ y2= Y
1_L 1—ﬁ
\ c2 c?
12 2 2
1-% 1-5 [1-5
r ! c Cc 1 7
Uy Uy =Uy Uy = Uy Uy e ()
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’

Uz

! u
B)=2uz3=uz = == Z
1 -
T2 2

ﬁ u Z = -------------
u2 u2 'UZ
1—C—2 1—C2 1—C2
iv
B=>u=y(w—Tu
ic /lC ivu\ 1/10 ivu\
= = y| ——. x| = | -2 x|
2 u u2 2 u2 u2
1—c—2 \ 1_6_2 1—6—2/ 1_(;_2\ 1—6—2 1_0_2/
c. [1—~ 1——n
. c2 1 v oou c? 1 v o u
=>IC = 2| Z—C—Z. x2|:>1= 2| Z—C—Z. le
v u u v u u
1—C—2 \ /1—6—2 1—6—2/ 1—C— \ 1—0—2 1—6—2/
)
1_122 v
:1=T(1 yue) = 1=2(1 2ux)
v u
1
=>A
1_12ux
c

Using A in (6), (7), (8) we have

- u
Wy =5, =—2—u,=—%2— where y = —
1=2ux v(1-Zux) v(1-us) -
Inverse transformation law of 4 — velocity become
Ul x+v uly Ul
U, = Uy = ——, U, = —F———— where y =
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FOUR - MOMENTUM / MINKOWSKI MOMENTUM

Consider a particle is moving with 4 — velocity U,,. If mass of particle is m, then
4 —momentum is defined as B, = myU,

1

= P, = my(4,ic) where U = (ux, uy,uz)

Comparing with 4 — velocity P, = (P, P,, P, P,) we have

_ MolUy _ _ _ mouy _ _ _ Mmouy _ _
P, = uz—mux—Px,PZ——uz—muy—Py,Pfj— uz—muZ—PZ
/1—6—2 /1—6—2 1-—
myic . mc? E . mg 2
P,=—=mic=—i=-1i where m = , E=mc

TRANSFORMATION LAW OF 4 - MOMENTUM

By using law of transformation of 4 — vectors A, = (A4, 4,, A3, A,) where

Ay =y (Ay+24,), Ay = Ay Ay = Ay Ay =y (A, =2 A1) o (1)

Change these terms in term of 4 — momentum vector B, = (Py, P, P3, P,)

Pl =y (P1 + §P4) ............. )
PZIZPZ ............. (3) P3—P3 ............. (4)
Pl =y (P4 - %Pl) ............. (5)

_ Mol P, = mgic
=

- )
12 -
c2 c2
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( 2 )
u
1_
mou mou iv myic 21 mou mov
> L =y| L+ [ s mou, = — | -2
/2 u2 u 172 u2 u2
-7 \ "2 Jl_c_z Jl_c_z \jl_f_z jl_f_z
2
1=z v
>P,/ = : 2(P —mocz—z)
v u
}1—5—2 1-
ur?
v -—
=P/ =A(Px—E¢%) oo (6)  where we use A = ————
v u
-7 1=
m u’ mopu
(2)=> Py =P, > 22 s
e | ud
1_62 c2
u’2 v2 u’2
= 1— 1—
p/=y_<p pr=y N “p _pr_2ip 7
=P, = y=>P) = y=>P, Y eeeeeneneann (7)
1 PR
C2 CZ CZ
(3) N P3 P3 = mouz — mouz
ulz 1_£
1_02 c2
/2 2 !
1-% 1-7 [1-5
p/=Y_“p op'=y_ N _“p pr_2p
=r; = z =Ly z z _]_/ z

mgic v mouy

EO R TR R
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1-%
1—':—2 1—’6‘—5 2
Using A in (6), (7), (8) we have
Py—Ey— P
Px’ =X ¢ UOCZ ,Py’ = —J; ,PZ’ = —Pf} where y = ! -
1=zux v(1- ) v(1- ) | 1-%

Inverse transformation law of 4 — velocity become

Palc‘l'EOi Pyt ) 2
= < P, =—F z where y = —

v
y(1+—w ) u?
2T ¥ 1=z

ez p B p o
v
x 1+C—2wx' y V(1+C12u’x), z

Transformation law of energy by using 4™ component of momentum

Since P, =y (P4 — i?vPl) >imc=vy (imc — %Px)

- im'c? _ y(imcz _i_va> =>£E, = V(EE—%UPX)

c Cc c c

= E'=y(E — vP,) Transformation law of energy
>E=y (E + va) inverse Transformation law of energy

This equation tells us that what is called as energy in frame S’ is a sort of
admixture of energy and momentum in frame S. These equations show that
momentum and energy of a system of particles transform in the same way as in
case of individual particles.

Application of 4 — momentum

Law of transformation of energy and Aberration of light.
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Question

p i E 2 _E?: : ; 2 .2 i
Show that B, = (P, l;) and deduce that P~ — — Isan invariant —mgc with
respect to a Lorentz transformation.

Solution

Consider a particle is moving with 4 — velocity U, . If mass of particle is m, then
4 — momentum is defined as B, = myU,

> P, = mo(t, ic) —
/—

kmou LR |=>P = (mi, imc)

where % = (uy, uy, uy,)

>P,= (ﬁ, imc) where m = —22
u2
’l—c—z
= F 2 E
P, = P,z; where we use E = mc* = mc = -
Cc

2
. . . 4
Since the length of a four-vector is invariant we must have p? + (—J = constant.

c
2
2 _
p°— — = constant.
c
When p =0, E = mc*
242
(m c*)
Constant = —”—2 =—m?c?
c
’ 2
p}l - —2 = —ﬂio C2
c
or Er=p? + mg ¢t
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Now to show that invariance of P? — 'j—z we have the following result;

,2

o)

E'?
e

2

p'* — B +pP/  +P,”°

C_Z =
Now using the following relations

Ev
c2’

P' =P — Py,:PJ/’Pz,:PmE’:V(E_UPx)

2
! Ev

)2 E 2 y2
PP-S =y (R -3) +B2+R*-L(E-vR)

2

P xzyz(l—:—z)+Py2+Pzz—Ezyz(1_f)

C2 2 C2 C2
2
E' 2 E 2
P - E sz 1v2 (1 vz) + Pyz + Pz2 2 11;2 ( 1:2)
c2 c
2 E7 o 2 2 E?
P — ol P~ + Py + P,° — pr
2
2 E, _ 2 Ez
Pr—"=P -7

98

Law of Transformation of Mass

Pizy(P4_i?vP1)
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FOUR - FORCE / MINKOWSKI FORCE

If P is momentum of the moving particle then the force acting on it can be defined

as f = Z—i 3 Then 4 — force is defined as

“the rate of change of 4 — momentum w.r.to proper time”

dp d /= . d /= . dt dP . dm) dt
E =—tE= —(P,me) = —(P,lmc)— = (—,lC—)—
K dt dt dt dt dt dt / dt

= F, = (P, innc)

ﬁ

U T
T
hN| =N

__Fr Ty f: __imc
F1 _xz’ FZ _2, F3 _ZZ . F4 -
u u u u
1_C_2 1—C—2 1—C—2 1_0_2
Question

If U is a 4 — velocity then prove that U. U = U2 = —¢2. Show that it is of constant
magnitude ic. The four-velocity is then said to be a time like vector.

Solution
0.0 = (1 ic) = (i, ic) == = ——— (4, ic). (4, ic) = —— (.4 + i%c?)
2 —
e s () (1-%)
- = 2_c2 2_c2 - =
UU=7r—5=-ct5==U.U=U%=—c?
()
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Question

IfUisad- velocity and F is a 4 —force then prove that UF=0

Solution
AsU.U = —c?
i - — _i _ 2 . . .
—(U.U) = —(=¢c?) differentiating w.r.to t
= dl | 3 dU _ = dU _ = d =\ o . mg
U'E + U'E =0=20.-=0= U.a(moU) =0 multiplying with >
l_f.d—P =0=U.F=0
dt
Question

If @ is a velocity and f is a force then prove that @. f = mc?

Solution

AsU.F=0

(i, ic) — (f lmC)F

2(ulc)(flmc)—O:>uf+lmcz—0:>uf me? =0 = 4. f = mc?
CZ

Question
an—1/2 , .
Show that F = (1—1‘—2) (f,%f. )
Solution
Since F = (f imc) = (1 - _2)_1/2 (f,imc) = (1 - z—z)_l/z (f,émCZ)
F = (1 - ’C‘—j e (*if ﬂ) where we use the fact /.7 = 1mc?
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Question
Show that F;, = myy(v) % (Y(v)vy)

Solution

_ dP, _ dP,at

B odar dt dt

d . 1 |at
E, =—|my(u,ic —
NPT ot ic) w2 | dr
Iz
(5
d .
Fo== (Mo, Mouy, Mo, imyc)
d . 1 1
F;i ~ dt (pxi Py, Dz lmoc) 2 2
2 T2

F,Zt = % [(pxi Py, Dz, imoc)y(v)]y(v)

101

dat

o = (5 oy ), 2 (pyy @), 5 (py ), 5 (imocy () ) v ()

= F1 = (& (po@))y®)

= 2 = (i (p,y ) Jy)

= F3 = (S (pym))y@)
(

= F, = dt(imgcy(v)))]/(v)
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TRANSFORMATION LAW OF 4 - MOMENTUM

By using law of transformation of 4 — vectors A, = (A4, A;, A3, A4) Where

A=y (Ay+24,) Ay = Ay Ay = A Ay =y (A, —Z A1) o (1)

Change these terms in term of 4 —force vector F, = (F;, F,, F3, F,)

Fl=y (F1 + %a) ............. )
FZI = FZ ............. (3) F3 == F3 ............. (4)
F = y(F4 —2F) (5)

> fo=2(f,— (%) af) where we use 1 =
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Cf—(R)af
>f == (5,2) where we use 1 = —
It 1t
b e () (uaf oty s f ince . f
:}fx _Jx (52)( ’1‘ xl ylyTHz z) since u_f = uxfx -I-uyfy +uzfz

u
sz

¢ _ () (@) syt

v
1—C—2ux

' fy 1
>f =———¥ where we use A =
s = g ==
@)= F3=Fy=»Le_=_L
1_L 1—%
CZ c
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2
1—': 1—122 4
I __ !
= fz 2] fz = fz ; z
=zt z
=>f, = ff, where we use A = —
(1)

im'c _ / imc iv f \
= =v| — =
2 w2 € u2
1-4 1-— 1-%
2 c2 c2
imc _ 1 / imc v f \
= 2 2 | 2 A ) 2 |
u' v u u
. 1-=—\ [1-= 1-=
\/1 cz \] ¢ \\] CZ ¢ /
’2 / \
1-%- f
L] irc iv
= imc=Y= — ==
2 ’ 2 2
v u u
1-Z | [1-= 1-=
C2 CZ C2
2
1_
! 2 . iv
>lmc= mec —— X

Sl f =4 where we use 1 = —;
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Example

Show that four-momentum and four-force are mutually perpendicular, that is show
that the scalar product of P and F is zero. Hence show that the rate of change of
energy of a particle is equal to the rate at which the force does work on the particle.

Solution

PP= ZPLZ :mé ZU& =-m§£‘2 = constant (1)
n n

since ZU& =
L

Differentiating eqn. (1) with respect to T we get

p. ¥ _pp =g -0
dr

Thus the scalar product of P and F is zero.
From Eqn. (2) we see that P\F} + PoFs + P3Fy+ PyFy =0

7

_}
PyFy=~P\F + PPy + PyFy) = = p-
| =u?)c?

- -
imyc i dE my U f

Jl—uzfcz CJ]—MZ/{CzE ) JI—HZ/CE l»\}l—uzfcz

Hence the rate of change of energy of a particle is equal to the rate at which the force does work on
the particle.
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Example

A photon of energy E collides with a stationary electron of rest mass my. As a
result of the collision, the photon energy is reduced to E’ < E and the photon is
observed to be deflected through an angle 8. Using appropriate four-vectors, show
that the increase in photon wavelength is given by

A= > (1 - cos 0).

mye
Solution
&OQ = '
LY AN
F= v @ \?J
00&\\
O,)-\Qz
(a)
Fig. 8.2 For lllustrative Example 5
,f:"—>.E+m|:+‘32 .
lg¢ P= |=q,i|———|| be the four-momentum of the system before collision. Let
c c

0, = {E—a_;,i} be the four-momentum of the photon deflected through angle 6. Note that a_f 1s a unit
c ¢

vector in the direction of the incident photon and a_; is a unit vector in the direction of the photon deflected

S iE,
through angle 6, 1.e. a_; . {1'_2) =cos . Let O, = [ Do 3 ,—e] be the four-momentum of the recoiling electron.
c

Then P= Q, + 0,. This is shown in Fig. 8.2(b). Since 0, = P - 0,
0 =P+ 0 - 200,

£ Y Y VRN 2 S
. [ %IEJ_{E%{EH%C H (E _,fE] [E_,‘(E+mac J:l(g_)fg)
| Pett— | = | 2a, i ——— || +| =g, — | -2|Za,i S

c c c ¢ e ¢ c ¢ ¢
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(pf —%} = % [Ej -I-m%z +2£ntu]+{E: - Ej ]%— ZiE’ +2myE" - ZEEE! cos #
¢ ¢ ¢ ¢ ¢ ¢ ¢
Multiplying throughout by ¢* and using
(plct - E}) =—mj c* we get
—mgct=—m] c*- 2Emyc? - 2EF' cos 8 + 2EE' + 2myc’E'
EE'(1 - cos 8) = myc(E - E)
EE"(1-cos 8)

2
myc

f_

Let £= he and E = ';1—::; A and A’ being the wavelengths of the incident and scattered photon

] W

respectively. Then

(1 1 ] W c(1-cosf)
he| === | = —————
oA vy (mﬂc )

Vo= i(l—cosﬁ)

vy mye M

. Increase in wavelength A" — L= AL = e (I —cos )

mﬂ,c
Remember
_prRAopr_ (Px’z +p2?+p" ) i
P vE 22
— 2 (B 2EvP,+ VP - &2 |2 p2 -2 WV ET N p2
o c Y
Vz 1»'2
=T2E2 [1-2=|-c? | 2P| 1= |+ P2 + P2
Cz Cz d
—B-2 (R 4P +P) =B P2
Thus E?— PP =EF — pP? (M
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MASS ENERGY RELATIONSHIP IN TERMS OF STR (E=T +Eyp)
AsU.F=0
(u,ic) ! (f imc) =0=> 12(ﬂ’,lc) ( ,me) =0

e ™
c2

SUf+i*me2 =021 f —1hc2 =0 f = c? iﬁ.d—fzi—Tcz
—dP 5, _ cdm 5 — d(mid) ;, _ 2
= Ju.dt=[—-c?dt= [fu——dt = [dmc .7 = u2
>m ﬁ.%dt=fdmczz>mfﬂ’.dﬂ’=fdmcz ﬁ.%ﬂ‘i.%):Zu%
= udu = 2 u du
mJ J dmc 2U.— = 2u—
dt dt
omY =me2+ A (1)
S=mce+A . di du
U—=u—
Initially using u = 0 and m = m, dt dt
(1) >0=myc? +A=>A=—myc?
(1) :%muz =mc?—moc® ... ()
=T=E—E,

T =1mu? is kinetic energy.

2

E = mc? is Mass energy equation

E, = myc? is rest Mass energy equation
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EQUIVALENCE OF MASS AND ENERGY (Or PROOF Of E = mc?)

Suppose a force F acts on a boﬂf:and as the result of this force, the body covers a distance dx in
direction of force. The worifi\one by this force is:

dw = F.dx

=dW=zFd¢'——--(1) ~8=0°

A\ °
By Work-E{ergX“Theoreln, the work done dIW on a body result in increase of its kinetic energy dK:
A
dW=dK ———— (2)
AN

Equating (1) and (2), we have:

dK =Fdx ———— (3)
By Newton’s 2™ Law of Motion, the time rate of change of linear momentum of body is equal

applied force:

_dp
F=a
=>F=%(mv)
L F— dv+ dm
=Mar TV Tae

Equation (3) becomes:

dv dm
dK=(m —r—i—v—) dx

d dt
dv dm
—= dK =m — dx + v —dx
dt d
x dx
= dK =mdv— +vdm—
dt dt
= dK =mvdv +vidm ———— (4)
From relativistic mechanics,
mﬂ
m = >
v
==
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g
3
Il
S
]
|
m|H
S
o
p—
|
nlﬂ:
[d [d
M
[
|
NN
<
S
=L
=

m, v
= dm = 3 —zdl?
= C
V22
(1-2)
m, 1 v
= dm = T > _zdl?
= [ C
o (142)
1—F C
1 v
= dm=m 2 L 2 C—ZdU
CE
mvdv
= dm =\———

= mv dv = (c? —v?)dm

Putting values in equation (4), we get:
dK = (c? —v¥)dm +vidm
= dK = (c? —v¥)dm +vidm
= dK = (c? —v? + v¥)dm
= dK = c*dm

Integrating bother sides:

K=c2m+A ———— (5
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where A is constant of integration.
Att =0,m = m,,and K = 0, equation (5) = 4 = —m,c?
Now the equation (5) becomes:
K =mc? - m,c?
=K+myc? =me? ———— (6)
This equation shows that when K = 0, the body still possess some energy equal to m,c?, called rest

2

mass energy. Here K + m,c? = E is called total energy. Equation (6) takes the form:
E=mc @

This equation is called Einstein’s Energy-Mass Relationship. o

RELATIVISTIC ENERGY /MOMENTUM ENERGY RELATION

~

From Einstein’s Energy-Mass Relationship:

E = mc? ‘Q
mg Mg %

:E=—2(:2 M= —— %
v v
=& 1-2A 0O

2 4
mic
=>EZ=—( Uz) @
1_6_2 °

SE L me (@8;@

(1-Z) ~

The linear momentum p a particle having mass m moving with velocity v is described as:

p=mv A
m,v
=‘,vp—
1.3"2
1__
CZ
Zz..2
mav
2 o
= p’ = ---- @
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Subtracting“equation (1) and (2):

2 2.2 2.2
E__ o Mpc®  mgy
2 - 2 2
C v v
c C
E? m2
2 o 2 2
= — - s—(c* —v°)
c v
]___
C
2 2
:E__ 2= zmﬁ‘ . (CZ—UZJ
c? cé—v
CZ
EZ
= — —p® = mjc?
c

= E* = p“c* + mic*

= FE = \/pzfrz + msc*
This is the expression of relativistic energy.

Question

At what fraction of the speed of light does a particle travel if its K.E. is twice its
rest mass energy?

moc?

’ 2

4
1——
c2

the total energy. Then Er,tqr = Ex g + Erest @ Erotar = 2ERest + Erest = 3ERest

IS

Solution: Rest Mass energy od the particle is E, = myc?and E = mc? =

v2 1 v2
=3myc* = [1-5=3

v2 8 v 8 v
: $—2=5=-=\/;=’z=0-943
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MASS ENERGY RELATIONSHIP IN TERMS OF CLASSICAL
MECHANICS (T = %2 mou®)

In classical mechanics v < ¢

my

Sincewe haveT = E — E, andm = =

1
2\72
=>T=mc?—myc?=>T =21 cz—m0c2=>T:m002<<1—lC‘—2) —1)

1—2
2

= T = myc? (1 + %z—j + neglecting — 1) >T= %mou2 required

MASS ENERGY RELATIONSHIP IN TERMS OF y(u)

\[mLZ then m = myy (u) where y (1) = — =
1— -5

Sincewe have T = E — E|,

Asm =

=>T =mc? —myc? =T = mgy(u)c® —moc? = T = (y(u) — 1)myc?

Question
y2mou?
Show that T = ——— where y =
y+1 u2
s
Solution
Sincewe haveT = E — E|,
>T=mc2—myc?=>T=mpyc®  —myc? =T = —1Dmyc® ......... (1)
1 1 1 u? u? 1 u2y?
Now y = = y?% = s5—=1l-——=1-—=>c?=
! /1—% Y 1—1;—22 2 ¢z c? y? y3-1
C
_ . u2y2 . . u2y2 . YZmOuZ
M =T=F=Dmg 77 T'=({—Dmo G-Do+D r= y+1
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RELATIVITY OF MASS / MASS DILATION PROBLEM m= mOZ
AsU.F =0
(u,ic) L F i =0=> %(ﬂ’, ic). (7, imc) =0

1
1_ﬁ.(f,lmc) — o
,’ 2 «I 2 c

SUf+i%mct=0=Uf —mc2 =00 f =mc?
= ufCos0° = rhc? sinced Il f = 6 = 0°
= uf =1mc? = mc? = uf

dm ar _ dm

am .2 — 5,4 =
= wC TUE T dt

domy _dm . _ ,,24m dm 2 — 2 dm
=>—-C°=u dt:>2mdtc =2mu =

A 2.2 — 94,249, AT d 2.2 — 9,2 dm i
= - (m?c?) = 2um—- = [ (m*c?)dt = 2u® [m—-dt where u is constant
2.2\ — 94,2 2.2 — 9,2m
= [d(m*c?) = 2u® [mdm = m?c® = 2u’—+ A
>m?c2=mPu>+A ... (1)
Initially using u = 0 and m = m,
(1) >mic?=0+A4>A=mjc?
(1) = m2c? = m?u® + mgc? = m?c? — m?u? = mic? = m?(c? — u?) = mjc?

2.2 2.2 2
2 —_ Mg

>m?=S=>m?=—C_r>5m?= :
ce—Uu 2 u u
C

Hence m=
Invariant Mass

A quantity is said to be invariant if it is the same in different inertial frames. Rest
mass of a particle is an example of an invariant quantity.
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Question

Find the ratio of mass of a particle in frame S’ to S when the particle is moving
with velocity (0,25¢, 0,0) where S’ is moving with relative velocity 0.75c.

Solution

As we know that m =

-z

m 1

my 1 v2
c2

Case — I: When particle move from $' to S

m 1 1 1 1

my \/1_1:_2 B \/1_(%50)2 ~ J1-0.00625  0.968 1.0328
Case — I1: When S’ is moving with relative velocity 0.75¢c
m 1 1 1

mg \/1_1:_2 \/1‘(0'7:6)2 V/1-0.5625

Question

Calculate the rest mass of an electron.
Solution
Rest mass energy = E = myc? = m,c?

E =9.1x10"3kg x (3 x 108ms™1)2
E=8199 x 107 x ()

1.602%x10719]

E =5.118 x 10%°eV = 0.512MeV
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Question

A particle of rest mass m, with speed v, collides with another particle of rest mass
m, which is at rest. After an elastic collision the two particles combine to form a

single particle of mass M. Then prove that M2 = m2 + m2 + 22

1 v
c2

Solution
== =
m wi M:vn‘-faﬂ————?
) () b =
CVJ" = Maviva  Hgse : \/W\"Ejv"{. HQM : (/'l-? = f k3 "t
Lot /7‘"’/'}'./4
_._\Ld.n_u]ﬁ W T e A, V, =0 ) 7
L 3 qc maAS M.
: Y K= w1y
| RN LI 4 2 a//"" colfision ')
According to the law of conservation of mass in STR
mq m, M
_I_ —
= AN
1=z == T2
M ) 2
Tlbmy = —— e (1) since v, = 0 therfore /1—%= 1

Now according to the law of conservation of momentum

P,+P,=P
mqvq mpv, _ Mv
2 + B [ 2
1 2 1_C_2 1 2
M .
N e T (2) sincev, =0
vi _v?
1_02 1 2

Dividing (2) by (1) we have

Mv . M
vz v2
f1—c—2 f1—c—2

mvy My +m, =
5 =

2 2
1 / 1A
c2 c2
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v? v2 v2
myv; | MatMe -2 My | M INLCLRN 1-= My . I-=
- - Jl—f \/1 v \/1—ﬁ my+m /1—ﬁ oz M
2 2 ) 2 2 1tMma 1 )
mqivy
p=—"" 3)
[ 2
v
mq+m, 1_(3_%
Now squaring equation (2)
2
miv?  M?%p? 5 _ m2v? 1—1;_2 5 mivifi 1
=> M- = X => M- = - — =
vi v? vs 2 vi \w2 2
1— 1-— 1—2 1—2
c? c c? c2
2
mi+my |1-—
2 m%v% i c 1 j ;
=M =—| —— | =5 using (3)
1 1v1
2 2
- /m%+m% 121 )+2mymy (122 \
MZ — 1171 4 4 1 |
= T2 miv? 2
1 1
1-% /
2 2
/ 24.92( 1 "1 1 \
mi+ms| 1—— |[+2mimy [1-—
2 ' 2( 62> T2 vt
>M" = — =
v? v? c2
ot ot
C2 C2
v
2 mj 2 2 m% v%
=>M" =—L+m5+2mm, — —
17% 17% 172 Cz
-2 =2 1z
2
1%
1
2 _ m} vs 2 2
>M =—724(1—-=2)+m5+2mm,
\Lma)tm 7
1-— 1-—
1
M* =m} +m3 +2 -
1—-21
2
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Question

Show that the acceleration in three dimension is not parallel to the force, under
what condition £, @, 7 are parallel?

Solution
. > dP d S dm dv . .
Consider f = = = = (m®) = =% 4+ m= where m is moving mass
dt dt dt dt
— T3 N . - 2 . _)-_) d
:>f=(%>v+ma ............... (1) Slncef.v=mc2:>];—:=d—r:

This shows that the acceleration in three dimension is not parallel to the force.
Under the following conditions f a, v are parallel;

Condition - I: Iff and v are perpendicular then

f5=0

sf=md>flld

Condition — I1: If f = fA,d = afi and ¥ = v#i then

=d = (Scalar)n
This shows that d is in the direction of f and .

Thus f a, v are parallel if they are in the same direction. i.e. Straight line.
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Question

If f da, v are parallel and perpendicular then what is the value of moving mass?

. . > dP d S
Solution Consider f = — = —(mv)
dt dt
2 dm av ; .
f= U tTm— (1) where m is moving mass
Since m = —=> v.v=vt
2
1-5 @0 dv__dv_ dv
Var = ac T Var T Var
() :
dm _d| my | _mofy Vo) Zp,dv dm_ my (3 dv
RArTrT 2|—C2(1 CZ) Vi 2@ E( 'dt)
1—17— C2<1—£>2
2 c2
— - dv
S M (G e (2) where d = —
dt o dt
=
c2
m > o\ o m -
(D)=f= * —(W.a)V + 12 7 A (A)
2\2 _
62(1—1;—2) \Il c2
Condition—I: If d is parallel to f and ¥ . i.e. f = ffi,d = afi and ¥ = v then
(4) > fi = —"— (vAi. af)vA + —>af
v2\2 v
Cz(l_C_Z) c2
>f=—" _w.a)@A.v+-2a +ing by A
21 7?2 12
Cc (l—c—2> C2
=>f= =0 s(V.a)v + “ a=f= m0a3v2+1 Uz]:)f_ m0a3
of . v2\2 |v2 2\2 2\2
(1-3) z (-2) (%)
=>d=m;d wherem, = ™o __js called longitudinal mass.
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Condition — 11: I1f @ is parallel to f but @ and f are perpendicular to .

—

ie.B.f=0and¥.d =0 then

A= f=+=a
-z

= f = mrd where m; =

is called transverse mass.

1=z

Question

Discuss the motion of particle with variable mass.

dmo

SN ORT
Or show that the quantity c (1 c2) =
source. m,, is variable mass of the moving particle with velocity wu.

be the energy taken from the external

Solution

As mass varies due to external source, so that the 4 — force acting on the particle is

= dP d
F=— moU
dt d‘r My )
=>F= m°U+m0—=>FU— 0. U+myU.==>F.U=2200.U+myU.==
dt dt dt dt dt
2 dmO 2 —>_ 1 -, . = —)dﬁ_
= (fu mc) T C Since F.U = — (f.u—mcz),U.U——cz,U.—T—O
(1——2> (1_c_2)
C
P2 — _dmo o W
= fu—me*=——=c (1 c2)
92 _F— 2 u?\ dmyg
=> mc —f.u+C 1—C—2? .............. (1)

. dE . P aw —

Since E = mc? then — = mc? also W = f.rthen— = f.u
dE _aw | 2 (4 _u)dmg

M= t¢ (1 cz) d

This expression shows the rate of increase in energy due to external source.
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CONSERVATION OF ENERGY

We come across two types of forces in our daily life:
¢ Conservative forces
¢ Non-conservative forces
Conservative Forces
If the work done by the force on the body depends upon the initial and final locations and is

independent of path taken by the body between the two points, then such a force is a conservative

\ 4
force. @
Or @

X

If the net work done by the force on the body along the close path is zerOS;heﬁosuch a force 1s
called conservative force.

Conservative forces are also distinguished by the ability q@stbre energy only due
configuration of the system. This stored energy is called potential@rg@

Examples of Conservative Forces ﬂ
-

The Spring Force

The Force of Gravity
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Example 1 For an extremely relativistic particle of rest energy E, = myc, show that the momentum p is

2
E
given by pc= F {l —% (?UJ ] to a good approximation.

Solution

B=pd+ mgc‘jr = ptct +E§‘

pé=E - E orpe=(E- )"

2 T2 PR
E
“F 1-[_0} - F 1-1(—°J when 20 « 1.
E 2\ E E

Example 2 At what fraction of the speed of light does a particle travel if its kinetic energy is twice its
rest mass energy?

Solution
KE.=(m- mo)(;2 = .’?’.‘062 r-n=2 mo.c:2
Or I'=3or 1[32 =9
1=9—-9B%0r9B%?=8or = ﬁzg
3 3
2(1.414
_ 20319) 2828 _ g3

3

Example 3 Calculate the momentum of a neutron (rest mass 940 MeV) whose kinetic energy is 200 MeV.

Solution
E’ = (myc* + KE) = p’c + mgc’
PP = (mye* + KEY - mo2 ¢t
= (940 + 200) - (940)?

= (1140)" — (940)* = (2080) (200) = 416000

pc = (416000)"* = 644.9 MeV.
p = 6449 MeV/C.
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Example 4 What is the ratio of the relativistic mass to the rest mass for (a) an electron (b) a proton when
it is accelerated from rest through a pd. of 15 megavolts. Take m, = 0.5 MeV, m, = 1000 MeV.

Solution
By definition of electron volt, the kinetic energy of each particle is 15 MeV.

2
m mc?  myc + K.E.

My myct my ¢
n 035+15
(a — = = 31 for electron
m, 0.5
m 1000 +15.
(b) — = ———— = 1.015 for proton.
m, 1000
. : . - %o . :
Example 5 Prove that the velocity of a particle can be written as v =E p and its magnitude as v
_ 4k
dp
Solution
P Jor vy 3 pc’ ct -
=mv y=—=—=—
p n o E P
Since El=p*? + mic
dE dE _pc’
2E == =2pc® or == ="— = magnitude of v.
dp dp

Example 6 Calculate the speed of an electron (rest mass 0.5 MeV) that has been accelerated through a
potential difference of 2 x 10° V (a) classically (b) relativistically. Calculate the electron mass in case (b).

(a) Kinetic energy = %movz = ;—moﬁch = Ve

e ()(2x10°)eV
b= mc (05)10° 6V
y=Pe=22c=2(1414)3 x 10°

v = 8484 x 10® m/s. (This is obviously impossible).

=80r[3=2ﬁ
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(b) T=myc> T —1)=2 x 10° eV =2 MeV

C—1)= or = 1+—L
myc 1y C
0.5 (1_B2)1r2

1—132=2I—5 — 0.04

2_(1-0.04) or B=(l— 004"
B~1-— ;— (0.04) = 0.98

v=Bc = (0.98)(3 x 10%) =2.94 x 10% m/s.
Total electron energy = E = mc? = mye? + T
= (0.5 + 2) MeV = 2.5 MeV = 5 myc? = mc?

m=15 my

Example 7 A particle has a total energy of 5 GeV and a momentum of 3 GeV/c in a certain frame of
reference. (a) Find its energy in a frame in which its momentum is 4 GeV/e. (b) Calculate the rest mass
of the particle.

Solution
(@) moc* = E - p* = constant
B -plc = B - ¢
E =pld+E -picd =@+ (5P - (3P =3
E,= 32 GeV = 5.656 GeV.
(b) myc’ = E = pic’ = (5} - (3) = 16

myc® = 4 GeV = 4000 MeV

_ 4000 _

ny 43 u.
931.5
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Example 8 An electron moves in a circle of 0.4 m diameter in a uniform magnetic field of 0.03 T. Obtain
the speed and kinetic energy of the electron. Take myc? = 0.511 MeV.

Solution
p = BeR or pc = BeRe (J) = BRe (eV)
pe=(3 x107x02 x3 x 10%=18 x 105 eV = 1.8 MeV.
E = (m® + TP = pic” + myc’
(0511 + T)? = (1.8 + (0.511)

Solving this; kinetic energy T = 1.360 MeV.
Total energy E = (1.360 + 0.511) = [.871 MeV = Tmc?

r=L87_ 6
0.511
1
= —— = (3.66)
[-pB?
Solving this, B=vec=109618
Or y= 09618 C.

Example 9 Calculate the radius of curvature of a proton of velocity 0.1 ¢ in a magnetic field of 1 Wb/
m?. (For proton mocz = 1000 MeV).

Solution
Re ﬂ:rniovzrmoczv
Be Be B€C2
N _ 1 _
[*= = oo I'=1+ = (0.01)=1.005
1_[32 1-0.01 2

moc = 1000 MeV = 1000 x 10° eV = 10° eV = 10° x 1.6 x 1077 ]
moc:2 =16 x1071].
Substituting these values
L6107 x0.1x3x10° 1.6x3%x107

R = (1.005) = (1.005) —————— =0335m.
(1) (1.6x107%) (9x10'%) 16x9x1073
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Example 10 Show that the speed v of an extremely relativistic particle differs from the speed of light c

2
2
by Av=c—-v= %{mg ) . Find Av for an electron of kinetic energy (a) 100 MeV, (b) 25 GeV. Take

mo.z2 = 0.5 MeV.

Solution
2,22
nm. vc
E= m§c4+p202=m§c4+ 0 = m§C4+ E2 2
1=v?/c?
E2 (1 - v = mict
EL (- = mgc’é: E (c+v)(c-v)
mé.f:6 (m'ﬁ.c2 T 2
Av=¢c—v= =
E? (c+v) E ctv
2
2
= L To¢ } when v = c.
2
2\ 2 8 2
@ Av=£[moc ) _c myc :3><10 [U'SJ
2\ E 2 T+m0c2 2 100.5
3x 108 2
- [E) =15 x 108 (5 x 107%)?
2 100
=375 x 10° m/s.
_ 3Ix 108 32 2
Av = =15 x 108 [ —22
X + L. b
2 25x10° +0.5 25%10°

=15 x 1082 x 1072 =6 x 107 = 6 cm/s.

Visit @ Youtube “Learning with Usman Hamid”



127

Example 11 A neutral pion moving with velocity v decays into two photons; one photon of energy E,
travelling in the original direction of the parent pion and the other photon of energy E, in the exactly

opposite direction. If £, = 2E,, find v.

Solution
From conservation of energy principle,

Tmy’ = E, + E, = 2E,+ E, = 3E, . ()

From conservation of linear momentum,

E E, 25 E _E

I'my= ———= -— -2
C c C C C
Dividing Eqn. (2) by Egn. (1) we get
v Fyle _ 1
CZ 3E2 3c
v=ce= % = 10® mfs.

Example

Momentum of a particle is given to be moc. What is (i) its speed. (ii) its mass (iii)
its kinetic energy?

Solution

2
(1) mpl'v=myc or v= £oor =
| 2

v2=|::2(1—v2f|::2)=.:'z—v2 or 2WV=¢* or v= ——

1.414
_e2_cad) e
2 2
MaCA 2
(ii) Mass m = m,l = my c_mev2 1.414 m,
V C

(111) Kinetic energy 7= (I' - 1) mﬂcz = (1414 - 1) mﬂcg
= 0414 myc’.
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Example

What is the radius of curvature of a 100 MeV electron in a magnetic field of 10000
Gauss? For electron myc? = 0.51 MeV.

Solution
B=10000G=1T.
PP =E - mic* =100% - 0.51> = 1007
Or pc = E = 100 MeV
c(MeV
Romy = PEMEY) 100 _ e
300nB 300(1)(1)
Example

Compute the radius of curvature of a proton of velocity 0.1 ¢ in a magnetic field of
1T. Take myc? = 103MeV.

Solution
I=(1-001)"=1 % (0.01) = 1.005
pc  Tmyve  (1.005) myc?(0.1)
" 300nB 300mB 300nB
1.005) (10%) (0.1
_ (L005)(107) (0.1) _ e
300(1)(1)
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Question
Show that it is impossible for a photon to transfer all its energy to a free electron.
Solution

According to the conservation of linear momentum
% =P, i (1) where P, is the momentum of electron after collision.

If K is K.E. of the electron after the collision and m, is its rest mass then
conservation of energy is

hf + myc? = myc?> + K

hf =K orK =%
= K =P,c using (1)

Therefore the total energy of electron can be found using the relativistic expression

E, = \/(myc?)? + (Pc)?

(myc? + K)? = (mgc?)? + (Pc)?

(myc?)? + K% + 2Kmyc? = (myc?)? + (Pc)?

K? + 2Kmyc? = (Pc)?

PZc? + 2P,cmgc? = P2c? since K = P,c
2P,cmgc? =0

P,=0

This is not possible because it corresponds to A = oo

Therefore it is proved that it is impossible for a photon to transfer all its energy to a
free electron.
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Question
Discuss the motion of a charged particle in a uniform transverse electric field.

Solution

_Z,-u"» E*{{t""- {i'__pfi__‘_—

Consider a charged particle ‘e’ moving along x — axis and electric field is along y —
axis.

—

dapP
Now we have =

F

= % (Pxi +Pj+ PZE) = egj Where F= (charge)(Electric field along y — axis)

dPx,\ dPy,\ dPZA) A
> |—=l+—=J+—"k)=e¢
(dt +dt]+dt J
APy ar, dp,
>—==0,—=¢es, —=0=>P, =4, P, = B, P,=D
dt dt dt X » by =eet+ 5, fy

Initially t = 0,P, = Py,P, =0, B, =0thenA=P;,,B=0, D=0

= P, =P, B, =ect, P,=0=mv, =Py, mv, =eg, mv, =0

Since we know that E = mc? thenm = CE—Z

P, est dx _ Pgc? dy _ estc? dz_O
£ - E o dt  E ' dt E ' dt
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As E? = mgc* + P2c?
= E? =mjc* + (P? + P + P?)c?
= E? = mic* + (P + e?c%t? + 0)c?
= E? = mic* + Péc? + e?&?t%c?

= E? = E2 + e%e2t?c? since E2 = mic* + Péc?

= E = \JEZ + e2e2t2c?

2
=>E=eec’(%) +t2 = E =escVa? + t2 Witha=%

‘\&‘MJ . Ft,-( ALY R . e e i imme me e e mcemmmr it e ———————
o
C ovgidew o e
dn _ Pec e
dL r"

e &_‘m: - lmoerien

X..E P"CL ({@ t.€,

e e 1(.' ) f:.h._g @ - e /CCE))
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—— -
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J n
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Question

Discuss the motion of a simple particle under a constant force.

te 2

._@Zeﬁan:w_c‘omcdw a ?{m/afe lg_qz,l.v'fﬂp a:f meatf wm

.,_-mav_i:ﬁ undey o c:wj'fqu ﬁfce
-0 E = (?.ﬂ,ﬂf.tﬂ.ﬂf
>
Srace df . £
ot

an T,.,:f:?mﬁy , .uw 74_({'
I . U S TN R P=o Thwa < =0
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INTERVAL BETWEEN EVENTS

Consider interval of two events (ds) which is the distance between two points is
given as; (ds)? = dx? + dy? + dz? + (icdt)?. Naturally ds is an invariant
quantity. It can be imaginary, zero or real depending on (ds)? being negative, zero
or positive.

TIMELIKE INTERVALS

When dx? + dy? + dz? < c?dt?, i.e. (ds)? is negative. The interval ds is then
Imaginary. It is called timelike interval. In case of timelike interval, the two
events are separated by such a length of time (dt), that the distance (cdt) which a

ray would travel in time dt is greater than the space distance\/ dx? + dy? + dz?
between the two events. It is therefore possible to find an inertial frame S’ such as a
train moving with a speed v < ¢ with respect to frame S such that the two events
appear to occur at the same place to the observer in S’

NULL INTERVALS

When dx? + dy? + dz? = c?dt?, i.e. (ds)? is zero. Interval ds is now zero or
‘null” and hence ds is called null interval.

In case of null interval, the two events are so separated in space and time that a ray
of light starting from the place and time of the first event can reach the second
event. Null interval is therefore also called lightlike.

SPACELIKE INTERVALS

When dx? + dy? + dz? > c?dt?, i.e. (ds)?is positive and ds is real. The interval
ds is now called spacelike interval. In case of spacelike interval, the distance in
space is so large that even a ray of light cannot cover it in the available time dt.
Only an observer or a particle or a signal travelling faster than light would have
covered the distance in the available time. Any pair of events which are
simultaneous (dt = 0) in an inertial frame such as S are separated by a spacelike
interval. The interval is then spacelike for all inertial observers. Conversely if a
pair of events is separated by a spacelike interval in one inertial frame, it is
possible to find another inertial frame in which the events appear simultaneous.
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LIGHT CONE /NULL CONE

A light cone is a surface describing the temporal evaluation of a flash of light in
Minkowski Spacetime. It is a path that a flash of light, emanating from a single
event and travelling in all directions, would take through spacetime.

Explanation: Consider an event at origin O, horizontal axis is X — axis and vertical
axis is ct — axis. Consider a light pulse at origin that expands in all directions with
speed ‘c’ makes an angle 8 with ct —axis.

X

[ =)

o == > X
We have tan = =

CcT
=>tan9=g:>tan9=1=>9=45° using s = vt,x = ct

Here 8 = 45° is maximum angle of divergent of light. The lines AOB and COD
are known as World lines.

All the events in sector ADC are called past events and in sector BOD are called
future events.

As x? + y? + z%2 — ¢212 = 0 represent hyper cone. So we use it as equation of
light cone. Surface of the cone is made up of events which are lightlike (ds = 0)
with respect to the event O. Hence the name light cone or null cone, because a light
signal transmitted from origin, will be along world line AOB and DOC. In which
spacelike, timelike null vectors satisfied.
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CAUSALITY

Two physical events are causally related if the earlier event causes the later event.
If two events are causally related in one frame, they must be causally related in all
inertial frames. Interval between two causally related events must be timelike in all
inertial frames. Causes always precede their effects in every inertial frame. This is
the principle of Causality.

Explanation

Two physical events are said to be causally related if one event is the effect of
another preceding event which causes it. The necessary condition for two events to
be causally related is that the event being caused must occur at a later time than the
event which causes it. (This does not mean that if one event is later in time than
another, it is necessarily caused by the earlier event). Now if two events are
causally related in one inertial frame, then by the Principle of Relativity they must
be causally related in all inertial frames. Otherwise we could distinguish between
inertial frames by whether two events are causally related or not.

FUTURE
ds? —ve
Timelike
[
E .\\x )l. __,""H.E
+Q..x - P f}__,’ xdk
Y e PR
“ N B LE) T 4 e
- x‘\‘{,,-— ,,*”j E
Conditional ~. |/ present
) . X
spacelike 071"~ spacelike
ds? +ve 7 N
f;f;'ip) xm_‘\x
A Timelike Y
ds® —ve
PAST
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Suppose events E;(0,0,0,0) and E,(0,0,0,t > 0) in an inertial frame are causally
related. Then (ds)? = —c?t? < 0 and the interval between then is timelike. Since
ds has the same value in all inertial frames, it follows that the interval between two
causally related events must be timelike in all inertial frames.

If we suppress the y and z coordinates we may refer to the x — t diagram of Figure.
We see that event O can be the cause of event P with a velocity v < c. Similarly P’
can be the cause of event O. Note that event O can only be the cause of events
which are in its future. Also O can only be the effect of events which are in its past.
Thus in all inertial frames causes always precede their effects. This is the principle
of causality.

The event E in Figure is spacelike with respect to event O and the two events
cannot be causally related. In fact it is impossible to make a frame-independent
statement such as ‘earlier’ or ‘later’ about the pair of events O and E.

If a particle or a signal could travel faster than light, then it would be possible to
reach E from O. Such a particle or signal could start from O and cause the effect E
(event) at a later time. This is impossible because c is the limit for signal or particle
velocity.

Hence the principle of causality is sometimes stated in the form:

“Information or signal cannot travel faster than light.”

Binding Energy

The energy required to separate a particle from a system of particles or to disperse
all the particles of the system. It is expressed in kJ/mol or MeV. For example
binding energy of the Helium nucleus 3He — H + H

Nuclear Binding Energy

The energy required to separate an atomic nucleus completely into its constituent
protons and neutrons. Or, equivalently, then energy that would be liberated by
combining individual protons and neutrons into a single nucleus.
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Binding Energy of Nucleus

Mass of a nucleus is always less than the sum of the masses of its constituent
nucleons i.e., protons and neutrons. Neutrons and protons within the nucleus are
held together by attractive forces. Suppose W is the work done to break a nucleus
Into its constituent nucleons devoid of any kinetic or potential energy. Then from
the conservation of mass energy;

(mass of nucleus M) ¢® + W = (sum of the masses of the constituent nucleons) c?.
Here W the work done or energy supplied in breaking the nucleus is expressed in
Joules and the masses should be expressed in kilograms. However nuclear masses
are usually expressed in atomic mass units. As an example we take a deuteron, the
nucleus of deuterium (*H,) an isotope of hydrogen. Deuteron is made up of one
proton and one neutron.

Mass of proton m, = 1.00728 u
Mass of neutron m, = 1.00866 u

m, + m, = 2.01594 u
Mass of deuteron my= 2.01355u

Mass which has “disappeared” in the formation of deuteron is
Am = (2.01594 u) — (2.01355 u) = 0.00239 u

Since 1u is equivalent to 931.5 MeV, Am is equivalent to (0.00239) (931.5) = 2.23
MeV. Experiments show that 2.23 MeV is indeed the energy required to break the
deuteron into a proton and a neutron. W= 2.23 MeV. W is the binding energy
(B.E.) of deuteron. B.E. of a nucleus is the energy which must be supplied to it in
order to break it into its constituent nucleons. Another way of looking at it, is to
say that the nucleons in the nucleus have a potential energy (P.E.) which is
negative because of mutual attraction between nucleons. This negative potential
energy reduces the mass of the nucleus by W/c®. Note that (W/c®) will be in kg
only when W is expressed in J.

In the above case, PE of the nucleons is —2.23 MeV.

Vibrational Principle: According to this principle: nothing is at rest, everything
moves, everything vibrates. It explain that matter, energy and even spirit are
simply varying rates of vibration.
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Particle Scattering

A change in the direction of motion of a particle because of a collision with
another particle.

Particle Decay

Particle decay is the spontaneous process of one unstable subatomic particle
transforming into multiple other particles. The particle created in this process must
each be less massive than the original, although the total invariant mass of the
system must be conserved.

Because of their intrinsic instability a number of particles are known to
break up or decay into two or more particles. The simplest example of such a
decay is that of a particle at rest decaying into two particles.

When a unstable particle of rest mass M decays into two particles of rest mass M,
and M, the two particles emitted must carry equal and opposite momenta if the
unstable particle is stationary. The total energies carried by the decay products are
then given by

M?+ M2 - M2 ) M>+ M2 -M?2 )P
E = [ | 2): and E, = ( - e
2M B 2M

-

In this decay, a part of the original rest mass energy (Mc?) is converted into kinetic
energy of the decay products.

When an atom (rest mass M) absorbs a photon of energy Q, in order to conserve
linear momentum, the atom recoils in the direction of the incident photon with a
velocity

Q
C (;M{] + Q C.'E)
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Decay of a Particle at Rest

Suppose a particle (rest mass M) at rest (momentum P = 0) decays into two
particles of rest masses M; and M, as shown in Figure.

Before After
E = M P2 D+ pp=p=0 P
p=20

Since the initial momentum is zero, the two particles M; and M, must fly apart

with equal and opposite momenta PT and P? respectively. Thus in order to
conserve momentum, P, and P, must be equal in magnitude i.e. P, = P, and
opposite in direction. If E; and E, represent the total energies of particles of rest
masses M; and M, respectively, then we must have

29 22 2 a4 a0l
piet=pyct or Ef -Mic'=E -Mc

El -Ey = MEct - MEc! (1)
From conservation of total energy, we have
E, + E,= Mc* = initial total energy . (2)

Dividing Eqn. (1) by Egn. (2) we get
MEct - Mic!
E - E= ————— NG
Me
Addition and subtraction of Eqns. (2) and (3) leads respectively to

(M2 + M2 - M2 )c?

E - e
I M Q)
(M2 + M2 —m?)e?
And E,= e
2M

In this decay process, part of the original rest mass energy Mc? has been converted
into sum of rest mass energies (M, + M,)c? of decay products. The remaining
energy [M — (M, + M,)]c? appears as the kinetic energy of the decay products.
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Decay of a Particle in Flight

Suppose a particle of rest mass M moving with velocity ¥ relative to frame S
decays into two particles of rest mass M; and M,. See Figure (a).

S S
YA YA

v
Before

X o
(b)

{:}_)._ _____ _l\ M I
N After ek}_,,
)

(a

In frame S’ moving to the right with velocity v as shown in Figure (b), the particle
of rest mass M is at rest. It decays into two particles of rest mass M; and M, as

shown.

Using Eqgns. (4) and (5) above, the total energies of particles emitted are (note that
these quantities are now measured in S) given by

(M2 + M2 - M2 )c?

E, = - ’ .. (6

' 2M ()
(M2 + M2 —ME)c?

E, = - ' (7

2 2M (7

Their momenta are given by

’ LA 2 2.4 _ 2 2.4
plc= p2 C—JEI —JMI _\/EZ —AMZC (8)
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Pair Production

Simultaneous production of a pair consisting of a particle and it’s antiparticle
(electron e~ and position e* pair for example) at the expense of the entire energy
(hv) of a photon is called pair production. It is a very convincing example of
conversion of electromagnetic energy into rest mass energy and kinetic energy of
particles.

Pair Annihilation

The annihilation of a particle-antiparticle pair and the concomitant creation of
photons is the inverse of pair production. An electron and a positron which are
essentially at rest near one another unite and are annihilated.

Steller Energy

The internal energy of a star or the energy radiated by a star or the energy of the
stars.

In 1904 Rutherford discovered that radioactive o< — decay releases energy.
Radioactive decays are responsible for the energy of the stars but very heavy
radioactive elements are seen in the spectra of Steller Atmosphere.

Natural Radioactivity

The spontaneous emission of radiations from an unstable nuclei is called Natural
Radioactivity. For example natural radioactivity includes isotopes of potassium,
uranium and thorium.
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COMPTON EFFECT
A.H. Compton found that

“When a radiation (Photon) scatters from a stationary particle its frequency
decreases, i.e. wave length increases”

This phenomenon is known as Compton Effect. i.e. AA = mic (1 —Cos0)
0

Explanation

Consider a photon particle scattering with the electron particle which is at rest.
After scattering both particles moves in different directions. Photon makes
direction 6 with horizontal and electrons makes ¢ with horizontal as shown

i ‘Exanﬁl . /
PR I W/
::wc/"m .J/P’ "

Photon EWc%w: /{ gt
0 _

i ._ o 1 > X -atis
n;t b mvros?
pehf, "
E = ‘\{' E:MC E.—.;MC;
, — VG N
i Electvor,
4
W

Before collision

Momentum of Photon = %

Momentum of Electron = 0
Energy of Photon = hf

Momentum of Electron = m,c?
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After collision

Momentum of Photon = %

Momentum of Electron = mv

Energy of Photon = hf’

Momentum of Electron = mc?

According to law of conservation of energy

Total energy before collision = Total energy after collision

hf +myc? = hf' + mc? f v
A
hf — hf' + myc? = mc?
c c 2 2 =>f=£;f,=£,
hz—h3+moc =mc A A
h h
mc-;—;+moc
2
2 h
(mc) —(Z—Z+moc)
h? 2 h? moch moch
2.2 _h" K" 2.2 h oMo 0
mect = =+ mgc 2,1;1' 2 T + 2 /1
2.2 22 _h 2 K 11
m“c* —mgc —/12+/1,2 ZM,+2m0 h PR
2 2 2
2 o 2 _h% R h 1 1
(m —mo)c _/1_2+F_2H+2m0(:h(z_; ............ (1)

According to law of conservation of momentum

Total momentum before collision = Total momentum after collision
g +0= %Cos@ + mvCos(—q) X — axis

0+0= %Sin@ + mvSin(—¢) y — axis

This implies that
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g = %COSO + mvCos¢ and 0= %Sin@ — mvSing
mvCosp = hTf — % Cos6 ... (2)
mvSing = %S in 3)

Squaring and adding (2) and (3)

h2f2

] h2 12 n2rf' K2 12 .
m?v2Cos?p + m?v2Sin’e = = +CLZC0529—2—C];]C Cosf + C]; Sin%0
h2fz  p2f'? h2ff' h2f'? . —
m2v? = £+—f2 CosZH—Z—fo Cos6 + ]; Sin?6 v=1a
c c C c
s o _ h% RZ 2 h? h? . o >c=fA 1=£
mev :/1_2+,17C05 H—ZEC059+FSm 0 "1 ¢
2 2_h2 h2 h2
m-v —A—2+F—2HCOSQ .............. (4)
Now using m = ==
=
2 6 2 2 v? 2 2 (c2-v? 2.,2 2 2\ -2
>m 0 smi=m (1—6—2):>m0=m(62)=>mv = (m§ —m*®)c
1=z
2 2y.2 _h? R2 5 h?
(4) = (m§ —m*?)c _/’12+/1'2 ZM,COSH .............. (5)
h2  R2 h? 1 1 h? = h? h? .
=t ke ZH + 2mgych (/—1 — 7) ==t 7 zﬁa)se Comparing (1),(5)

h2
ax

+ 2mych G — i) = —2h—26059

= —2
A Yyu

A -2 h? h? , Y eN L L
= 2mych (7) =255 275Cos0 = X — A= (ZM, 2. 6059)

' h?

h
X 255 (1= Cos8) = AL = - (1 = Cos)

Here AA is called Compton shift representing change of wavelength of the photon
particles due to 6.

> A —-1=
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DOPPLER EFFECT / DOPPLER SHIFT

The change in frequency of light radiation emitted by a source of light due to
relativistic motion of source and observer is called Doppler Effect /Shift.

The expression for Doppler’s Effect can be obtained by using the transformation
law of energy and momentum.

Consider two frames S and S’. " — frame moving with velocity v relative to frame
S’ along the direction of common x - axis.

Let source of light P is emitting the radiations. Then energy and momentum of
photon of light in S is given by

E=hf oo, (DandP =2 ... )

c

Similarly in frame S’ is given by
E'=hf ... @and P ==L 4)

Where h is Planks constant, f is frequency in S frame and f” is proper frequency in
S’ frame.

Now by using law of transformation of Energy

E' = y(E - vP,)
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Then inverse transformation law becomes

E=y(E +VP) oo, (A)

Since B = "L Cos(oc " +180°) = =L Cos o' ... (5)
Using (1),(3) and (5) in (A)

=>E =y(E’—v%Cos oc’)

:>hf=y(hf'—thﬂCosoc’) Since E = hf ,E' = hf'

= hf = yhf'(1-2Cos ")

/] v ]
= f=vyf (1—ZCoso< )
Inverse relation is

r__ v I
=>f —yf(1+cCosoc )

This change in frequency due to the relative motion of the observer and the source
is known as Doppler Effect/Shift.

Significance of Doppler Effect

It has great significance in the field of astronomy. Observation of stellar spectra
determines the rate of moving motion of stars. i.e. at what rate the stars are moving
towards or away from us. While the observation of red shift in the spectra of
distance in galaxies indicate that the universe is continuously expanding.

It is useful in

= Radar system

= Motorway (Speed)
= Blood flow

= Sonar system
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Here are few cases for Doppler Effect
Horizontal Case (Longitudinal Doppler Effect)

(a) When source P moving away from the observer O or O’ then «’=x= 0°

1
K 18-
S-Frome | - Frome

Then using the equation

f=vf (1 —gCos o« ’)
_ / _v )

> f=yf (1 ” Cos0 )

=11 (=) =503 = (-

: 1-7
>f<f since 1+§ <1

c

Thus frequency f with respect to S — frame is less than the frequency f” with
respect to S’ — frame
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(b)When source P moving towards the observer O or O’ then o«’'=x= 180°

!

SR BRSLR,

Then using the equation
f=vf (1 —gCos o ’)

’ v o
= f =yf'(1-2Cos180°)

o1 =rp (109 = 5(002) = (4

1+% 1 v
>f="—=f= |=f

1—2 Cc

, . 142
=>f>f since 5> 1

v
c

Thus frequency f with respect to S — frame is grater than the frequency f” with

respect to S’ — frame

153
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Vertical Case (Transverse Doppler Effect)

In this case both frames coincide and source P moving perpendicular to x —
direction then «’ == 90°

rz
1P

L e
o’ A

Then using the equation
f= yf’(l —ECOS x ’)

’ v o
= f=vf'(1-2C0s90°)

=>f=vf

Thus frequency of light changed when the source moving perpendicular to the
direction of motion of light.

Also note that in classical mechanics y = 1 then f = f' that is no such effect
has been seen in classical mechanics.
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ABERRATION OF LIGHT

Aberration is the variation in the apparent position of a heavenly body such as a
star, due to the motion of the observer with the earth. The change in measurement
of angles is called Aberration of light.

¢ (Vi I -,

L W74 Pe
/“ g

- 5

b d

\0
Qi
RY

Consider two observers at origin O and O’ of two frames S and S’ respectively. Let
the frame S’ is moving with velocity v relative to S. Also suppose that a source of
light is placed at point P in frame S’, and also consider a light beam makes
different angles o, « ' to the observer at O and 0’.

Let P(P;, P,, P5,P,) and P'(P], P;, P3, P,) be 4 — momentum in S and S’
respectively. Then by using first component of law of transformation of 4 —
momentum;

Pi=y(Pe+2P) (1)

Using P, = “ Cos(ex +180°) = — L Cos «, P, = imc

And P! = %Cos(oc ' +180°) = —%Cos o’

hfr r_ _E l_v .
(1)=>—TCosoc _y( CCosoc+C.me)
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= —hTf'Cos o<’ =y(—h7fCos « —mv)
o Mosa =y (<SooseMu)  wE=mesm=E =l
c c c c c

hit r— 0 v
=>TCosoc —yC(Cosoc+C)
= f'Cos x' = yf (Cos e +§) ............... (2)

Using Doppler’s Effect
' = v
f —y(1+CCos oc)f
v r_ v
2)=>vf (1 +ZCOS oc) Cos x' =yf (Cos e +E)

v
Cosx+-  cCosoc+v

= Cos X'= —; =
1+ECOSOC c+vCosx
+cCosx . . . .
= Cos <'= ‘C’Hjcz; This equation gives us the relation between oc and o ’

Significance of Aberration of light

It has great significance in the field of astronomy. Observation of stellar spectra
determines the rate of moving motion of stars. i.e. at what rate the stars are moving
towards or away from us. While the observation of red shift in the spectra of
distance in galaxies indicate that the universe is continuously expanding.

The formula for aberration of light relate the true position of stars with the
observers position. The displacement being caused by the motion of the earth
relative to the velocity of light

. v+cCosx
if c > oo then Cos «'=
c+vCosx

becomes Cos «x'= Cos «

implies oc=oc '
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HEADLIGHT EFFECT

A moving source of radiation radiating uniformly in all directions in its rest frame,
appears to radiate predominantly along its direction of motion. This observed
bunching of radiation along the forward direction is due to aberration and is called

as headlight effect.

Consider a source in frame S’ radiating uniformly in all directions. Frame S’ is
moving along positive X, X' — axis with velocity v. See Figure;

b.r

ps Y%;Pm d%\\\//Z”_*

(a) {b)

(c)
In frame S’ the ray O'P (in plane X'Y’) has velocity components
Uy = cCos ' and uy, = cSin <’

According to the relativistic law of composition of velocities, in S frame the x
component of the velocity is
u, +v

Uy = ——F5—
v
1+C—2u;
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cCos <’ +v

Uy, =
v
1+ oz cCos o'
cCos '+ v
U, =
v
1+=Cos x'
c
v
c(Cosxr+= c(Cosxr+ v
ux=(,, C)=( B) where-=f
1+-Cosocr 1+fCosoxr c

Since u,, = cCos «, the angle made by the ray with the X —axis as observed in
frame S is given by

Cosxr+f3

u
Cos x=-= or Cos x=
c 1+fCosoxr

From this equation we see that «=cc " when oc= 0 or 7 but Cos o= 8 when
«'= i% :

Then as S approaches 1, the angle approaches zero. Thus most of the radiation
appears to be strongly concentrated in the forward direction with very little
radiation coming off in the backward direction. This is shown in Fig.(c)
qualitatively for a source radiating uniformly in its rest frame as in Fig.(b).

The headlight effect can be observed as visible light in case of radiation emitted
(synchrotron radiation) by circulating charged particles accelerated to extremely
high energies in modern accelerators. A similar phenomenon is observed in nature
when high energy cosmic ray protons decelerate on entering the earth’s
atmosphere.

Visit @ Youtube “Learning with Usman Hamid”



159

Example

The speed of light in still water is %where n is the refractive index of water.

Experiments show that the speed of light in running water can be expressed as
V= %+ kv where k = 0.4 is called the drag coefficient and v is the velocity of

water. Determine the value of k using the law of addition of velocities. n = g.

Solution
According to the law of addition of velocities,

Uy +v ,_C . . L . .
U,= ——— where U, = = is the speed of light in a frame in which the water is at rest and v is the

vU, n

1+

CZ

velocity of water in a frame S in which the velocity of light 1s U..

(£+v)(l—i] v ven < |
i ch

2
C cv v c | .
———— Y ———— v(l - —2] neglecting v? terms.
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Example

How fast must you be driving your car to see a red light signal as green? Take the
wavelengths of red and green lights as 6300 A and 5400 A respectively.

Solution  In relativity only the relative motion between the source and the observer is of importance—there
is no distinction between source approaching the observer and the observer approaching the source. For an
observer in a car travelling directly towards a source of light with a velocity v, the source of light appears
to approach directly towards him with velocity v. The observer in the car would measure a higher frequency
or a lower wavelength.

Let /" be the frequency of light emitted (red signal) and fthe frequency of light measured by the observer
in the car. Then

[+ 14§
i= B v fN=fh=c
f
6300 _ +ﬁ=1
5400 Y1-B 6
9 _1h
% 1-8

49 - 49B = 36 + 36p or 85B =

13

= = =0.153
b=

Y= 0153 or v=0.153 ¢ = 0153 x3 x 10° m’s
c

y=459 x 107 m/s.
An observer in a car approaching a red signal with above velocity would see the red signal as green!
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Example

Three identical radio transmitters A, B and C each transmitting at the frequency f;
In its own rest frame are in motion as shown

(a) What is the frequency of B’s signal as received by C?

(b) What is the frequency of A’s signal as received by C?

Solution
(a) For an observer on C, the source B appears to recede directly away with a velocity v. Hence the

frequency observed by C is

1—p 12
=5 {WJ where p = vlc.

(b) For an observer on C, the source 4 appears to recede directly away with a velocity

e vty v
y 27.2
H_Z_U I+veic
c

Hence the frequency of transmitter 4 as observed by C is given by

112

2vle

I 1-v'lc 2 1+v2 /c?

v o 2vle
1+

1 +v2/c?

- 1+v2 /2 =2vlc m_f (1=vic)? le_f (I-BJ
“Lisviis2ve ] (1+vlc)? R CEY:
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Example

What is the Doppler shift in the wavelength of Hx (6561 A) line from a star which
Is moving away from the earth with a velocity of 300 Km/s.

i

Solution Observed frequency

—i—
‘W‘W

K _ [1-B ,
% \1+B A==
or I+B whete B = vic - Ix10° el
1-B 3%108
+B 1
[ =(1+B)*(1-P) 2 =(1+p2)(1+p2)

=~ 1+ B2+ p2=1+ B neglecting p
L=A({1+B)
- Doppler shift AL=A- X = LB = (6561 A) (107

= 6.561 A (increase).
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Example

The sun rotates once in about 24.7 days. The radius of the sun is about
7.0 x 108kms. Calculate the Doppler shift that we should observe for light of
wavelength 6560 A from the edge of the sun’s disc near the equator. Is this shift
towards the red end or the blue end of the spectrum?

Solution
The source of light at the edge A4 is instantaneously approach- /
ing the earth with a velocity v = wr where ® is the angular
velocity of the rotating sun and r its radius. The observed fre-
quency will therefore increase, hence the observed wavelength A
will be less than 6560 A. Such a decrease is called a shift towards
the blue. /

1+
Since observed frequency f= f % and fA= fA = ¢, i
Earth

Ko ﬂ or iz ﬂ =(1-P"2 1+ B)_% Fig. 5.6 For lllustrative Example 5
A 1-p N 1+B

= (1-%} (1 —%) ~ 1 — P neglecting B? terms.

A=) (1-P)
Doppler shift AA=21"- A= AP

Now B= y_or 2nr where T = 24.7 days period
¢c ¢ Tec
. 27 x7.0x10% x 6560
Ah=pN = 2Py =

Te  247x24x60%60x3x 103

=0.0455 A
A = 0.0455 A (towards blue)
The source of light at edge B is instantaneously receding away from the earth. The observed frequency
is now reduced and hence observed wavelength will be more than 6560 A. Such an increase in wave length
is called a shift towards the red.

In the present case L LB = (1 + B)
P X 1-B
=X L+ B)

[ncrease in wavelength AL=A - X" = 1B
= 0.0455 A as before (towards red)
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Example

Light of wavelength 6000 A is incident normally on a mirror which is receding
with a velocity 3 x 10*ms~1 in a direction away from the incident light. Calculate

the change in wavelength on reflection.

Solution
Consider an observer O moving with the mirror. To him the source of light appears to recede away

’1_
directly from him. Hence the frequency of light incident on the mirror is f= f* % :

This is also the frequency of light reflected from the mirror. The mirror is therefore a source of light
of frequency fand this source (mirror) s receding away at 3 x 10* m/s. Hence the frequency of reflected
light as observed by an observer with respect to whom the source is receding away at v=23 x 10* m/s is

,_ o 1=B L (1-B1-p (1B
/= f\j1+[3_f \/1+B\/1+B_f [1+B]

If A" is the observed wavelength of the reflected light then since /A" = ¢= f"A" we find that

n ! 1+B ! -
A _k£ﬁJ_l (1+ B)I- By =(1+B)I+B)
= N(1+2p)
~. Change in wavelength is A" — A" = 2\
10*
=2 X 6000 =2 x 10~ x 6000 = 1.2 A,
Ix10°
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Question

A stationary shell of rest mass M explodes into two fragments of rest masses M, and M,. Show that
their respective enetgies are given by
2 142 _ iyl
_ JM +JM| _iwz ,Z.E _

{’!I
' 1M :

M -M] + M3
¢
2M

2

Solution

Consider a stationary shell (of rest mass M) at rest momentum P = 0 exploded into
two fragments of rest masses M; and M,. Since the initial momentum is zero, in
order to conserve momentum P,, P, must be equal in magnitude. i.e. P, = P, and
opposite in direction. If E;, E, represent the total energies of particles of rest
masses M, and M., then we must have

PZc? = P2c?

Or E?—M?2c*=E2?—-M2c*

E? —E2 = MZc* — M3c* ... (1)

From conservation of total energy we have

E, + E, = M?c* = initial total energy ~ ............. (2)
Dividing (1) by (2) we get

E?-E}  MZc*-Mjc*

E{+E, Mc?

(E1+Ep)(E1—E;) _ Mic*-Mjc*
E,+E, Mc?2

2 4 g2 4
El_EZZM ............. (3)

Mc?

M2+M2—M2 2 M2+M2—M2 2
$2E1=( Ilw Z)C :>E1:( th Z)C

adding (2) and (3)

_ (M*-MZ+M3)c?

M?%—-M?+M3)c?
—1 2E2 == Y, —1 EZ == ( 1 2)

2M

subtracting (2) and (3)
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Poincare Group

The Poincaré group, named after Henri Poincaré
(1906),I'l was first defined by Hermann
Minkowski (1908) as the group of Minkowski
spacetime isometries.[Z3! |t is a ten-dimensional
non-abelian Lie group that is of importance as a
model in our understanding of the most basic
fundamentals of physics.

Lorentz Group

In physics and mathematics, the Lorentz group is
the group of all Lorentz transformations of
Minkowski spacetime, the classical and quantum
setting for all (non-gravitational) physical
phenomena. The Lorentz group is named for the
Dutch physicist Hendrik Lorentz.

Available at MathCity.org Visit @ Youtube “Learning with Usman Hamid”



167

There are two differences. First, the difference
between a transformation and a group. A
transformation, in this context, is a change of the
spacetime coordinates. A group, in this context, is a
collection of all the possible transformations. So the
difference is that a transformation is an element of a

group.

Second, the difference between a Lorentz
transformation and a Poincare transformation. The
Lorentz group consists of the transformations which
preserve the magnitude of 4-vectors and also
transform the origin to itself. These transformations
are the rotations around the origin and the boosts. (A
boost is a change to a frame of reference moving
with some relative velocity with respect to the
original frame.)

The Poincare group consists of the transformations
which preserve the magnitude of 4-vectors, but does
not require the origin to be preserved. Therefore it
includes, in addition to rotations and boosts, also
translations in space and time.

So the Lorentz group has 6 parameters: 3 rotations
(one around each direction of space) and 3 boosts
(one in each direction of space). The Poincare group
adds 4 more parameters for translations (one in the
time direction and one in each space direction).

In short, Poincare = Lorentz + translations.
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Question
Prove that Kronecker delta is unaltered (invariant) by coordinate transformation.

Solution

We have to prove &/ = 5}'

51-’_ uaxi, oxV

J 7TV g gy’
61" = (su axl\ ax? (1)
] - v axu 'ale ...............
Then
6u axi’ 61 axi’ 62 axi, 617 axi, 6[\] axi,
Vaxu_ Uax1+ Uax2+"'+ Uaxv+"'+ v_axN
woxt _oxt g = {0 SUFE DV
v IxU oxV v 0 U=D
i’ 6xi, ox?
= 5] = Py 7
xX® oxJ
i’ Bxi’
J axi’'
i’ i
=6; =96

Hence it is proved that Kronecker delta is unaltered by coordinate transformation.
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