(B.A/B.Sc. Part-I)

Mathematics B-Course (Paper-II)

Roll No:

Attempt FIVE Questions in all. Select TWO Questions from Section-A and THREE from Section-B.

Section-A

1. a) Prove that
$$|\overrightarrow{a} \times \overrightarrow{b}|^2 + |\overrightarrow{a} \cdot \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$$

b) Show that $(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{c} \times \overrightarrow{a}) = (\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c})^2$

2. a) If
$$\overrightarrow{u}(t)$$
 is a unit vector, Show that \overrightarrow{u} . $(\overrightarrow{u} + \frac{d^2\overrightarrow{u}}{dt^2}) + \left(\frac{d\overrightarrow{u}}{dt}\right)^2 = 1$.

b) Integrate :

 $\frac{d^2 \overrightarrow{r}}{dt^2} = -n^2 \overrightarrow{r} .$

3. a) If \vec{a} is a constant vector and $\vec{v} = \vec{a} \times \vec{h}$, show that $div \vec{v} = 0$.

b) Evaluate: $\nabla \mathbf{x} \left(\frac{\overrightarrow{h}}{\frac{2}{h}} \right).$

Section-B

4- a) P is any point in the plane of triangle ABC and D, E, F are middle points of its sides,

prove that forces \overrightarrow{AP} , \overrightarrow{BP} , \overrightarrow{CP} , \overrightarrow{PD} , \overrightarrow{PE} , \overrightarrow{PF} are in equilibrium.

- b) A couple of moment G acts on a square board ABCD of side a. Replace the couple by forces acting along AB, BD and CA.
- 5- a) A triangular lamina ABC, right-angled at A, rests with its plane vertical, and with the sides AB, AC supported by smooth fixed pegs D, E in a horizontal line. Prove that the inclination θ of AC to the horizontal is given by AC Cos θ AB Sin θ = 3 DE Cos 2 θ .
 - b) Two equal beams AB, AC each of weights W, connected by a hinge at A, are placed in a vertical plane with their extremities B, C resting on a horizontal plane; they are kept from falling by strings connecting B and C with the middle points of the opposite sides. Show that the tension of either string is $\frac{W}{8}\sqrt{1+9 \operatorname{Cot}^2 \theta}$, where θ is the inclination of either beam to the horizontal.
- **6-** a) A uniform ladder rests in limiting equilibrium with one end on a rough floor whose co-efficient of friction is μ and with the other against a smooth vertical wall. Show that its inclination to the vertical is $\tan^{-1}(2\mu)$.
 - b) A thin uniform rod passes over one peg and under another, the coefficient of friction between each peg and the rod being μ . The distance between the pegs is α , and the straight line joining them makes an angle β with the horizontal. Show that the equilibrium is not possible unless the length of

the rod is greater than $\frac{\alpha}{\mu}(\mu + \tan \beta)$.

7- a) Find the C.G of the curved surface of a hollow right circular cone.

b) Find the C.G of uniform lamina forming a quadrant of an ellipse bounded by its semi-axes.

- 8- a) A particle of mass 20lb is supported on a smooth plane inclined at 60° to the horizontal by a force of magnitude x poundals which makes an angle of 30° with the plane. Find x and also the reaction of the plane on the particle.
 - b) Six equal uniform rods freely jointed at their extremities form a tetrahedron. If this tetrahedron is placed with one face on a smooth horizontal table, prove that the thrust along a horizontal rod W
 - is $\frac{W}{2\sqrt{6}}$, where W is the weight of a rod.

*** B.A/B.Sc-I (13/A) xxv ***

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5